Example #1
0
void
cpu_set_reg (sim_cpu* cpu, uint8 reg, uint16 val)
{
  switch (reg)
    {
    case 0:
      cpu_set_x (cpu, val);
      break;
      
    case 1:
      cpu_set_y (cpu, val);
      break;
      
    case 2:
      cpu_set_sp (cpu, val);
      break;
      
    case 3:
      cpu_set_pc (cpu, val);
      break;
      
    default:
      break;
    }
}
Example #2
0
File: gdbstub.c Project: Blub/qemu
static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
{
    CPUState *cpu = s->c_cpu;

    cpu_synchronize_state(cpu);
    cpu_set_pc(cpu, pc);
}
Example #3
0
static void main_cpu_reset(void *opaque)
{
    OpenRISCCPU *cpu = opaque;
    CPUState *cs = CPU(cpu);

    cpu_reset(CPU(cpu));

    cpu_set_pc(cs, boot_info.bootstrap_pc);
}
Example #4
0
int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  uint16 val;
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);

  val = *memory++;
  if (length == 2)
    val = (val << 8) | *memory;

  switch (rn)
    {
    case D_REGNUM:
      cpu_set_d (cpu, val);
      break;

    case A_REGNUM:
      cpu_set_a (cpu, val);
      return 1;

    case B_REGNUM:
      cpu_set_b (cpu, val);
      return 1;

    case X_REGNUM:
      cpu_set_x (cpu, val);
      break;

    case Y_REGNUM:
      cpu_set_y (cpu, val);
      break;

    case SP_REGNUM:
      cpu_set_sp (cpu, val);
      break;

    case PC_REGNUM:
      cpu_set_pc (cpu, val);
      break;

    case PSW_REGNUM:
      cpu_set_ccr (cpu, val);
      return 1;

    case PAGE_REGNUM:
      cpu_set_page (cpu, val);
      return 1;

    default:
      break;
    }

  return 2;
}
Example #5
0
static int
m68hc11_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  uint16 val;

  val = *memory++;
  if (length == 2)
    val = (val << 8) | *memory;

  switch (rn)
    {
    case D_REGNUM:
      cpu_set_d (cpu, val);
      break;

    case A_REGNUM:
      cpu_set_a (cpu, val);
      return 1;

    case B_REGNUM:
      cpu_set_b (cpu, val);
      return 1;

    case X_REGNUM:
      cpu_set_x (cpu, val);
      break;

    case Y_REGNUM:
      cpu_set_y (cpu, val);
      break;

    case SP_REGNUM:
      cpu_set_sp (cpu, val);
      break;

    case PC_REGNUM:
      cpu_set_pc (cpu, val);
      break;

    case PSW_REGNUM:
      cpu_set_ccr (cpu, val);
      return 1;

    case PAGE_REGNUM:
      cpu_set_page (cpu, val);
      return 1;

    default:
      break;
    }

  return 2;
}
Example #6
0
static void main_cpu_reset(void *opaque)
{
    MicroBlazeCPU *cpu = opaque;
    CPUState *cs = CPU(cpu);
    CPUMBState *env = &cpu->env;

    cpu_reset(cs);
    env->regs[5] = boot_info.cmdline;
    env->regs[6] = boot_info.initrd_start;
    env->regs[7] = boot_info.fdt;
    cpu_set_pc(cs, boot_info.bootstrap_pc);
    if (boot_info.machine_cpu_reset) {
        boot_info.machine_cpu_reset(cpu);
    }
}
Example #7
0
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
                   uint32_t target_el, bool target_aa64)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;

    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
            context_id);

    /* requested EL level need to be in the 1 to 3 range */
    assert((target_el > 0) && (target_el < 4));

    if (target_aa64 && (entry & 3)) {
        /*
         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
         * aligned.
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /* Retrieve the cpu we are powering up */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        /* The cpu was not found */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    target_cpu = ARM_CPU(target_cpu_state);
    if (!target_cpu->powered_off) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ALREADY_ON;
    }

    /*
     * The newly brought CPU is requested to enter the exception level
     * "target_el" and be in the requested mode (AArch64 or AArch32).
     */

    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
        /*
         * The CPU does not support requested level
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
        /*
         * For now we don't support booting an AArch64 CPU in AArch32 mode
         * TODO: We should add this support later
         */
        qemu_log_mask(LOG_UNIMP,
                      "[ARM]%s: Starting AArch64 CPU %" PRId64
                      " in AArch32 mode is not supported yet\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /* Initialize the cpu we are turning on */
    cpu_reset(target_cpu_state);
    target_cpu->powered_off = false;
    target_cpu_state->halted = 0;

    if (target_aa64) {
        if ((target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 2) to AArch64
             */
            target_cpu->env.cp15.scr_el3 |= SCR_RW;
        }

        if ((target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 1) to AArch64
             */
            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
        }

        target_cpu->env.pstate = aarch64_pstate_mode(target_el, true);
    } else {
        /* We are requested to boot in AArch32 mode */
        static uint32_t mode_for_el[] = { 0,
                                          ARM_CPU_MODE_SVC,
                                          ARM_CPU_MODE_HYP,
                                          ARM_CPU_MODE_SVC };

        cpsr_write(&target_cpu->env, mode_for_el[target_el], CPSR_M,
                   CPSRWriteRaw);
    }

    if (target_el == 3) {
        /* Processor is in secure mode */
        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
    } else {
        /* Processor is not in secure mode */
        target_cpu->env.cp15.scr_el3 |= SCR_NS;
    }

    /* We check if the started CPU is now at the correct level */
    assert(target_el == arm_current_el(&target_cpu->env));

    if (target_aa64) {
        target_cpu->env.xregs[0] = context_id;
        target_cpu->env.thumb = false;
    } else {
        target_cpu->env.regs[0] = context_id;
        target_cpu->env.thumb = entry & 1;
        entry &= 0xfffffffe;
    }

    /* Start the new CPU at the requested address */
    cpu_set_pc(target_cpu_state, entry);

    /* We are good to go */
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}
Example #8
0
void
cpu_call (sim_cpu *cpu, uint16 addr)
{

  cpu_set_pc (cpu, addr);
}
Example #9
0
static void
m68hc11_pc_set (sim_cpu *cpu, sim_cia pc)
{
  cpu_set_pc (cpu, pc);
}