static struct shash_desc *init_desc(void)
{
	int rc;
	struct shash_desc *desc;

	if (hmac_tfm == NULL) {
		hmac_tfm = crypto_alloc_shash(evm_hmac, 0, CRYPTO_ALG_ASYNC);
		if (IS_ERR(hmac_tfm)) {
			pr_err("Can not allocate %s (reason: %ld)\n",
			       evm_hmac, PTR_ERR(hmac_tfm));
			rc = PTR_ERR(hmac_tfm);
			hmac_tfm = NULL;
			return ERR_PTR(rc);
		}
	}

	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac_tfm),
			GFP_KERNEL);
	if (!desc)
		return ERR_PTR(-ENOMEM);

	desc->tfm = hmac_tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	rc = crypto_shash_setkey(hmac_tfm, evmkey, evmkey_len);
	if (rc)
		goto out;
	rc = crypto_shash_init(desc);
out:
	if (rc) {
		kfree(desc);
		return ERR_PTR(rc);
	}
	return desc;
}
static int mv_hash_final_fallback(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
	} desc;
	int rc;

	desc.shash.tfm = tfm_ctx->fallback;
	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	if (unlikely(req_ctx->first_hash)) {
		crypto_shash_init(&desc.shash);
		crypto_shash_update(&desc.shash, req_ctx->buffer,
				    req_ctx->extra_bytes);
	} else {
		/* only SHA1 for now....
		 */
		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
		if (rc)
			goto out;
	}
	rc = crypto_shash_final(&desc.shash, req->result);
out:
	return rc;
}
/*
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
 */
int x509_get_sig_params(struct x509_certificate *cert)
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
	void *digest;
	int ret;

	pr_devel("==>%s()\n", __func__);

	if (cert->unsupported_crypto)
		return -ENOPKG;
	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
	if (IS_ERR(tfm)) {
		if (PTR_ERR(tfm) == -ENOENT) {
			cert->unsupported_crypto = true;
			return -ENOPKG;
		}
		return PTR_ERR(tfm);
	}

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
	 */
	ret = -ENOMEM;
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;

	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;

	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
Example #4
0
static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
				struct TCP_Server_Info *server, char *signature)
{
	int i;
	int rc;

	if (iov == NULL || signature == NULL || server == NULL)
		return -EINVAL;

	if (!server->secmech.sdescmd5) {
		cERROR(1, "%s: Can't generate signature\n", __func__);
		return -1;
	}

	rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
	if (rc) {
		cERROR(1, "%s: Could not init md5\n", __func__);
		return rc;
	}

	rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
		server->session_key.response, server->session_key.len);
	if (rc) {
		cERROR(1, "%s: Could not update with response\n", __func__);
		return rc;
	}

	for (i = 0; i < n_vec; i++) {
		if (iov[i].iov_len == 0)
			continue;
		if (iov[i].iov_base == NULL) {
			cERROR(1, "null iovec entry");
			return -EIO;
		}
		/* The first entry includes a length field (which does not get
		   signed that occupies the first 4 bytes before the header */
		if (i == 0) {
			if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
				break; /* nothing to sign or corrupt header */
			rc =
			crypto_shash_update(&server->secmech.sdescmd5->shash,
				iov[i].iov_base + 4, iov[i].iov_len - 4);
		} else {
			rc =
			crypto_shash_update(&server->secmech.sdescmd5->shash,
				iov[i].iov_base, iov[i].iov_len);
		}
		if (rc) {
			cERROR(1, "%s: Could not update with payload\n",
							__func__);
			return rc;
		}
	}

	rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
	if (rc)
		cERROR(1, "%s: Could not generate md5 hash\n", __func__);

	return rc;
}
Example #5
0
/*
 * Calculate and return the CIFS signature based on the mac key and SMB PDU.
 * The 16 byte signature must be allocated by the caller. Note we only use the
 * 1st eight bytes and that the smb header signature field on input contains
 * the sequence number before this function is called. Also, this function
 * should be called with the server->srv_mutex held.
 */
static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
				struct TCP_Server_Info *server, char *signature)
{
	int rc;

	if (cifs_pdu == NULL || signature == NULL || server == NULL)
		return -EINVAL;

	if (!server->secmech.sdescmd5) {
		cERROR(1, "%s: Can't generate signature\n", __func__);
		return -1;
	}

	rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
	if (rc) {
		cERROR(1, "%s: Oould not init md5\n", __func__);
		return rc;
	}

	crypto_shash_update(&server->secmech.sdescmd5->shash,
		server->session_key.response, server->session_key.len);

	crypto_shash_update(&server->secmech.sdescmd5->shash,
		cifs_pdu->Protocol, cifs_pdu->smb_buf_length);

	rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);

	return 0;
}
Example #6
0
static int
symlink_hash(unsigned int link_len, const char *link_str, u8 *md5_hash)
{
	int rc;
	unsigned int size;
	struct crypto_shash *md5;
	struct sdesc *sdescmd5;

	md5 = crypto_alloc_shash("md5", 0, 0);
	if (IS_ERR(md5)) {
		rc = PTR_ERR(md5);
		cERROR(1, "%s: Crypto md5 allocation error %d\n", __func__, rc);
		return rc;
	}
	size = sizeof(struct shash_desc) + crypto_shash_descsize(md5);
	sdescmd5 = kmalloc(size, GFP_KERNEL);
	if (!sdescmd5) {
		rc = -ENOMEM;
		cERROR(1, "%s: Memory allocation failure\n", __func__);
		goto symlink_hash_err;
	}
	sdescmd5->shash.tfm = md5;
	sdescmd5->shash.flags = 0x0;

	rc = crypto_shash_init(&sdescmd5->shash);
	if (rc) {
		cERROR(1, "%s: Could not init md5 shash\n", __func__);
		goto symlink_hash_err;
	}
<<<<<<< HEAD
Example #7
0
static int
CalcNTLMv2_response(const struct cifsSesInfo *ses, char *ntlmv2_hash)
{
	int rc;
	unsigned int offset = CIFS_SESS_KEY_SIZE + 8;

	if (!ses->server->secmech.sdeschmacmd5) {
		cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
		return -1;
	}

	crypto_shash_setkey(ses->server->secmech.hmacmd5,
				ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);

	rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
	if (rc) {
		cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
		return rc;
	}

	if (ses->server->secType == RawNTLMSSP)
		memcpy(ses->auth_key.response + offset,
			ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
	else
		memcpy(ses->auth_key.response + offset,
			ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
	crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
		ses->auth_key.response + offset, ses->auth_key.len - offset);

	rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
		ses->auth_key.response + CIFS_SESS_KEY_SIZE);

	return rc;
}
Example #8
0
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
				struct ima_digest_data *hash,
				struct crypto_shash *tfm)
{
	SHASH_DESC_ON_STACK(shash, tfm);
	unsigned int len;
	int rc;

	shash->tfm = tfm;
	shash->flags = 0;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	while (size) {
		len = size < PAGE_SIZE ? size : PAGE_SIZE;
		rc = crypto_shash_update(shash, buf, len);
		if (rc)
			break;
		buf += len;
		size -= len;
	}

	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);
	return rc;
}
Example #9
0
char *aa_calc_hash(void *data, size_t len)
{
	SHASH_DESC_ON_STACK(desc, apparmor_tfm);
	char *hash = NULL;
	int error = -ENOMEM;

	if (!apparmor_tfm)
		return NULL;

	hash = kzalloc(apparmor_hash_size, GFP_KERNEL);
	if (!hash)
		goto fail;

	desc->tfm = apparmor_tfm;

	error = crypto_shash_init(desc);
	if (error)
		goto fail;
	error = crypto_shash_update(desc, (u8 *) data, len);
	if (error)
		goto fail;
	error = crypto_shash_final(desc, hash);
	if (error)
		goto fail;

	return hash;

fail:
	kfree(hash);

	return ERR_PTR(error);
}
Example #10
0
/*
 * Calculate the boot aggregate hash
 */
int __init ima_calc_boot_aggregate(char *digest)
{
	u8 pcr_i[IMA_DIGEST_SIZE];
	int rc, i;
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(ima_shash_tfm)];
	} desc;

	desc.shash.tfm = ima_shash_tfm;
	desc.shash.flags = 0;

	rc = crypto_shash_init(&desc.shash);
	if (rc != 0)
		return rc;

	/* cumulative sha1 over tpm registers 0-7 */
	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
		ima_pcrread(i, pcr_i);
		/* now accumulate with current aggregate */
		rc = crypto_shash_update(&desc.shash, pcr_i, IMA_DIGEST_SIZE);
	}
	if (!rc)
		crypto_shash_final(&desc.shash, digest);
	return rc;
}
Example #11
0
/*
 * Digest the module contents.
 */
static struct public_key_signature *mod_make_digest(enum pkey_hash_algo hash,
						    const void *mod,
						    unsigned long modlen)
{
	struct public_key_signature *pks;
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
	int ret;

	pr_devel("==>%s()\n", __func__);
	
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
	tfm = crypto_alloc_shash(pkey_hash_algo[hash], 0, 0);
	if (IS_ERR(tfm))
		return (PTR_ERR(tfm) == -ENOENT) ? ERR_PTR(-ENOPKG) : ERR_CAST(tfm);

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

	/* We allocate the hash operational data storage on the end of our
	 * context data and the digest output buffer on the end of that.
	 */
	ret = -ENOMEM;
	pks = kzalloc(digest_size + sizeof(*pks) + desc_size, GFP_KERNEL);
	if (!pks)
		goto error_no_pks;

	pks->pkey_hash_algo	= hash;
	pks->digest		= (u8 *)pks + sizeof(*pks) + desc_size;
	pks->digest_size	= digest_size;

	desc = (void *)pks + sizeof(*pks);
	desc->tfm   = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;

	ret = crypto_shash_finup(desc, mod, modlen, pks->digest);
	if (ret < 0)
		goto error;

	crypto_free_shash(tfm);
	pr_devel("<==%s() = ok\n", __func__);
	return pks;

error:
	kfree(pks);
error_no_pks:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ERR_PTR(ret);
}
Example #12
0
static int padlock_sha_init(struct shash_desc *desc)
{
	struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
	struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);

	dctx->fallback.tfm = ctx->fallback;
	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	return crypto_shash_init(&dctx->fallback);
}
Example #13
0
static int ima_calc_file_hash_tfm(struct file *file,
				  struct ima_digest_data *hash,
				  struct crypto_shash *tfm)
{
	loff_t i_size, offset = 0;
	char *rbuf;
	int rc, read = 0;
	SHASH_DESC_ON_STACK(shash, tfm);

	shash->tfm = tfm;
	shash->flags = 0;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	i_size = i_size_read(file_inode(file));

	if (i_size == 0)
		goto out;

	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!rbuf)
		return -ENOMEM;

	if (!(file->f_mode & FMODE_READ)) {
		file->f_mode |= FMODE_READ;
		read = 1;
	}

	while (offset < i_size) {
		int rbuf_len;

		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
		if (rbuf_len < 0) {
			rc = rbuf_len;
			break;
		}
		if (rbuf_len == 0)
			break;
		offset += rbuf_len;

		rc = crypto_shash_update(shash, rbuf, rbuf_len);
		if (rc)
			break;
	}
	if (read)
		file->f_mode &= ~FMODE_READ;
	kfree(rbuf);
out:
	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);
	return rc;
}
Example #14
0
static struct shash_desc *init_desc(char type)
{
	long rc;
	char *algo;
	struct crypto_shash **tfm;
	struct shash_desc *desc;

	if (type == EVM_XATTR_HMAC) {
		tfm = &hmac_tfm;
		algo = evm_hmac;
	} else {
		tfm = &hash_tfm;
		algo = evm_hash;
	}

	if (*tfm == NULL) {
		mutex_lock(&mutex);
		if (*tfm)
			goto out;
		*tfm = crypto_alloc_shash(algo, 0, CRYPTO_ALG_ASYNC);
		if (IS_ERR(*tfm)) {
			rc = PTR_ERR(*tfm);
			pr_err("Can not allocate %s (reason: %ld)\n", algo, rc);
			*tfm = NULL;
			mutex_unlock(&mutex);
			return ERR_PTR(rc);
		}
		if (type == EVM_XATTR_HMAC) {
			rc = crypto_shash_setkey(*tfm, evmkey, evmkey_len);
			if (rc) {
				crypto_free_shash(*tfm);
				*tfm = NULL;
				mutex_unlock(&mutex);
				return ERR_PTR(rc);
			}
		}
out:
		mutex_unlock(&mutex);
	}

	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(*tfm),
			GFP_KERNEL);
	if (!desc)
		return ERR_PTR(-ENOMEM);

	desc->tfm = *tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	rc = crypto_shash_init(desc);
	if (rc) {
		kfree(desc);
		return ERR_PTR(rc);
	}
	return desc;
}
Example #15
0
File: dh.c Project: krzk/linux
/*
 * Implementation of the KDF in counter mode according to SP800-108 section 5.1
 * as well as SP800-56A section 5.8.1 (Single-step KDF).
 *
 * SP800-56A:
 * The src pointer is defined as Z || other info where Z is the shared secret
 * from DH and other info is an arbitrary string (see SP800-56A section
 * 5.8.1.2).
 *
 * 'dlen' must be a multiple of the digest size.
 */
static int kdf_ctr(struct kdf_sdesc *sdesc, const u8 *src, unsigned int slen,
		   u8 *dst, unsigned int dlen, unsigned int zlen)
{
	struct shash_desc *desc = &sdesc->shash;
	unsigned int h = crypto_shash_digestsize(desc->tfm);
	int err = 0;
	u8 *dst_orig = dst;
	__be32 counter = cpu_to_be32(1);

	while (dlen) {
		err = crypto_shash_init(desc);
		if (err)
			goto err;

		err = crypto_shash_update(desc, (u8 *)&counter, sizeof(__be32));
		if (err)
			goto err;

		if (zlen && h) {
			u8 tmpbuffer[32];
			size_t chunk = min_t(size_t, zlen, sizeof(tmpbuffer));
			memset(tmpbuffer, 0, chunk);

			do {
				err = crypto_shash_update(desc, tmpbuffer,
							  chunk);
				if (err)
					goto err;

				zlen -= chunk;
				chunk = min_t(size_t, zlen, sizeof(tmpbuffer));
			} while (zlen);
		}

		if (src && slen) {
			err = crypto_shash_update(desc, src, slen);
			if (err)
				goto err;
		}

		err = crypto_shash_final(desc, dst);
		if (err)
			goto err;

		dlen -= h;
		dst += h;
		counter = cpu_to_be32(be32_to_cpu(counter) + 1);
	}

	return 0;

err:
	memzero_explicit(dst_orig, dlen);
	return err;
}
Example #16
0
static int p8_ghash_init(struct shash_desc *desc)
{
    struct p8_ghash_ctx *ctx = crypto_tfm_ctx(crypto_shash_tfm(desc->tfm));
    struct p8_ghash_desc_ctx *dctx = shash_desc_ctx(desc);

    dctx->bytes = 0;
    memset(dctx->shash, 0, GHASH_DIGEST_SIZE);
    dctx->fallback_desc.tfm = ctx->fallback;
    dctx->fallback_desc.flags = desc->flags;
    return crypto_shash_init(&dctx->fallback_desc);
}
Example #17
0
static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
                            struct dm_crypt_request *dmreq,
                            u8 *data)
{
    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    struct {
        struct shash_desc desc;
        char ctx[crypto_shash_descsize(lmk->hash_tfm)];
    } sdesc;
    struct md5_state md5state;
    u32 buf[4];
    int i, r;

    sdesc.desc.tfm = lmk->hash_tfm;
    sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

    r = crypto_shash_init(&sdesc.desc);
    if (r)
        return r;

    if (lmk->seed) {
        r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
        if (r)
            return r;
    }

    /* Sector is always 512B, block size 16, add data of blocks 1-31 */
    r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
    if (r)
        return r;

    /* Sector is cropped to 56 bits here */
    buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
    buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
    buf[2] = cpu_to_le32(4024);
    buf[3] = 0;
    r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
    if (r)
        return r;

    /* No MD5 padding here */
    r = crypto_shash_export(&sdesc.desc, &md5state);
    if (r)
        return r;

    for (i = 0; i < MD5_HASH_WORDS; i++)
        __cpu_to_le32s(&md5state.hash[i]);
    memcpy(iv, &md5state.hash, cc->iv_size);

    return 0;
}
Example #18
0
/*
 * Calculate the MD5/SHA1 file digest
 */
int ima_calc_file_hash(struct file *file, char *digest)
{
	loff_t i_size, offset = 0;
	char *rbuf;
	int rc, read = 0;
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(ima_shash_tfm)];
	} desc;

	desc.shash.tfm = ima_shash_tfm;
	desc.shash.flags = 0;

	rc = crypto_shash_init(&desc.shash);
	if (rc != 0)
		return rc;

	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!rbuf) {
		rc = -ENOMEM;
		goto out;
	}
	if (!(file->f_mode & FMODE_READ)) {
		file->f_mode |= FMODE_READ;
		read = 1;
	}
	i_size = i_size_read(file->f_dentry->d_inode);
	while (offset < i_size) {
		int rbuf_len;

		rbuf_len = kernel_read(file, offset, rbuf, PAGE_SIZE);
		if (rbuf_len < 0) {
			rc = rbuf_len;
			break;
		}
		if (rbuf_len == 0)
			break;
		offset += rbuf_len;

		rc = crypto_shash_update(&desc.shash, rbuf, rbuf_len);
		if (rc)
			break;
	}
	kfree(rbuf);
	if (!rc)
		rc = crypto_shash_final(&desc.shash, digest);
	if (read)
		file->f_mode &= ~FMODE_READ;
out:
	return rc;
}
Example #19
0
/*
 * calculate authorization info fields to send to TPM
 */
static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
			unsigned int keylen, unsigned char *h1,
			unsigned char *h2, unsigned char h3, ...)
{
	unsigned char paramdigest[SHA1_DIGEST_SIZE];
	struct sdesc *sdesc;
	unsigned int dlen;
	unsigned char *data;
	unsigned char c;
	int ret;
	va_list argp;

	sdesc = init_sdesc(hashalg);
	if (IS_ERR(sdesc)) {
		pr_info("trusted_key: can't alloc %s\n", hash_alg);
		return PTR_ERR(sdesc);
	}

	c = h3;
	ret = crypto_shash_init(&sdesc->shash);
	if (ret < 0)
		goto out;
	va_start(argp, h3);
	for (;;) {
		dlen = va_arg(argp, unsigned int);
		if (dlen == 0)
			break;
		data = va_arg(argp, unsigned char *);
		if (!data) {
			ret = -EINVAL;
			break;
		}
		ret = crypto_shash_update(&sdesc->shash, data, dlen);
		if (ret < 0)
			break;
	}
	va_end(argp);
	if (!ret)
		ret = crypto_shash_final(&sdesc->shash, paramdigest);
	if (!ret)
		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
				  paramdigest, TPM_NONCE_SIZE, h1,
				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
out:
	kfree(sdesc);
	return ret;
}
Example #20
0
/*
 * Calculate the hash of template data
 */
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
					 struct ima_template_desc *td,
					 int num_fields,
					 struct ima_digest_data *hash,
					 struct crypto_shash *tfm)
{
	SHASH_DESC_ON_STACK(shash, tfm);
	int rc, i;

	shash->tfm = tfm;
	shash->flags = 0;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	for (i = 0; i < num_fields; i++) {
		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
		u8 *data_to_hash = field_data[i].data;
		u32 datalen = field_data[i].len;
		u32 datalen_to_hash =
		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);

		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
			rc = crypto_shash_update(shash,
						(const u8 *) &datalen_to_hash,
						sizeof(datalen_to_hash));
			if (rc)
				break;
		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
			memcpy(buffer, data_to_hash, datalen);
			data_to_hash = buffer;
			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
		}
		rc = crypto_shash_update(shash, data_to_hash, datalen);
		if (rc)
			break;
	}

	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);

	return rc;
}
Example #21
0
static int
CalcNTLMv2_response(const struct cifs_ses *ses, char *ntlmv2_hash)
{
	int rc;
	unsigned int offset = CIFS_SESS_KEY_SIZE + 8;

	if (!ses->server->secmech.sdeschmacmd5) {
		cifs_dbg(VFS, "%s: can't generate ntlmv2 hash\n", __func__);
		return -1;
	}

	rc = crypto_shash_setkey(ses->server->secmech.hmacmd5,
				ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
	if (rc) {
		cifs_dbg(VFS, "%s: Could not set NTLMV2 Hash as a key\n",
			 __func__);
		return rc;
	}

	rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
	if (rc) {
		cifs_dbg(VFS, "%s: could not init hmacmd5\n", __func__);
		return rc;
	}

	if (ses->server->negflavor == CIFS_NEGFLAVOR_EXTENDED)
		memcpy(ses->auth_key.response + offset,
			ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
	else
		memcpy(ses->auth_key.response + offset,
			ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
	rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
		ses->auth_key.response + offset, ses->auth_key.len - offset);
	if (rc) {
		cifs_dbg(VFS, "%s: Could not update with response\n", __func__);
		return rc;
	}

	rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
		ses->auth_key.response + CIFS_SESS_KEY_SIZE);
	if (rc)
		cifs_dbg(VFS, "%s: Could not generate md5 hash\n", __func__);

	return rc;
}
Example #22
0
int orinoco_mic(struct crypto_shash *tfm_michael, u8 *key,
		u8 *da, u8 *sa, u8 priority,
		u8 *data, size_t data_len, u8 *mic)
{
	SHASH_DESC_ON_STACK(desc, tfm_michael);
	u8 hdr[ETH_HLEN + 2]; /* size of header + padding */
	int err;

	if (tfm_michael == NULL) {
		printk(KERN_WARNING "orinoco_mic: tfm_michael == NULL\n");
		return -1;
	}

	/* Copy header into buffer. We need the padding on the end zeroed */
	memcpy(&hdr[0], da, ETH_ALEN);
	memcpy(&hdr[ETH_ALEN], sa, ETH_ALEN);
	hdr[ETH_ALEN * 2] = priority;
	hdr[ETH_ALEN * 2 + 1] = 0;
	hdr[ETH_ALEN * 2 + 2] = 0;
	hdr[ETH_ALEN * 2 + 3] = 0;

	desc->tfm = tfm_michael;
	desc->flags = 0;

	err = crypto_shash_setkey(tfm_michael, key, MIC_KEYLEN);
	if (err)
		return err;

	err = crypto_shash_init(desc);
	if (err)
		return err;

	err = crypto_shash_update(desc, hdr, sizeof(hdr));
	if (err)
		return err;

	err = crypto_shash_update(desc, data, data_len);
	if (err)
		return err;

	err = crypto_shash_final(desc, mic);
	shash_desc_zero(desc);

	return err;
}
Example #23
0
static int
symlink_hash(unsigned int link_len, const char *link_str, u8 *md5_hash)
{
    int rc;
    unsigned int size;
    struct crypto_shash *md5;
    struct sdesc *sdescmd5;

    md5 = crypto_alloc_shash("md5", 0, 0);
    if (IS_ERR(md5)) {
        rc = PTR_ERR(md5);
        cERROR(1, "%s: Crypto md5 allocation error %d", __func__, rc);
        return rc;
    }
    size = sizeof(struct shash_desc) + crypto_shash_descsize(md5);
    sdescmd5 = kmalloc(size, GFP_KERNEL);
    if (!sdescmd5) {
        rc = -ENOMEM;
        cERROR(1, "%s: Memory allocation failure", __func__);
        goto symlink_hash_err;
    }
    sdescmd5->shash.tfm = md5;
    sdescmd5->shash.flags = 0x0;

    rc = crypto_shash_init(&sdescmd5->shash);
    if (rc) {
        cERROR(1, "%s: Could not init md5 shash", __func__);
        goto symlink_hash_err;
    }
    rc = crypto_shash_update(&sdescmd5->shash, link_str, link_len);
    if (rc) {
        cERROR(1, "%s: Could not update with link_str", __func__);
        goto symlink_hash_err;
    }
    rc = crypto_shash_final(&sdescmd5->shash, md5_hash);
    if (rc)
        cERROR(1, "%s: Could not generate md5 hash", __func__);

symlink_hash_err:
    crypto_free_shash(md5);
    kfree(sdescmd5);

    return rc;
}
Example #24
0
static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
		       unsigned int keylen, ...)
{
	struct sdesc *sdesc;
	va_list argp;
	unsigned int dlen;
	unsigned char *data;
	int ret;

	sdesc = init_sdesc(hmacalg);
	if (IS_ERR(sdesc)) {
		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
		return PTR_ERR(sdesc);
	}

	ret = crypto_shash_setkey(hmacalg, key, keylen);
	if (ret < 0)
		goto out;
	ret = crypto_shash_init(&sdesc->shash);
	if (ret < 0)
		goto out;

	va_start(argp, keylen);
	for (;;) {
		dlen = va_arg(argp, unsigned int);
		if (dlen == 0)
			break;
		data = va_arg(argp, unsigned char *);
		if (data == NULL) {
			ret = -EINVAL;
			break;
		}
		ret = crypto_shash_update(&sdesc->shash, data, dlen);
		if (ret < 0)
			break;
	}
	va_end(argp);
	if (!ret)
		ret = crypto_shash_final(&sdesc->shash, digest);
out:
	kfree(sdesc);
	return ret;
}
Example #25
0
File: rfc6056.c Project: NICMx/Jool
/**
 * RFC 6056, Algorithm 3.
 *
 * Just to clarify: Because our port pool is a somewhat complex data structure
 * (rather than a simple range), ephemerals are now handled by pool4. This
 * function has been stripped now to only consist of F(). (Hence the name.)
 */
int rfc6056_f(const struct tuple *tuple6, __u8 fields, unsigned int *result)
{
	union {
		__be32 as32[4];
		__u8 as8[16];
	} md5_result;
	struct shash_desc *desc;
	int error = 0;

	desc = __wkmalloc("shash desc", sizeof(struct shash_desc)
			+ crypto_shash_descsize(shash), GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	desc->tfm = shash;
	desc->flags = 0;

	error = crypto_shash_init(desc);
	if (error) {
		log_debug("crypto_hash_init() failed. Errcode: %d", error);
		goto end;
	}

	error = hash_tuple(desc, fields, tuple6);
	if (error) {
		log_debug("crypto_hash_update() failed. Errcode: %d", error);
		goto end;
	}

	error = crypto_shash_final(desc, md5_result.as8);
	if (error) {
		log_debug("crypto_hash_digest() failed. Errcode: %d", error);
		goto end;
	}

	*result = (__force __u32)md5_result.as32[3];
	/* Fall through. */

end:
	__wkfree("shash desc", desc);
	return error;
}
static int crypt_iv_tcw_whitening(struct crypt_config *cc,
				  struct dm_crypt_request *dmreq,
				  u8 *data)
{
	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
	u8 buf[TCW_WHITENING_SIZE];
	struct {
		struct shash_desc desc;
		char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
	} sdesc;
	int i, r;

	/* xor whitening with sector number */
	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
	crypto_xor(buf, (u8 *)&sector, 8);
	crypto_xor(&buf[8], (u8 *)&sector, 8);

	/* calculate crc32 for every 32bit part and xor it */
	sdesc.desc.tfm = tcw->crc32_tfm;
	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	for (i = 0; i < 4; i++) {
		r = crypto_shash_init(&sdesc.desc);
		if (r)
			goto out;
		r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
		if (r)
			goto out;
		r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
		if (r)
			goto out;
	}
	crypto_xor(&buf[0], &buf[12], 4);
	crypto_xor(&buf[4], &buf[8], 4);

	/* apply whitening (8 bytes) to whole sector */
	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
		crypto_xor(data + i * 8, buf, 8);
out:
	memzero_explicit(buf, sizeof(buf));
	return r;
}
static int ghash_async_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;

	if (!irq_fpu_usable()) {
		memcpy(cryptd_req, req, sizeof(*req));
		ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
		return crypto_ahash_init(cryptd_req);
	} else {
		struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
		struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);

		desc->tfm = child;
		desc->flags = req->base.flags;
		return crypto_shash_init(desc);
	}
}
Example #28
0
int aa_calc_profile_hash(struct aa_profile *profile, u32 version, void *start,
			 size_t len)
{
	SHASH_DESC_ON_STACK(desc, apparmor_tfm);
	int error = -ENOMEM;
	__le32 le32_version = cpu_to_le32(version);

	if (!aa_g_hash_policy)
		return 0;

	if (!apparmor_tfm)
		return 0;

	profile->hash = kzalloc(apparmor_hash_size, GFP_KERNEL);
	if (!profile->hash)
		goto fail;

	desc->tfm = apparmor_tfm;

	error = crypto_shash_init(desc);
	if (error)
		goto fail;
	error = crypto_shash_update(desc, (u8 *) &le32_version, 4);
	if (error)
		goto fail;
	error = crypto_shash_update(desc, (u8 *) start, len);
	if (error)
		goto fail;
	error = crypto_shash_final(desc, profile->hash);
	if (error)
		goto fail;

	return 0;

fail:
	kfree(profile->hash);
	profile->hash = NULL;

	return error;
}
Example #29
0
/* produce a md4 message digest from data of length n bytes */
int
mdfour(unsigned char *md4_hash, unsigned char *link_str, int link_len)
{
    int rc;
    unsigned int size;
    struct crypto_shash *md4;
    struct sdesc *sdescmd4;

    md4 = crypto_alloc_shash("md4", 0, 0);
    if (IS_ERR(md4)) {
        cERROR(1, "%s: Crypto md4 allocation error %d\n", __func__, rc);
        return PTR_ERR(md4);
    }
    size = sizeof(struct shash_desc) + crypto_shash_descsize(md4);
    sdescmd4 = kmalloc(size, GFP_KERNEL);
    if (!sdescmd4) {
        rc = -ENOMEM;
        cERROR(1, "%s: Memory allocation failure\n", __func__);
        goto mdfour_err;
    }
    sdescmd4->shash.tfm = md4;
    sdescmd4->shash.flags = 0x0;

    rc = crypto_shash_init(&sdescmd4->shash);
    if (rc) {
        cERROR(1, "%s: Could not init md4 shash\n", __func__);
        goto mdfour_err;
    }
    crypto_shash_update(&sdescmd4->shash, link_str, link_len);
    rc = crypto_shash_final(&sdescmd4->shash, md4_hash);

mdfour_err:
    crypto_free_shash(md4);
    kfree(sdescmd4);

    return rc;
}
Example #30
0
/*
 * Calculate the boot aggregate hash
 */
static int __init ima_calc_boot_aggregate_tfm(char *digest,
					      struct crypto_shash *tfm)
{
	u8 pcr_i[TPM_DIGEST_SIZE];
	int rc, i;
	SHASH_DESC_ON_STACK(shash, tfm);

	shash->tfm = tfm;
	shash->flags = 0;

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	/* cumulative sha1 over tpm registers 0-7 */
	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
		ima_pcrread(i, pcr_i);
		/* now accumulate with current aggregate */
		rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
	}
	if (!rc)
		crypto_shash_final(shash, digest);
	return rc;
}