Example #1
0
/* Subroutine */ int chbev_(char *jobz, char *uplo, integer *n, integer *kd, 
	complex *ab, integer *ldab, real *w, complex *z__, integer *ldz, 
	complex *work, real *rwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CHBEV computes all the eigenvalues and, optionally, eigenvectors of   
    a complex Hermitian band matrix A.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input/output) COMPLEX array, dimension (LDAB, N)   
            On entry, the upper or lower triangle of the Hermitian band   
            matrix A, stored in the first KD+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB   
            as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   

            On exit, AB is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the first   
            superdiagonal and the diagonal of the tridiagonal matrix T   
            are returned in rows KD and KD+1 of AB, and if UPLO = 'L',   
            the diagonal and first subdiagonal of T are returned in the   
            first two rows of AB.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD + 1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) COMPLEX array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal   
            eigenvectors of the matrix A, with the i-th column of Z   
            holding the eigenvector associated with W(i).   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) COMPLEX array, dimension (N)   

    RWORK   (workspace) REAL array, dimension (max(1,3*N-2))   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the algorithm failed to converge; i   
                  off-diagonal elements of an intermediate tridiagonal   
                  form did not converge to zero.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static real c_b11 = 1.f;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
    real r__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static logical lower, wantz;
    extern doublereal clanhb_(char *, char *, integer *, integer *, complex *,
	     integer *, real *);
    static integer iscale;
    extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, complex *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *, 
	    integer *, real *, real *, complex *, integer *, complex *, 
	    integer *);
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real bignum;
    static integer indrwk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), ssterf_(integer 
	    *, real *, real *, integer *);
    static real smlnum, eps;
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (lower) {
	    i__1 = ab_subscr(1, 1);
	    w[1] = ab[i__1].r;
	} else {
	    i__1 = ab_subscr(*kd + 1, 1);
	    w[1] = ab[i__1].r;
	}
	if (wantz) {
	    i__1 = z___subscr(1, 1);
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    clascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    clascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
    }

/*     Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */

    inde = 1;
    chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
	    z__[z_offset], ldz, &work[1], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	indrwk = inde + *n;
	csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
		indrwk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    return 0;

/*     End of CHBEV */

} /* chbev_ */
Example #2
0
/* Subroutine */
int chbgv_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
    /* Local variables */
    integer inde;
    char vect[1];
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical upper, wantz;
    extern /* Subroutine */
    int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *), chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char *, integer *, integer *, complex *, integer *, integer *);
    integer indwrk;
    extern /* Subroutine */
    int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*ka < 0)
    {
        *info = -4;
    }
    else if (*kb < 0 || *kb > *ka)
    {
        *info = -5;
    }
    else if (*ldab < *ka + 1)
    {
        *info = -7;
    }
    else if (*ldbb < *kb + 1)
    {
        *info = -9;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -12;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHBGV ", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Form a split Cholesky factorization of B. */
    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem. */
    inde = 1;
    indwrk = inde + *n;
    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);
    /* Reduce to tridiagonal form. */
    if (wantz)
    {
        *(unsigned char *)vect = 'U';
    }
    else
    {
        *(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo);
    /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */
    if (! wantz)
    {
        ssterf_(n, &w[1], &rwork[inde], info);
    }
    else
    {
        csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indwrk], info);
    }
    return 0;
    /* End of CHBGV */
}
Example #3
0
int main(void)
{
    /* Local scalars */
    char compz, compz_i;
    lapack_int n, n_i;
    lapack_int ldz, ldz_i;
    lapack_int ldz_r;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    float *d = NULL, *d_i = NULL;
    float *e = NULL, *e_i = NULL;
    lapack_complex_float *z = NULL, *z_i = NULL;
    float *work = NULL, *work_i = NULL;
    float *d_save = NULL;
    float *e_save = NULL;
    lapack_complex_float *z_save = NULL;
    lapack_complex_float *z_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_csteqr( &compz, &n, &ldz );
    ldz_r = n+2;
    compz_i = compz;
    n_i = n;
    ldz_i = ldz;

    /* Allocate memory for the LAPACK routine arrays */
    d = (float *)LAPACKE_malloc( n * sizeof(float) );
    e = (float *)LAPACKE_malloc( (n-1) * sizeof(float) );
    z = (lapack_complex_float *)
        LAPACKE_malloc( ldz*n * sizeof(lapack_complex_float) );
    work = (float *)LAPACKE_malloc( ((MAX(1,2*n-2))) * sizeof(float) );

    /* Allocate memory for the C interface function arrays */
    d_i = (float *)LAPACKE_malloc( n * sizeof(float) );
    e_i = (float *)LAPACKE_malloc( (n-1) * sizeof(float) );
    z_i = (lapack_complex_float *)
        LAPACKE_malloc( ldz*n * sizeof(lapack_complex_float) );
    work_i = (float *)LAPACKE_malloc( ((MAX(1,2*n-2))) * sizeof(float) );

    /* Allocate memory for the backup arrays */
    d_save = (float *)LAPACKE_malloc( n * sizeof(float) );
    e_save = (float *)LAPACKE_malloc( (n-1) * sizeof(float) );
    z_save = (lapack_complex_float *)
        LAPACKE_malloc( ldz*n * sizeof(lapack_complex_float) );

    /* Allocate memory for the row-major arrays */
    z_r = (lapack_complex_float *)
        LAPACKE_malloc( n*(n+2) * sizeof(lapack_complex_float) );

    /* Initialize input arrays */
    init_d( n, d );
    init_e( (n-1), e );
    init_z( ldz*n, z );
    init_work( (MAX(1,2*n-2)), work );

    /* Backup the ouptut arrays */
    for( i = 0; i < n; i++ ) {
        d_save[i] = d[i];
    }
    for( i = 0; i < (n-1); i++ ) {
        e_save[i] = e[i];
    }
    for( i = 0; i < ldz*n; i++ ) {
        z_save[i] = z[i];
    }

    /* Call the LAPACK routine */
    csteqr_( &compz, &n, d, e, z, &ldz, work, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < n; i++ ) {
        d_i[i] = d_save[i];
    }
    for( i = 0; i < (n-1); i++ ) {
        e_i[i] = e_save[i];
    }
    for( i = 0; i < ldz*n; i++ ) {
        z_i[i] = z_save[i];
    }
    for( i = 0; i < (MAX(1,2*n-2)); i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_csteqr_work( LAPACK_COL_MAJOR, compz_i, n_i, d_i, e_i, z_i,
                                  ldz_i, work_i );

    failed = compare_csteqr( d, d_i, e, e_i, z, z_i, info, info_i, compz, ldz,
                             n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to csteqr\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to csteqr\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < n; i++ ) {
        d_i[i] = d_save[i];
    }
    for( i = 0; i < (n-1); i++ ) {
        e_i[i] = e_save[i];
    }
    for( i = 0; i < ldz*n; i++ ) {
        z_i[i] = z_save[i];
    }
    for( i = 0; i < (MAX(1,2*n-2)); i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_csteqr( LAPACK_COL_MAJOR, compz_i, n_i, d_i, e_i, z_i,
                             ldz_i );

    failed = compare_csteqr( d, d_i, e, e_i, z, z_i, info, info_i, compz, ldz,
                             n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to csteqr\n" );
    } else {
        printf( "FAILED: column-major high-level interface to csteqr\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < n; i++ ) {
        d_i[i] = d_save[i];
    }
    for( i = 0; i < (n-1); i++ ) {
        e_i[i] = e_save[i];
    }
    for( i = 0; i < ldz*n; i++ ) {
        z_i[i] = z_save[i];
    }
    for( i = 0; i < (MAX(1,2*n-2)); i++ ) {
        work_i[i] = work[i];
    }

    if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
        LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, z_i, ldz, z_r, n+2 );
    }
    info_i = LAPACKE_csteqr_work( LAPACK_ROW_MAJOR, compz_i, n_i, d_i, e_i, z_r,
                                  ldz_r, work_i );

    if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
        LAPACKE_cge_trans( LAPACK_ROW_MAJOR, n, n, z_r, n+2, z_i, ldz );
    }

    failed = compare_csteqr( d, d_i, e, e_i, z, z_i, info, info_i, compz, ldz,
                             n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to csteqr\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to csteqr\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < n; i++ ) {
        d_i[i] = d_save[i];
    }
    for( i = 0; i < (n-1); i++ ) {
        e_i[i] = e_save[i];
    }
    for( i = 0; i < ldz*n; i++ ) {
        z_i[i] = z_save[i];
    }
    for( i = 0; i < (MAX(1,2*n-2)); i++ ) {
        work_i[i] = work[i];
    }

    /* Init row_major arrays */
    if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
        LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, z_i, ldz, z_r, n+2 );
    }
    info_i = LAPACKE_csteqr( LAPACK_ROW_MAJOR, compz_i, n_i, d_i, e_i, z_r,
                             ldz_r );

    if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
        LAPACKE_cge_trans( LAPACK_ROW_MAJOR, n, n, z_r, n+2, z_i, ldz );
    }

    failed = compare_csteqr( d, d_i, e, e_i, z, z_i, info, info_i, compz, ldz,
                             n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to csteqr\n" );
    } else {
        printf( "FAILED: row-major high-level interface to csteqr\n" );
    }

    /* Release memory */
    if( d != NULL ) {
        LAPACKE_free( d );
    }
    if( d_i != NULL ) {
        LAPACKE_free( d_i );
    }
    if( d_save != NULL ) {
        LAPACKE_free( d_save );
    }
    if( e != NULL ) {
        LAPACKE_free( e );
    }
    if( e_i != NULL ) {
        LAPACKE_free( e_i );
    }
    if( e_save != NULL ) {
        LAPACKE_free( e_save );
    }
    if( z != NULL ) {
        LAPACKE_free( z );
    }
    if( z_i != NULL ) {
        LAPACKE_free( z_i );
    }
    if( z_r != NULL ) {
        LAPACKE_free( z_r );
    }
    if( z_save != NULL ) {
        LAPACKE_free( z_save );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }

    return 0;
}
Example #4
0
/* Subroutine */
int cheev_(char *jobz, char *uplo, integer *n, complex *a, integer *lda, real *w, complex *work, integer *lwork, real *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    integer nb;
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */
    int sscal_(integer *, real *, real *, integer *);
    logical lower, wantz;
    extern real clanhe_(char *, char *, integer *, complex *, integer *, real *);
    integer iscale;
    extern /* Subroutine */
    int clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int chetrd_(char *, integer *, complex *, integer *, real *, real *, complex *, complex *, integer *, integer *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    real bignum;
    integer indtau, indwrk;
    extern /* Subroutine */
    int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), cungtr_(char *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), ssterf_(integer *, real *, real *, integer *);
    integer llwork;
    real smlnum;
    integer lwkopt;
    logical lquery;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --work;
    --rwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1;
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (lower || lsame_(uplo, "U")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*lda < max(1,*n))
    {
        *info = -5;
    }
    if (*info == 0)
    {
        nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
        /* Computing MAX */
        i__1 = 1;
        i__2 = (nb + 1) * *n; // , expr subst
        lwkopt = max(i__1,i__2);
        work[1].r = (real) lwkopt;
        work[1].i = 0.f; // , expr subst
        /* Computing MAX */
        i__1 = 1;
        i__2 = (*n << 1) - 1; // , expr subst
        if (*lwork < max(i__1,i__2) && ! lquery)
        {
            *info = -8;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHEEV ", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        i__1 = a_dim1 + 1;
        w[1] = a[i__1].r;
        work[1].r = 1.f;
        work[1].i = 0.f; // , expr subst
        if (wantz)
        {
            i__1 = a_dim1 + 1;
            a[i__1].r = 1.f;
            a[i__1].i = 0.f; // , expr subst
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);
    /* Scale matrix to allowable range, if necessary. */
    anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin)
    {
        iscale = 1;
        sigma = rmin / anrm;
    }
    else if (anrm > rmax)
    {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1)
    {
        clascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, info);
    }
    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    inde = 1;
    indtau = 1;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & work[indwrk], &llwork, &iinfo);
    /* For eigenvalues only, call SSTERF. For eigenvectors, first call */
    /* CUNGTR to generate the unitary matrix, then call CSTEQR. */
    if (! wantz)
    {
        ssterf_(n, &w[1], &rwork[inde], info);
    }
    else
    {
        cungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], & llwork, &iinfo);
        indwrk = inde + *n;
        csteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[ indwrk], info);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *n;
        }
        else
        {
            imax = *info - 1;
        }
        r__1 = 1.f / sigma;
        sscal_(&imax, &r__1, &w[1], &c__1);
    }
    /* Set WORK(1) to optimal complex workspace size. */
    work[1].r = (real) lwkopt;
    work[1].i = 0.f; // , expr subst
    return 0;
    /* End of CHEEV */
}
Example #5
0
/* Subroutine */ int chbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, complex *ab, integer *ldab, complex *q, integer *ldq, 
	real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *
	m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, 
	integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    complex ctmp1;
    integer itmp1, indee;
    real sigma;
    integer iinfo;
    char order[1];
    logical lower;
    logical wantz;
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    real safmin;
    real abstll, bignum;
    integer indiwk, indisp;
    integer indrwk, indwrk;
    integer nsplit;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CHBEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors */
/*  can be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  Q       (output) COMPLEX array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the N-by-N unitary matrix used in the */
/*                          reduction to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'V', then */
/*          LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AB to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (wantz && *ldq < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	*m = 1;
	if (lower) {
	    i__1 = ab_dim1 + 1;
	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
	} else {
	    i__1 = *kd + 1 + ab_dim1;
	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
	}
	tmp1 = ctmp1.r;
	if (valeig) {
	    if (! (*vl < tmp1 && *vu >= tmp1)) {
		*m = 0;
	    }
	}
	if (*m == 1) {
	    w[1] = ctmp1.r;
	    if (wantz) {
		i__1 = z_dim1 + 1;
		z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	    }
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    clascl_("B", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    clascl_("Q", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &rwork[indd], &rwork[
	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or CSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b1, &z__[j * z_dim1 + 1], &c__1);
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
	}
    }

    return 0;

/*     End of CHBEVX */

} /* chbevx_ */
/* Subroutine */ int chpevx_(char *jobz, char *range, char *uplo, integer *n, 
	complex *ap, real *vl, real *vu, integer *il, integer *iu, real *
	abstol, integer *m, real *w, complex *z__, integer *ldz, complex *
	work, real *rwork, integer *iwork, integer *ifail, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CHPEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a complex Hermitian matrix A in packed storage.   
    Eigenvalues/vectors can be selected by specifying either a range of   
    values or a range of indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found;   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found;   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, AP is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the diagonal   
            and first superdiagonal of the tridiagonal matrix T overwrite   
            the corresponding elements of A, and if UPLO = 'L', the   
            diagonal and first subdiagonal of T overwrite the   
            corresponding elements of A.   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing AP to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero.   
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the selected eigenvalues in ascending order.   

    Z       (output) COMPLEX array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and   
            the index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) COMPLEX array, dimension (2*N)   

    RWORK   (workspace) REAL array, dimension (7*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer itmp1, i__, j, indee;
    static real sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
	    complex *, integer *), scopy_(integer *, real *, integer *, real *
	    , integer *);
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    static logical valeig;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real abstll, bignum;
    static integer indiwk, indisp, indtau;
    extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
	    real *, complex *, integer *), cstein_(integer *, real *, 
	    real *, integer *, real *, integer *, integer *, complex *, 
	    integer *, real *, integer *, integer *, integer *);
    static integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cupgtr_(char *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *), ssterf_(integer *, real *, real *, integer *);
    static integer nsplit;
    extern /* Subroutine */ int cupmtr_(char *, char *, char *, integer *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *);
    static real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    static real eps, vll, vuu, tmp1;
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -8;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = ap[1].r;
	} else {
	    if (*vl < ap[1].r && *vu >= ap[1].r) {
		*m = 1;
		w[1] = ap[1].r;
	    }
	}
	if (wantz) {
	    i__1 = z___subscr(1, 1);
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	csscal_(&i__1, &sigma, &ap[1], &c__1);
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indtau = 1;
    indwrk = indtau + *n;
    chptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], &
	    iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal   
       to zero, then call SSTERF or CUPGTR and CSTEQR.  If this fails   
       for some eigenvalue, then try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    cupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
		    work[indwrk], &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal   
          form to eigenvectors returned by CSTEIN. */

	indwrk = indtau + *n;
	cupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, j), &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of CHPEVX */

} /* chpevx_ */
Example #7
0
/* Subroutine */ int chpev_(char *jobz, char *uplo, integer *n, complex *ap, 
	real *w, complex *z, integer *ldz, complex *work, real *rwork, 
	integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CHPEV computes all the eigenvalues and, optionally, eigenvectors of a 
  
    complex Hermitian matrix in packed storage.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix 
  
            A, packed columnwise in a linear array.  The j-th column of A 
  
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. 
  

            On exit, AP is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the diagonal   
            and first superdiagonal of the tridiagonal matrix T overwrite 
  
            the corresponding elements of A, and if UPLO = 'L', the   
            diagonal and first subdiagonal of T overwrite the   
            corresponding elements of A.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) COMPLEX array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal   
            eigenvectors of the matrix A, with the i-th column of Z   
            holding the eigenvector associated with W(i).   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) COMPLEX array, dimension (max(1, 2*N-1))   

    RWORK   (workspace) REAL array, dimension (max(1, 3*N-2))   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the algorithm failed to converge; i   
                  off-diagonal elements of an intermediate tridiagonal   
                  form did not converge to zero.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static logical wantz;
    static integer iscale;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real bignum;
    static integer indtau;
    extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
	    real *, complex *, integer *);
    static integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cupgtr_(char *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *), ssterf_(integer *, real *, real *, integer *);
    static real smlnum, eps;



#define AP(I) ap[(I)-1]
#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]

    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	W(1) = AP(1).r;
	RWORK(1) = 1.f;
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    Z(1,1).r = 1.f, Z(1,1).i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhp_("M", uplo, n, &AP(1), &RWORK(1));
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	csscal_(&i__1, &sigma, &AP(1), &c__1);
    }

/*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. 
*/

    inde = 1;
    indtau = 1;
    chptrd_(uplo, n, &AP(1), &W(1), &RWORK(inde), &WORK(indtau), &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call   
       CUPGTR to generate the orthogonal matrix, then call CSTEQR. */

    if (! wantz) {
	ssterf_(n, &W(1), &RWORK(inde), info);
    } else {
	indwrk = indtau + *n;
	cupgtr_(uplo, n, &AP(1), &WORK(indtau), &Z(1,1), ldz, &WORK(
		indwrk), &iinfo);
	indrwk = inde + *n;
	csteqr_(jobz, n, &W(1), &RWORK(inde), &Z(1,1), ldz, &RWORK(
		indrwk), info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &W(1), &c__1);
    }

    return 0;

/*     End of CHPEV */

} /* chpev_ */
Example #8
0
/* Subroutine */ int chpev_(char *jobz, char *uplo, integer *n, complex *ap, 
	real *w, complex *z__, integer *ldz, complex *work, real *rwork, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    logical wantz;
    integer iscale;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real bignum;
    integer indtau;
    extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
	    real *, complex *, integer *);
    integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cupgtr_(char *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *), ssterf_(integer *, real *, real *, integer *);
    real smlnum;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHPEV computes all the eigenvalues and, optionally, eigenvectors of a */
/*  complex Hermitian matrix in packed storage. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (max(1, 2*N-1)) */

/*  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1].r;
	rwork[1] = 1.f;
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	csscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    chptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     CUPGTR to generate the orthogonal matrix, then call CSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	indwrk = indtau + *n;
	cupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[
		indwrk], &iinfo);
	indrwk = inde + *n;
	csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
		indrwk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    return 0;

/*     End of CHPEV */

} /* chpev_ */
Example #9
0
/* Subroutine */
int chbgvx_(char *jobz, char *range, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer * il, integer *iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer * ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2;
    /* Local variables */
    integer i__, j, jj;
    real tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */
    int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */
    int ccopy_(integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */
    int scopy_(integer *, real *, integer *, real *, integer *);
    logical wantz, alleig, indeig;
    integer indibl;
    extern /* Subroutine */
    int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *);
    logical valeig;
    extern /* Subroutine */
    int chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_( char *, integer *, integer *, complex *, integer *, integer *);
    integer indiwk, indisp;
    extern /* Subroutine */
    int cstein_(integer *, real *, real *, integer *, real *, integer *, integer *, complex *, integer *, real *, integer *, integer *, integer *);
    integer indrwk, indwrk;
    extern /* Subroutine */
    int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *);
    integer nsplit;
    extern /* Subroutine */
    int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -2;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*ka < 0)
    {
        *info = -5;
    }
    else if (*kb < 0 || *kb > *ka)
    {
        *info = -6;
    }
    else if (*ldab < *ka + 1)
    {
        *info = -8;
    }
    else if (*ldbb < *kb + 1)
    {
        *info = -10;
    }
    else if (*ldq < 1 || wantz && *ldq < *n)
    {
        *info = -12;
    }
    else
    {
        if (valeig)
        {
            if (*n > 0 && *vu <= *vl)
            {
                *info = -14;
            }
        }
        else if (indeig)
        {
            if (*il < 1 || *il > max(1,*n))
            {
                *info = -15;
            }
            else if (*iu < min(*n,*il) || *iu > *n)
            {
                *info = -16;
            }
        }
    }
    if (*info == 0)
    {
        if (*ldz < 1 || wantz && *ldz < *n)
        {
            *info = -21;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHBGVX", &i__1);
        return 0;
    }
    /* Quick return if possible */
    *m = 0;
    if (*n == 0)
    {
        return 0;
    }
    /* Form a split Cholesky factorization of B. */
    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem. */
    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &q[q_offset], ldq, &work[1], &rwork[1], &iinfo);
    /* Solve the standard eigenvalue problem. */
    /* Reduce Hermitian band matrix to tridiagonal form. */
    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    if (wantz)
    {
        *(unsigned char *)vect = 'U';
    }
    else
    {
        *(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[ inde], &q[q_offset], ldq, &work[indwrk], &iinfo);
    /* If all eigenvalues are desired and ABSTOL is less than or equal */
    /* to zero, then call SSTERF or CSTEQR. If this fails for some */
    /* eigenvalue, then try SSTEBZ. */
    test = FALSE_;
    if (indeig)
    {
        if (*il == 1 && *iu == *n)
        {
            test = TRUE_;
        }
    }
    if ((alleig || test) && *abstol <= 0.f)
    {
        scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
        indee = indrwk + (*n << 1);
        i__1 = *n - 1;
        scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
        if (! wantz)
        {
            ssterf_(n, &w[1], &rwork[indee], info);
        }
        else
        {
            clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
            csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & rwork[indrwk], info);
            if (*info == 0)
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    ifail[i__] = 0;
                    /* L10: */
                }
            }
        }
        if (*info == 0)
        {
            *m = *n;
            goto L30;
        }
        *info = 0;
    }
    /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */
    /* call CSTEIN. */
    if (wantz)
    {
        *(unsigned char *)order = 'B';
    }
    else
    {
        *(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[ indrwk], &iwork[indiwk], info);
    if (wantz)
    {
        cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ indiwk], &ifail[1], info);
        /* Apply unitary matrix used in reduction to tridiagonal */
        /* form to eigenvectors returned by CSTEIN. */
        i__1 = *m;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
            cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, & c_b1, &z__[j * z_dim1 + 1], &c__1);
            /* L20: */
        }
    }
L30: /* If eigenvalues are not in order, then sort them, along with */
    /* eigenvectors. */
    if (wantz)
    {
        i__1 = *m - 1;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            i__ = 0;
            tmp1 = w[j];
            i__2 = *m;
            for (jj = j + 1;
                    jj <= i__2;
                    ++jj)
            {
                if (w[jj] < tmp1)
                {
                    i__ = jj;
                    tmp1 = w[jj];
                }
                /* L40: */
            }
            if (i__ != 0)
            {
                itmp1 = iwork[indibl + i__ - 1];
                w[i__] = w[j];
                iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1);
                if (*info != 0)
                {
                    itmp1 = ifail[i__];
                    ifail[i__] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
            /* L50: */
        }
    }
    return 0;
    /* End of CHBGVX */
}
Example #10
0
/* Subroutine */ int chbgv_(char *jobz, char *uplo, integer *n, integer *ka, 
	integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, 
	real *w, complex *z, integer *ldz, complex *work, real *rwork, 
	integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CHBGV computes all the eigenvalues, and optionally, the eigenvectors 
  
    of a complex generalized Hermitian-definite banded eigenproblem, of   
    the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian   
    and banded, and B is also positive definite.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangles of A and B are stored;   
            = 'L':  Lower triangles of A and B are stored.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    KA      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'. KA >= 0.   

    KB      (input) INTEGER   
            The number of superdiagonals of the matrix B if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'. KB >= 0.   

    AB      (input/output) COMPLEX array, dimension (LDAB, N)   
            On entry, the upper or lower triangle of the Hermitian band   
            matrix A, stored in the first ka+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB 
  
            as follows:   
            if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). 
  

            On exit, the contents of AB are destroyed.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KA+1.   

    BB      (input/output) COMPLEX array, dimension (LDBB, N)   
            On entry, the upper or lower triangle of the Hermitian band   
            matrix B, stored in the first kb+1 rows of the array.  The   
            j-th column of B is stored in the j-th column of the array BB 
  
            as follows:   
            if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; 
  
            if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). 
  

            On exit, the factor S from the split Cholesky factorization   
            B = S**H*S, as returned by CPBSTF.   

    LDBB    (input) INTEGER   
            The leading dimension of the array BB.  LDBB >= KB+1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) COMPLEX array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of   
            eigenvectors, with the i-th column of Z holding the   
            eigenvector associated with W(i). The eigenvectors are   
            normalized so that Z**H*B*Z = I.   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= N.   

    WORK    (workspace) COMPLEX array, dimension (N)   

    RWORK   (workspace) REAL array, dimension (3*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, and i is:   
               <= N:  the algorithm failed to converge:   
                      i off-diagonal elements of an intermediate   
                      tridiagonal form did not converge to zero;   
               > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF   
                      returned INFO = i: B is not positive definite.   
                      The factorization of B could not be completed and   
                      no eigenvalues or eigenvectors were computed.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
    /* Local variables */
    static integer inde;
    static char vect[1];
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static logical upper, wantz;
    extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, 
	    complex *, integer *, real *, real *, complex *, integer *, 
	    complex *, integer *), chbgst_(char *, char *, 
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char 
	    *, integer *, integer *, complex *, integer *, integer *);
    static integer indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), ssterf_(integer 
	    *, real *, real *, integer *);


#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]
#define BB(I,J) bb[(I)-1 + ((J)-1)* ( *ldbb)]
#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]

    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ka < 0) {
	*info = -4;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -5;
    } else if (*ldab < *ka + 1) {
	*info = -7;
    } else if (*ldbb < *kb + 1) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    cpbstf_(uplo, n, kb, &BB(1,1), ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    inde = 1;
    indwrk = inde + *n;
    chbgst_(jobz, uplo, n, ka, kb, &AB(1,1), ldab, &BB(1,1), ldbb,
	     &Z(1,1), ldz, &WORK(1), &RWORK(indwrk), &iinfo);

/*     Reduce to tridiagonal form. */

    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &AB(1,1), ldab, &W(1), &RWORK(inde), &Z(1,1), ldz, &WORK(1), &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEQR. 
*/

    if (! wantz) {
	ssterf_(n, &W(1), &RWORK(inde), info);
    } else {
	csteqr_(jobz, n, &W(1), &RWORK(inde), &Z(1,1), ldz, &RWORK(
		indwrk), info);
    }
    return 0;

/*     End of CHBGV */

} /* chbgv_ */
Example #11
0
/* Subroutine */ int cheev_(char *jobz, char *uplo, integer *n, complex *a, 
	integer *lda, real *w, complex *work, integer *lwork, real *rwork, 
	integer *info, ftnlen jobz_len, ftnlen uplo_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1;
    complex q__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer nb;
    static real eps;
    static integer inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer lopt;
    static real sigma;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static logical lower, wantz;
    extern doublereal clanhe_(char *, char *, integer *, complex *, integer *,
	     real *, ftnlen, ftnlen);
    static integer iscale;
    extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, complex *, integer *, integer *, 
	    ftnlen);
    extern doublereal slamch_(char *, ftnlen);
    extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, complex *, integer *, integer *, 
	    ftnlen);
    static real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    static real bignum;
    static integer indtau, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *, ftnlen), cungtr_(char *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    integer *, ftnlen), ssterf_(integer *, real *, real *, integer *);
    static integer llwork;
    static real smlnum;
    static integer lwkopt;
    static logical lquery;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHEEV computes all eigenvalues and, optionally, eigenvectors of a */
/*  complex Hermitian matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          orthonormal eigenvectors of the matrix A. */
/*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
/*          or the upper triangle (if UPLO='U') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) COMPLEX array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,2*N-1). */
/*          For optimal efficiency, LWORK >= (NB+1)*N, */
/*          where NB is the blocksize for CHETRD returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
    lower = lsame_(uplo, "L", (ftnlen)1, (ftnlen)1);
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U", (ftnlen)1, (ftnlen)1))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = (*n << 1) - 1;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -8;
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = (nb + 1) * *n;
	lwkopt = max(i__1,i__2);
	work[1].r = (real) lwkopt, work[1].i = 0.f;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHEEV ", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	work[1].r = 1.f, work[1].i = 0.f;
	return 0;
    }

    if (*n == 1) {
	i__1 = a_dim1 + 1;
	w[1] = a[i__1].r;
	work[1].r = 3.f, work[1].i = 0.f;
	if (wantz) {
	    i__1 = a_dim1 + 1;
	    a[i__1].r = 1.f, a[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum", (ftnlen)12);
    eps = slamch_("Precision", (ftnlen)9);
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1], (ftnlen)1, (
	    ftnlen)1);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	clascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, 
		info, (ftnlen)1);
    }

/*     Call CHETRD to reduce Hermitian matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
	    work[indwrk], &llwork, &iinfo, (ftnlen)1);
    i__1 = indwrk;
    q__1.r = *n + work[i__1].r, q__1.i = work[i__1].i;
    lopt = q__1.r;

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     CUNGTR to generate the unitary matrix, then call CSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	cungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
		llwork, &iinfo, (ftnlen)1);
	indwrk = inde + *n;
	csteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[
		indwrk], info, (ftnlen)1);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     Set WORK(1) to optimal complex workspace size. */

    work[1].r = (real) lwkopt, work[1].i = 0.f;

    return 0;

/*     End of CHEEV */

} /* cheev_ */
Example #12
0
/* Subroutine */ int cstedc_(char *compz, integer *n, real *d__, real *e, 
	complex *z__, integer *ldz, complex *work, integer *lwork, real *
	rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
	info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, k, m;
    real p;
    integer ii, ll, lgn;
    real eps, tiny;
    integer lwmin;
    integer start;
    integer finish;
    integer liwmin, icompz;
    real orgnrm;
    integer lrwmin;
    logical lquery;
    integer smlsiz;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */
/*  The eigenvectors of a full or band complex Hermitian matrix can also */
/*  be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
/*  matrix to tridiagonal form. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none.  See SLAED3 for details. */

/*  Arguments */
/*  ========= */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only. */
/*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
/*          = 'V':  Compute eigenvectors of original Hermitian matrix */
/*                  also.  On entry, Z contains the unitary matrix used */
/*                  to reduce the original matrix to tridiagonal form. */

/*  N       (input) INTEGER */
/*          The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D       (input/output) REAL array, dimension (N) */
/*          On entry, the diagonal elements of the tridiagonal matrix. */
/*          On exit, if INFO = 0, the eigenvalues in ascending order. */

/*  E       (input/output) REAL array, dimension (N-1) */
/*          On entry, the subdiagonal elements of the tridiagonal matrix. */
/*          On exit, E has been destroyed. */

/*  Z       (input/output) COMPLEX array, dimension (LDZ,N) */
/*          On entry, if COMPZ = 'V', then Z contains the unitary */
/*          matrix used in the reduction to tridiagonal form. */
/*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/*          orthonormal eigenvectors of the original Hermitian matrix, */
/*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/*          of the symmetric tridiagonal matrix. */
/*          If  COMPZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1. */
/*          If eigenvectors are desired, then LDZ >= max(1,N). */

/*  WORK    (workspace/output) COMPLEX    array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
/*          Note that for COMPZ = 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LWORK need */
/*          only be 1. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
/*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of the array RWORK. */
/*          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1, LRWORK must be at least */
/*                         1 + 3*N + 2*N*lg N + 3*N**2 , */
/*                         where lg( N ) = smallest integer k such */
/*                         that 2**k >= N. */
/*          If COMPZ = 'I' and N > 1, LRWORK must be at least */
/*                         1 + 4*N + 2*N**2 . */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LRWORK */
/*          need only be max(1,2*(N-1)). */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
/*          If COMPZ = 'V' or N > 1,  LIWORK must be at least */
/*                                    6 + 6*N + 5*N*lg N. */
/*          If COMPZ = 'I' or N > 1,  LIWORK must be at least */
/*                                    3 + 5*N . */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LIWORK */
/*          need only be 1. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }

    if (*info == 0) {

/*        Compute the workspace requirements */

	smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
	if (*n <= 1 || icompz == 0) {
	    lwmin = 1;
	    liwmin = 1;
	    lrwmin = 1;
	} else if (*n <= smlsiz) {
	    lwmin = 1;
	    liwmin = 1;
	    lrwmin = *n - 1 << 1;
	} else if (icompz == 1) {
	    lgn = (integer) (log((real) (*n)) / log(2.f));
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    lwmin = *n * *n;
/* Computing 2nd power */
	    i__1 = *n;
	    lrwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
	    liwmin = *n * 6 + 6 + *n * 5 * lgn;
	} else if (icompz == 2) {
	    lwmin = 1;
/* Computing 2nd power */
	    i__1 = *n;
	    lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
	    liwmin = *n * 5 + 3;
	}
	work[1].r = (real) lwmin, work[1].i = 0.f;
	rwork[1] = (real) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -8;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -10;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     If the following conditional clause is removed, then the routine */
/*     will use the Divide and Conquer routine to compute only the */
/*     eigenvalues, which requires (3N + 3N**2) real workspace and */
/*     (2 + 5N + 2N lg(N)) integer workspace. */
/*     Since on many architectures SSTERF is much faster than any other */
/*     algorithm for finding eigenvalues only, it is used here */
/*     as the default. If the conditional clause is removed, then */
/*     information on the size of workspace needs to be changed. */

/*     If COMPZ = 'N', use SSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	ssterf_(n, &d__[1], &e[1], info);
	goto L70;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then */
/*     solve the problem with another solver. */

    if (*n <= smlsiz) {

	csteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1], 
		info);

    } else {

/*        If COMPZ = 'I', we simply call SSTEDC instead. */

	if (icompz == 2) {
	    slaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
	    ll = *n * *n + 1;
	    i__1 = *lrwork - ll + 1;
	    sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
		    iwork[1], liwork, info);
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * z_dim1;
		    i__4 = (j - 1) * *n + i__;
		    z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f;
		}
	    }
	    goto L70;
	}

/*        From now on, only option left to be handled is COMPZ = 'V', */
/*        i.e. ICOMPZ = 1. */

/*        Scale. */

	orgnrm = slanst_("M", n, &d__[1], &e[1]);
	if (orgnrm == 0.f) {
	    goto L70;
	}

	eps = slamch_("Epsilon");

	start = 1;

/*        while ( START <= N ) */

L30:
	if (start <= *n) {

/*           Let FINISH be the position of the next subdiagonal entry */
/*           such that E( FINISH ) <= TINY or FINISH = N if no such */
/*           subdiagonal exists.  The matrix identified by the elements */
/*           between START and FINISH constitutes an independent */
/*           sub-problem. */

	    finish = start;
L40:
	    if (finish < *n) {
		tiny = eps * sqrt((r__1 = d__[finish], dabs(r__1))) * sqrt((
			r__2 = d__[finish + 1], dabs(r__2)));
		if ((r__1 = e[finish], dabs(r__1)) > tiny) {
		    ++finish;
		    goto L40;
		}
	    }

/*           (Sub) Problem determined.  Compute its size and solve it. */

	    m = finish - start + 1;
	    if (m > smlsiz) {

/*              Scale. */

		orgnrm = slanst_("M", &m, &d__[start], &e[start]);
		slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
			start], &m, info);
		i__1 = m - 1;
		i__2 = m - 1;
		slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
			start], &i__2, info);

		claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 + 
			1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
		if (*info > 0) {
		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
			     (m + 1) + start - 1;
		    goto L70;
		}

/*              Scale back. */

		slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
			start], &m, info);

	    } else {
		ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
			rwork[m * m + 1], info);
		clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
			work[1], n, &rwork[m * m + 1]);
		clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1], 
			ldz);
		if (*info > 0) {
		    *info = start * (*n + 1) + finish;
		    goto L70;
		}
	    }

	    start = finish + 1;
	    goto L30;
	}

/*        endwhile */

/*        If the problem split any number of times, then the eigenvalues */
/*        will not be properly ordered.  Here we permute the eigenvalues */
/*        (and the associated eigenvectors) into ascending order. */

	if (m != *n) {

/*           Use Selection Sort to minimize swaps of eigenvectors */

	    i__1 = *n;
	    for (ii = 2; ii <= i__1; ++ii) {
		i__ = ii - 1;
		k = i__;
		p = d__[i__];
		i__2 = *n;
		for (j = ii; j <= i__2; ++j) {
		    if (d__[j] < p) {
			k = j;
			p = d__[j];
		    }
		}
		if (k != i__) {
		    d__[k] = d__[i__];
		    d__[i__] = p;
		    cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 
			    + 1], &c__1);
		}
	    }
	}
    }

L70:
    work[1].r = (real) lwmin, work[1].i = 0.f;
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of CSTEDC */

} /* cstedc_ */
Example #13
0
/* Subroutine */ int chbgvx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, 
	integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer *
	il, integer *iu, real *abstol, integer *m, real *w, complex *z__, 
	integer *ldz, complex *work, real *rwork, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, jj;
    real tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cswap_(integer *, complex *, integer *, 
	    complex *, integer *);
    logical upper;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical wantz, alleig, indeig;
    integer indibl;
    extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, 
	    complex *, integer *, real *, real *, complex *, integer *, 
	    complex *, integer *);
    logical valeig;
    extern /* Subroutine */ int chbgst_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, complex *, real *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *), xerbla_(char *, integer *), cpbstf_(
	    char *, integer *, integer *, complex *, integer *, integer *);
    integer indiwk, indisp;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *);
    integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), ssterf_(integer 
	    *, real *, real *, integer *);
    integer nsplit;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHBGVX computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
/*  and banded, and B is also positive definite.  Eigenvalues and */
/*  eigenvectors can be selected by specifying either all eigenvalues, */
/*  a range of values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) COMPLEX array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**H*S, as returned by CPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  Q       (output) COMPLEX array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the n-by-n matrix used in the reduction of */
/*          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
/*          and consequently C to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'N', */
/*          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AP to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i). The eigenvectors are */
/*          normalized so that Z**H*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= N. */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is: */
/*             <= N:  then i eigenvectors failed to converge.  Their */
/*                    indices are stored in array IFAIL. */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF */
/*                    returned INFO = i: B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ka < 0) {
	*info = -5;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -6;
    } else if (*ldab < *ka + 1) {
	*info = -8;
    } else if (*ldbb < *kb + 1) {
	*info = -10;
    } else if (*ldq < 1 || wantz && *ldq < *n) {
	*info = -12;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -14;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -15;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -16;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBGVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &q[q_offset], ldq, &work[1], &rwork[1], &iinfo);

/*     Solve the standard eigenvalue problem. */
/*     Reduce Hermitian band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[
	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or CSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	i__1 = *n - 1;
	scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	if (! wantz) {
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, */
/*     call CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[
	    indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b1, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
	}
    }

L30:

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of CHBGVX */

} /* chbgvx_ */
Example #14
0
/* Subroutine */ int cheevx_(char *jobz, char *range, char *uplo, integer *n, 
	complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
	iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, 
	complex *work, integer *lwork, real *rwork, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indee;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    char order[1];
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
	    complex *, integer *);
    logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical wantz;
    extern doublereal clanhe_(char *, char *, integer *, complex *, integer *, 
	     real *);
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *), 
	    clacpy_(char *, integer *, integer *, complex *, integer *, 
	    complex *, integer *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real abstll, bignum;
    integer indiwk, indisp, indtau;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *);
    integer indrwk, indwrk, lwkmin;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cungtr_(char *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    integer *), ssterf_(integer *, real *, real *, integer *),
	     cunmtr_(char *, char *, char *, integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    integer *);
    integer nsplit, llwork;
    real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHEEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= 1, when N <= 1; */
/*          otherwise 2*N. */
/*          For optimal efficiency, LWORK >= (NB+1)*N, */
/*          where NB is the max of the blocksize for CHETRD and for */
/*          CUNMTR as returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	}
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwkmin = 1;
	    work[1].r = (real) lwkmin, work[1].i = 0.f;
	} else {
	    lwkmin = *n << 1;
	    nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	    i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, 
		    &c_n1);
	    nb = max(i__1,i__2);
/* Computing MAX */
	    i__1 = 1, i__2 = (nb + 1) * *n;
	    lwkopt = max(i__1,i__2);
	    work[1].r = (real) lwkopt, work[1].i = 0.f;
	}

	if (*lwork < lwkmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHEEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    i__1 = a_dim1 + 1;
	    w[1] = a[i__1].r;
	} else if (valeig) {
	    i__1 = a_dim1 + 1;
	    i__2 = a_dim1 + 1;
	    if (*vl < a[i__1].r && *vu >= a[i__2].r) {
		*m = 1;
		i__1 = a_dim1 + 1;
		w[1] = a[i__1].r;
	    }
	}
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHETRD to reduce Hermitian matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indtau = 1;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    chetrd_(uplo, n, &a[a_offset], lda, &rwork[indd], &rwork[inde], &work[
	    indtau], &work[indwrk], &llwork, &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal to */
/*     zero, then call SSTERF or CUNGTR and CSTEQR.  If this fails for */
/*     some eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
	    cungtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
, &llwork, &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L30: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L40;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwrk], &llwork, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L40:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L50: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L60: */
	}
    }

/*     Set WORK(1) to optimal complex workspace size. */

    work[1].r = (real) lwkopt, work[1].i = 0.f;

    return 0;

/*     End of CHEEVX */

} /* cheevx_ */