Example #1
0
static int
ixp425_attach(device_t dev)
{
	struct ixp425_softc *sc;

	device_printf(dev, "%b\n", ixp4xx_read_feature_bits(), EXP_FCTRL_BITS);

	sc = device_get_softc(dev);
	sc->sc_iot = &ixp425_bs_tag;
	KASSERT(ixp425_softc == NULL, ("%s called twice?", __func__));
	ixp425_softc = sc;

	intr_enabled = 0;
	ixp425_set_intrmask();
	ixp425_set_intrsteer();
	if (cpu_is_ixp43x()) {
		intr_enabled2 = 0;
		ixp435_set_intrmask();
		ixp435_set_intrsteer();
	}

	if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
	    BUS_SPACE_MAXADDR, NULL, NULL,  0xffffffff, 0xff, 0xffffffff, 0, 
	    NULL, NULL, &sc->sc_dmat))
		panic("%s: failed to create dma tag", __func__);

	sc->sc_irq_rman.rm_type = RMAN_ARRAY;
	sc->sc_irq_rman.rm_descr = "IXP4XX IRQs";
	if (rman_init(&sc->sc_irq_rman) != 0 ||
	    rman_manage_region(&sc->sc_irq_rman, 0, cpu_is_ixp43x() ? 63 : 31) != 0)
		panic("%s: failed to set up IRQ rman", __func__);

	sc->sc_mem_rman.rm_type = RMAN_ARRAY;
	sc->sc_mem_rman.rm_descr = "IXP4XX Memory";
	if (rman_init(&sc->sc_mem_rman) != 0 ||
	    rman_manage_region(&sc->sc_mem_rman, 0, ~0) != 0)
		panic("%s: failed to set up memory rman", __func__);

	BUS_ADD_CHILD(dev, 0, "pcib", 0);
	BUS_ADD_CHILD(dev, 0, "ixpclk", 0);
	BUS_ADD_CHILD(dev, 0, "ixpiic", 0);
	/* XXX move to hints? */
	BUS_ADD_CHILD(dev, 0, "ixpwdog", 0);

	/* attach wired devices via hints */
	bus_enumerate_hinted_children(dev);

	if (bus_space_map(sc->sc_iot, IXP425_GPIO_HWBASE, IXP425_GPIO_SIZE,
	    0, &sc->sc_gpio_ioh))
		panic("%s: unable to map GPIO registers", __func__);
	if (bus_space_map(sc->sc_iot, IXP425_EXP_HWBASE, IXP425_EXP_SIZE,
	    0, &sc->sc_exp_ioh))
		panic("%s: unable to map Expansion Bus registers", __func__);

	bus_generic_probe(dev);
	bus_generic_attach(dev);

	return (0);
}
Example #2
0
void __init ixp4xx_init_irq(void)
{
	int i = 0;

	/* Route all sources to IRQ instead of FIQ */
	*IXP4XX_ICLR = 0x0;

	/* Disable all interrupt */
	*IXP4XX_ICMR = 0x0; 

	if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
		/* Route upper 32 sources to IRQ instead of FIQ */
		*IXP4XX_ICLR2 = 0x00;

		/* Disable upper 32 interrupts */
		*IXP4XX_ICMR2 = 0x00;
	}

        /* Default to all level triggered */
	for(i = 0; i < NR_IRQS; i++) {
		set_irq_chip(i, &ixp4xx_irq_chip);
		set_irq_handler(i, handle_level_irq);
		set_irq_flags(i, IRQF_VALID);
	}
}
Example #3
0
static void ixp4xx_irq_mask(unsigned int irq)
{
	if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && irq >= 32)
		*IXP4XX_ICMR2 &= ~(1 << (irq - 32));
	else
		*IXP4XX_ICMR &= ~(1 << irq);
}
Example #4
0
static void ixp4xx_irq_mask(struct irq_data *d)
{
	if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
		*IXP4XX_ICMR2 &= ~(1 << (d->irq - 32));
	else
		*IXP4XX_ICMR &= ~(1 << d->irq);
}
Example #5
0
void __init ixp4xx_init_irq(void)
{
	int i = 0;

	/*
	 * ixp4xx does not implement the XScale PWRMODE register
	 * so it must not call cpu_do_idle().
	 */
	disable_hlt();

	/* Route all sources to IRQ instead of FIQ */
	*IXP4XX_ICLR = 0x0;

	/* Disable all interrupt */
	*IXP4XX_ICMR = 0x0; 

	if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
		/* Route upper 32 sources to IRQ instead of FIQ */
		*IXP4XX_ICLR2 = 0x00;

		/* Disable upper 32 interrupts */
		*IXP4XX_ICMR2 = 0x00;
	}

        /* Default to all level triggered */
	for(i = 0; i < NR_IRQS; i++) {
		irq_set_chip_and_handler(i, &ixp4xx_irq_chip,
					 handle_level_irq);
		set_irq_flags(i, IRQF_VALID);
	}
}
Example #6
0
static int ixp4xx_mdio_register(void)
{
	int err;

	if (!(mdio_bus = mdiobus_alloc()))
		return -ENOMEM;

	if (cpu_is_ixp43x()) {
		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
			return -ENOSYS;
		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
	} else {
		/* All MII PHY accesses use NPE-B Ethernet registers */
		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
			return -ENOSYS;
		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
	}

	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
	spin_lock_init(&mdio_lock);
	mdio_bus->name = "IXP4xx MII Bus";
	mdio_bus->read = &ixp4xx_mdio_read;
	mdio_bus->write = &ixp4xx_mdio_write;
	strcpy(mdio_bus->id, "0");

	if ((err = mdiobus_register(mdio_bus)))
		mdiobus_free(mdio_bus);
	return err;
}
Example #7
0
static void __init ixdp425_init(void)
{
	ixp4xx_sys_init();

	ixdp425_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	ixdp425_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

#if defined(CONFIG_MTD_NAND_PLATFORM) || \
    defined(CONFIG_MTD_NAND_PLATFORM_MODULE)
	ixdp425_flash_nand_resource.start = IXP4XX_EXP_BUS_BASE(3),
	ixdp425_flash_nand_resource.end   = IXP4XX_EXP_BUS_BASE(3) + 0x10 - 1;

	gpio_line_config(IXDP425_NAND_NCE_PIN, IXP4XX_GPIO_OUT);

	/* Configure expansion bus for NAND Flash */
	*IXP4XX_EXP_CS3 = IXP4XX_EXP_BUS_CS_EN |
			  IXP4XX_EXP_BUS_STROBE_T(1) |	/* extend by 1 clock */
			  IXP4XX_EXP_BUS_CYCLES(0) |	/* Intel cycles */
			  IXP4XX_EXP_BUS_SIZE(0) |	/* 512bytes addr space*/
			  IXP4XX_EXP_BUS_WR_EN |
			  IXP4XX_EXP_BUS_BYTE_EN;	/* 8 bit data bus */
#endif

	if (cpu_is_ixp43x()) {
		ixdp425_uart.num_resources = 1;
		ixdp425_uart_data[1].flags = 0;
	}

	platform_add_devices(ixdp425_devices, ARRAY_SIZE(ixdp425_devices));
}
Example #8
0
void __init ixp4xx_init_irq(void)
{
	int i = 0;

	
	*IXP4XX_ICLR = 0x0;

	
	*IXP4XX_ICMR = 0x0; 

	if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
		
		*IXP4XX_ICLR2 = 0x00;

		
		*IXP4XX_ICMR2 = 0x00;
	}

        
	for(i = 0; i < NR_IRQS; i++) {
		set_irq_chip(i, &ixp4xx_irq_chip);
		set_irq_handler(i, handle_level_irq);
		set_irq_flags(i, IRQF_VALID);
	}
}
void __init ixp4xx_init_irq(void)
{
	int i = 0;

	/*
                                                         
                                      
  */
	disable_hlt();

	/*                                         */
	*IXP4XX_ICLR = 0x0;

	/*                       */
	*IXP4XX_ICMR = 0x0; 

	if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
		/*                                              */
		*IXP4XX_ICLR2 = 0x00;

		/*                             */
		*IXP4XX_ICMR2 = 0x00;
	}

        /*                                */
	for(i = 0; i < NR_IRQS; i++) {
		irq_set_chip_and_handler(i, &ixp4xx_irq_chip,
					 handle_level_irq);
		set_irq_flags(i, IRQF_VALID);
	}
}
Example #10
0
/*
 * Level triggered interrupts on GPIO lines can only be cleared when the
 * interrupt condition disappears.
 */
static void ixp4xx_irq_unmask(unsigned int irq)
{
	if (!(ixp4xx_irq_edge & (1 << irq)))
		ixp4xx_irq_ack(irq);

	if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && irq >= 32)
		*IXP4XX_ICMR2 |= (1 << (irq - 32));
	else
		*IXP4XX_ICMR |= (1 << irq);
}
Example #11
0
/*
 * Level triggered interrupts on GPIO lines can only be cleared when the
 * interrupt condition disappears.
 */
static void ixp4xx_irq_unmask(struct irq_data *d)
{
	if (!(ixp4xx_irq_edge & (1 << d->irq)))
		ixp4xx_irq_ack(d);

	if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
		*IXP4XX_ICMR2 |= (1 << (d->irq - 32));
	else
		*IXP4XX_ICMR |= (1 << d->irq);
}
Example #12
0
static __inline void
update_masks(uint32_t mask, uint32_t mask2)
{

	intr_enabled = mask;
	ixp425_set_intrmask();
	if (cpu_is_ixp43x()) {
		intr_enabled2 = mask2;
		ixp435_set_intrmask();
	}
}
Example #13
0
int
arm_get_next_irq(void)
{
	uint32_t irq;

	if ((irq = ixp425_irq_read()))
		return (ffs(irq) - 1);
	if (cpu_is_ixp43x() && (irq = ixp435_irq_read()))
		return (32 + ffs(irq) - 1);
	return (-1);
}
void
cambria_exp_bus_init(struct ixp425_softc *sc)
{
	static struct expbus_softc c3;		/* NB: no need to malloc */
	uint32_t cs3;

	KASSERT(cpu_is_ixp43x(), ("wrong cpu type"));

	c3.sc = sc;
	c3.csoff = EXP_TIMING_CS3_OFFSET;
	EXP_LOCK_INIT(&c3);
	cambria_exp_bs_tag.bs_cookie = &c3;

	cs3 = EXP_BUS_READ_4(sc, EXP_TIMING_CS3_OFFSET);
	/* XXX force slowest possible timings and byte mode */
	EXP_BUS_WRITE_4(sc, EXP_TIMING_CS3_OFFSET,
	    cs3 | (EXP_T1|EXP_T2|EXP_T3|EXP_T4|EXP_T5) |
	        EXP_BYTE_EN | EXP_WR_EN | EXP_BYTE_RD16 | EXP_CS_EN);

	/* XXX force GPIO 3+4 for GPS+RS485 uarts */
	ixp425_set_gpio(sc, 3, GPIO_TYPE_EDG_RISING);
	ixp425_set_gpio(sc, 4, GPIO_TYPE_EDG_RISING);
}
Example #15
0
void *
initarm(void *arg, void *arg2)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	set_cpufuncs();		/* NB: sets cputype */
	lastaddr = fake_preload_metadata();
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = KERNPHYSADDR;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - KERNPHYSADDR);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va = 
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - KERNPHYSADDR);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
#ifdef ARM_USE_SMALL_ALLOC
	freemempos -= PAGE_SIZE;
	freemem_pt = trunc_page(freemem_pt);
	freemem_after = freemempos - ((freemem_pt - (PHYSADDR + 0x100000)) /
	    PAGE_SIZE) * sizeof(struct arm_small_page);
	arm_add_smallalloc_pages(
	    (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)),
	    (void *)0xc0100000,
	    freemem_pt - (PHYSADDR + 0x100000), 1);
	freemem_after -= ((freemem_after - (PHYSADDR + 0x1000)) / PAGE_SIZE) *
	    sizeof(struct arm_small_page);
	arm_add_smallalloc_pages(
	    (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)),
	    (void *)0xc0001000,
	    trunc_page(freemem_after) - (PHYSADDR + 0x1000), 0);
	freemempos = trunc_page(freemem_after);
	freemempos -= PAGE_SIZE;
#endif

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, 
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#ifdef ARM_USE_SMALL_ALLOC
	if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) {
		arm_add_smallalloc_pages((void *)(freemem_after),
		    (void*)(freemem_after + PAGE_SIZE),
		    afterkern - (freemem_after + PAGE_SIZE), 0);
		    
	}
#endif

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		pmap_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		pmap_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE*PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE*PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE*PAGE_SIZE);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();
	physmem = memsize / PAGE_SIZE;

	/* Set stack for exception handlers */

	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
	undefined_init();

	proc_linkup0(&proc0, &thread0);
	thread0.td_kstack = kernelstack.pv_va;
	thread0.td_pcb = (struct pcb *)
		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
	thread0.td_pcb->pcb_flags = 0;
	thread0.td_frame = &proc0_tf;
	pcpup->pc_curpcb = thread0.td_pcb;

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	dump_avail[0] = PHYSADDR;
	dump_avail[1] = PHYSADDR + memsize;
	dump_avail[2] = 0;
	dump_avail[3] = 0;

	pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	i = 0;
#ifdef ARM_USE_SMALL_ALLOC
	phys_avail[i++] = PHYSADDR;
	phys_avail[i++] = PHYSADDR + PAGE_SIZE; 	/*
					 *XXX: Gross hack to get our
					 * pages in the vm_page_array.
					 */
#endif
	phys_avail[i++] = round_page(virtual_avail - KERNBASE + PHYSADDR);
	phys_avail[i++] = trunc_page(PHYSADDR + memsize - 1);
	phys_avail[i++] = 0;
	phys_avail[i] = 0;

	init_param2(physmem);
	kdb_init();

	/* use static kernel environment if so configured */
	if (envmode == 1)
		kern_envp = static_env;

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}
Example #16
0
void *
initarm(struct arm_boot_params *abp)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	/* kernel text starts where we were loaded at boot */
#define	KERNEL_TEXT_OFF		(abp->abp_physaddr  - PHYSADDR)
#define	KERNEL_TEXT_BASE	(KERNBASE + KERNEL_TEXT_OFF)
#define	KERNEL_TEXT_PHYS	(PHYSADDR + KERNEL_TEXT_OFF)

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();		/* NB: sets cputype */
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	if (envmode == 1)
		kern_envp = static_env;
	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = abp->abp_physaddr;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - abp->abp_physaddr);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		arm_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		arm_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup();

	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();

	undefined_init();

	init_proc0(kernelstack.pv_va);

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	vm_max_kernel_address = 0xe0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel, and all the things we allocated which immediately
	 * follow the kernel, from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(PHYSADDR, memsize);
	arm_physmem_exclude_region(freemem_pt, KERNPHYSADDR -
	    freemem_pt, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(freemempos, KERNPHYSADDR - 0x100000 -
	    freemempos, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();

	/* use static kernel environment if so configured */
	if (envmode == 1)
		kern_envp = static_env;

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}