static void non_boot_cpu_init(void* args, int currentCPU) { kernel_args* kernelArgs = (kernel_args*)args; if (currentCPU != 0) cpu_init_percpu(kernelArgs, currentCPU); }
/** * cpu_init_one - initializes a CPU core * @cpu: the CPU core number * * Typically one should call this right after * creating a new thread. Initialization includes * binding the thread to the appropriate core, * setting up per-cpu memory, and enabling Dune. * * Returns 0 if successful, otherwise fail. */ int cpu_init_one(unsigned int cpu) { int ret; cpu_set_t mask; unsigned int tmp, numa_node; void *pcpu; if (cpu >= cpu_count) return -EINVAL; CPU_ZERO(&mask); CPU_SET(cpu, &mask); ret = sched_setaffinity(0, sizeof(mask), &mask); if (ret) return -EPERM; ret = syscall(SYS_getcpu, &tmp, &numa_node, NULL); if (ret) return -ENOSYS; if (cpu != tmp) { log_err("cpu: couldn't migrate to the correct core\n"); return -EINVAL; } pcpu = cpu_init_percpu(cpu, numa_node); if (!pcpu) return -ENOMEM; ret = dune_enter_ex(pcpu); if (ret) { log_err("cpu: failed to initialize Dune\n"); return ret; } percpu_get(cpu_id) = cpu; percpu_get(cpu_numa_node) = numa_node; log_is_early_boot = false; log_info("cpu: started core %d, numa node %d\n", cpu, numa_node); return 0; }
extern "C" int _start(kernel_args *bootKernelArgs, int currentCPU) { if (bootKernelArgs->kernel_args_size != sizeof(kernel_args) || bootKernelArgs->version != CURRENT_KERNEL_ARGS_VERSION) { // This is something we cannot handle right now - release kernels // should always be able to handle the kernel_args of earlier // released kernels. debug_early_boot_message("Version mismatch between boot loader and " "kernel!\n"); return -1; } smp_set_num_cpus(bootKernelArgs->num_cpus); // wait for all the cpus to get here smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); // the passed in kernel args are in a non-allocated range of memory if (currentCPU == 0) memcpy(&sKernelArgs, bootKernelArgs, sizeof(kernel_args)); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // do any pre-booting cpu config cpu_preboot_init_percpu(&sKernelArgs, currentCPU); thread_preboot_init_percpu(&sKernelArgs, currentCPU); // if we're not a boot cpu, spin here until someone wakes us up if (smp_trap_non_boot_cpus(currentCPU, &sCpuRendezvous3)) { // init platform arch_platform_init(&sKernelArgs); // setup debug output debug_init(&sKernelArgs); set_dprintf_enabled(true); dprintf("Welcome to kernel debugger output!\n"); dprintf("Haiku revision: %lu\n", get_haiku_revision()); // init modules TRACE("init CPU\n"); cpu_init(&sKernelArgs); cpu_init_percpu(&sKernelArgs, currentCPU); TRACE("init interrupts\n"); int_init(&sKernelArgs); TRACE("init VM\n"); vm_init(&sKernelArgs); // Before vm_init_post_sem() is called, we have to make sure that // the boot loader allocated region is not used anymore boot_item_init(); debug_init_post_vm(&sKernelArgs); low_resource_manager_init(); // now we can use the heap and create areas arch_platform_init_post_vm(&sKernelArgs); lock_debug_init(); TRACE("init driver_settings\n"); driver_settings_init(&sKernelArgs); debug_init_post_settings(&sKernelArgs); TRACE("init notification services\n"); notifications_init(); TRACE("init teams\n"); team_init(&sKernelArgs); TRACE("init ELF loader\n"); elf_init(&sKernelArgs); TRACE("init modules\n"); module_init(&sKernelArgs); TRACE("init semaphores\n"); haiku_sem_init(&sKernelArgs); TRACE("init interrupts post vm\n"); int_init_post_vm(&sKernelArgs); cpu_init_post_vm(&sKernelArgs); commpage_init(); TRACE("init system info\n"); system_info_init(&sKernelArgs); TRACE("init SMP\n"); smp_init(&sKernelArgs); TRACE("init timer\n"); timer_init(&sKernelArgs); TRACE("init real time clock\n"); rtc_init(&sKernelArgs); TRACE("init condition variables\n"); condition_variable_init(); // now we can create and use semaphores TRACE("init VM semaphores\n"); vm_init_post_sem(&sKernelArgs); TRACE("init generic syscall\n"); generic_syscall_init(); smp_init_post_generic_syscalls(); TRACE("init scheduler\n"); scheduler_init(); TRACE("init threads\n"); thread_init(&sKernelArgs); TRACE("init kernel daemons\n"); kernel_daemon_init(); arch_platform_init_post_thread(&sKernelArgs); TRACE("init I/O interrupts\n"); int_init_io(&sKernelArgs); TRACE("init VM threads\n"); vm_init_post_thread(&sKernelArgs); low_resource_manager_init_post_thread(); TRACE("init VFS\n"); vfs_init(&sKernelArgs); #if ENABLE_SWAP_SUPPORT TRACE("init swap support\n"); swap_init(); #endif TRACE("init POSIX semaphores\n"); realtime_sem_init(); xsi_sem_init(); xsi_msg_init(); // Start a thread to finish initializing the rest of the system. Note, // it won't be scheduled before calling scheduler_start() (on any CPU). TRACE("spawning main2 thread\n"); thread_id thread = spawn_kernel_thread(&main2, "main2", B_NORMAL_PRIORITY, NULL); resume_thread(thread); // We're ready to start the scheduler and enable interrupts on all CPUs. scheduler_enable_scheduling(); // bring up the AP cpus in a lock step fashion TRACE("waking up AP cpus\n"); sCpuRendezvous = sCpuRendezvous2 = 0; smp_wake_up_non_boot_cpus(); smp_cpu_rendezvous(&sCpuRendezvous, 0); // wait until they're booted // exit the kernel startup phase (mutexes, etc work from now on out) TRACE("exiting kernel startup\n"); gKernelStartup = false; smp_cpu_rendezvous(&sCpuRendezvous2, 0); // release the AP cpus to go enter the scheduler TRACE("starting scheduler on cpu 0 and enabling interrupts\n"); scheduler_start(); enable_interrupts(); } else { // lets make sure we're in sync with the main cpu // the boot processor has probably been sending us // tlb sync messages all along the way, but we've // been ignoring them arch_cpu_global_TLB_invalidate(); // this is run for each non boot processor after they've been set loose cpu_init_percpu(&sKernelArgs, currentCPU); smp_per_cpu_init(&sKernelArgs, currentCPU); // wait for all other AP cpus to get to this point smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // welcome to the machine scheduler_start(); enable_interrupts(); } #ifdef TRACE_BOOT // We disable interrupts for this dprintf(), since otherwise dprintf() // would acquires a mutex, which is something we must not do in an idle // thread, or otherwise the scheduler would be seriously unhappy. disable_interrupts(); TRACE("main: done... begin idle loop on cpu %d\n", currentCPU); enable_interrupts(); #endif for (;;) arch_cpu_idle(); return 0; }