Example #1
0
cstring * logdb_record_find_desc(logdb_record* head, struct buffer *key)
{
    cstring *found_value = NULL;
    cstring *keycstr;
    logdb_record *rec;

    if (key == NULL)
        return NULL;

    keycstr = cstr_new_buf(key->p, key->len);
    rec = head;
    while (rec)
    {
        if (cstr_equal(rec->key, keycstr))
        {
            /* found */
            found_value = rec->value;

            /* found, but deleted */
            if (rec->mode == RECORD_TYPE_ERASE)
                found_value = NULL;

            break;
        }
        rec = rec->prev;
    }
    cstr_free(keycstr, true);
    return found_value;
}
Example #2
0
cstring *bn_getvch(const mpz_t v)
{
	/* get MPI format size */
	size_t sz;
	char *buf = mpz_export(NULL, &sz, -1, 1, 1, 0, v);

	if (sz == 0) {
		free(buf);
		return cstr_new(NULL);
	}

	cstring *s_le = cstr_new_buf(buf, sz);
	free(buf);

	/* check if sign bit is available */
	unsigned int msb = mpz_sizeinbase(v, 2);
	if ((!(msb & 0x07) && msb > 0)) {
		cstr_append_c(s_le, '\0');
		sz++;
	}
	cstr_resize(s_le, sz);

	/* set sign bit */
	if (mpz_sgn(v) == -1) {
		s_le->str[sz - 1] = (s_le->str[sz - 1] & 0xff) | 0x80;
	}

	return s_le;
}
Example #3
0
cstring* cstr_new(const char* init_str)
{
    if (!init_str || !*init_str)
        return cstr_new_sz(0);

    size_t slen = strlen(init_str);
    return cstr_new_buf(init_str, slen);
}
Example #4
0
static bool bp_script_eval(parr *stack, const cstring *script,
			   const struct bp_tx *txTo, unsigned int nIn,
			   unsigned int flags, int nHashType)
{
	struct const_buffer pc = { script->str, script->len };
	struct const_buffer pend = { script->str + script->len, 0 };
	struct const_buffer pbegincodehash = { script->str, script->len };
	struct bscript_op op;
	bool rc = false;
	cstring *vfExec = cstr_new(NULL);
	parr *altstack = parr_new(0, buffer_freep);
	mpz_t bn, bn_Zero, bn_One;
	mpz_init(bn);
	mpz_init_set_ui(bn_Zero, 0);
	mpz_init_set_ui(bn_One,1);

	if (script->len > MAX_SCRIPT_SIZE)
		goto out;

	unsigned int nOpCount = 0;
	bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0;

	struct bscript_parser bp;
	bsp_start(&bp, &pc);

	while (pc.p < pend.p) {
		bool fExec = !count_false(vfExec);

		if (!bsp_getop(&op, &bp))
			goto out;
		enum opcodetype opcode = op.op;

		if (op.data.len > MAX_SCRIPT_ELEMENT_SIZE)
			goto out;
		if (opcode > OP_16 && ++nOpCount > MAX_OPS_PER_SCRIPT)
			goto out;
		if (disabled_op[opcode])
			goto out;

		if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
			if (fRequireMinimal && !CheckMinimalPush(&op.data, opcode))
				goto out;
			stack_push(stack, (struct buffer *) &op.data);
		} else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
		switch (opcode) {

		//
		// Push value
		//
		case OP_1NEGATE:
		case OP_1:
		case OP_2:
		case OP_3:
		case OP_4:
		case OP_5:
		case OP_6:
		case OP_7:
		case OP_8:
		case OP_9:
		case OP_10:
		case OP_11:
		case OP_12:
		case OP_13:
		case OP_14:
		case OP_15:
		case OP_16:
			mpz_set_si(bn, (int)opcode - (int)(OP_1 - 1));
			stack_push_str(stack, bn_getvch(bn));
			break;

		//
		// Control
		//
		case OP_NOP:
			break;

		case OP_CHECKLOCKTIMEVERIFY: {
			if (!(flags & SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY)) {
				// not enabled; treat as a NOP2
				if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
					goto out;
				break;
			}

			if (stack->len < 1)
				goto out;

			// Note that elsewhere numeric opcodes are limited to
			// operands in the range -2**31+1 to 2**31-1, however it is
			// legal for opcodes to produce results exceeding that
			// range. This limitation is implemented by CastToBigNum's
			// default 4-byte limit.
			//
			// If we kept to that limit we'd have a year 2038 problem,
			// even though the nLockTime field in transactions
			// themselves is uint32 which only becomes meaningless
			// after the year 2106.
			//
			// Thus as a special case we tell CastToBigNum to accept up
			// to 5-byte bignums, which are good until 2**39-1, well
			// beyond the 2**32-1 limit of the nLockTime field itself.

			if (!CastToBigNum(bn, stacktop(stack, -1), fRequireMinimal, 5))
				goto out;

			// In the rare event that the argument may be < 0 due to
			// some arithmetic being done first, you can always use
			// 0 MAX CHECKLOCKTIMEVERIFY.
			if (mpz_sgn(bn) < 0)
				goto out;

			uint64_t nLockTime = mpz_get_ui(bn);

			// Actually compare the specified lock time with the transaction.
			if (!CheckLockTime(nLockTime, txTo, nIn))
				goto out;

			break;
		}

		case OP_CHECKSEQUENCEVERIFY:
		{
			if (!(flags & SCRIPT_VERIFY_CHECKSEQUENCEVERIFY)) {
				// not enabled; treat as a NOP3
				if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
					goto out;
				break;
			}

			if (stack->len < 1)
				goto out;

			// nSequence, like nLockTime, is a 32-bit unsigned integer
			// field. See the comment in CHECKLOCKTIMEVERIFY regarding
			// 5-byte numeric operands.
			if (!CastToBigNum(bn, stacktop(stack, -1), fRequireMinimal, 5))
				goto out;

			// In the rare event that the argument may be < 0 due to
			// some arithmetic being done first, you can always use
			// 0 MAX CHECKSEQUENCEVERIFY.
			if (mpz_sgn(bn) < 0)
				goto out;

			uint32_t nSequence = mpz_get_ui(bn);

			// To provide for future soft-fork extensibility, if the
			// operand has the disabled lock-time flag set,
			// CHECKSEQUENCEVERIFY behaves as a NOP.
			if ((nSequence & SEQUENCE_LOCKTIME_DISABLE_FLAG) != 0)
				break;

			// Compare the specified sequence number with the input.
			if (!CheckSequence(nSequence, txTo, nIn))
				goto out;

			break;
		}

		case OP_NOP1: case OP_NOP4: case OP_NOP5:
		case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
			if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
				goto out;
			break;

		case OP_IF:
		case OP_NOTIF: {
			// <expression> if [statements] [else [statements]] endif
			bool fValue = false;
			if (fExec) {
				if (stack->len < 1)
					goto out;
				struct buffer *vch = stacktop(stack, -1);
				fValue = CastToBool(vch);
				if (opcode == OP_NOTIF)
					fValue = !fValue;
				popstack(stack);
			}
			uint8_t vc = (uint8_t) fValue;
			cstr_append_c(vfExec, vc);
			break;
		}

		case OP_ELSE: {
			if (vfExec->len == 0)
				goto out;
			uint8_t *v = (uint8_t *) &vfExec->str[vfExec->len - 1];
			*v = !(*v);
			break;
		}

		case OP_ENDIF:
			if (vfExec->len == 0)
				goto out;
			cstr_erase(vfExec, vfExec->len - 1, 1);
			break;

		case OP_VERIFY: {
			if (stack->len < 1)
				goto out;
			bool fValue = CastToBool(stacktop(stack, -1));
			if (fValue)
				popstack(stack);
			else
				goto out;
			break;
		}

		case OP_RETURN:
			goto out;

		//
		// Stack ops
		//
		case OP_TOALTSTACK:
			if (stack->len < 1)
				goto out;
			stack_push(altstack, stacktop(stack, -1));
			popstack(stack);
			break;

		case OP_FROMALTSTACK:
			if (altstack->len < 1)
				goto out;
			stack_push(stack, stacktop(altstack, -1));
			popstack(altstack);
			break;

		case OP_2DROP:
			// (x1 x2 -- )
			if (stack->len < 2)
				goto out;
			popstack(stack);
			popstack(stack);
			break;

		case OP_2DUP: {
			// (x1 x2 -- x1 x2 x1 x2)
			if (stack->len < 2)
				goto out;
			struct buffer *vch1 = stacktop(stack, -2);
			struct buffer *vch2 = stacktop(stack, -1);
			stack_push(stack, vch1);
			stack_push(stack, vch2);
			break;
		}

		case OP_3DUP: {
			// (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
			if (stack->len < 3)
				goto out;
			struct buffer *vch1 = stacktop(stack, -3);
			struct buffer *vch2 = stacktop(stack, -2);
			struct buffer *vch3 = stacktop(stack, -1);
			stack_push(stack, vch1);
			stack_push(stack, vch2);
			stack_push(stack, vch3);
			break;
		}

		case OP_2OVER: {
			// (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
			if (stack->len < 4)
				goto out;
			struct buffer *vch1 = stacktop(stack, -4);
			struct buffer *vch2 = stacktop(stack, -3);
			stack_push(stack, vch1);
			stack_push(stack, vch2);
			break;
		}

		case OP_2ROT: {
			// (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
			if (stack->len < 6)
				goto out;
			struct buffer *vch1 = stack_take(stack, -6);
			struct buffer *vch2 = stack_take(stack, -5);
			parr_remove_range(stack, stack->len - 6, 2);
			stack_push_nocopy(stack, vch1);
			stack_push_nocopy(stack, vch2);
			break;
		}

		case OP_2SWAP:
			// (x1 x2 x3 x4 -- x3 x4 x1 x2)
			if (stack->len < 4)
				goto out;
			stack_swap(stack, -4, -2);
			stack_swap(stack, -3, -1);
			break;

		case OP_IFDUP: {
			// (x - 0 | x x)
			if (stack->len < 1)
				goto out;
			struct buffer *vch = stacktop(stack, -1);
			if (CastToBool(vch))
				stack_push(stack, vch);
			break;
		}

		case OP_DEPTH:
			// -- stacksize
			mpz_set_ui(bn, stack->len);
			stack_push_str(stack, bn_getvch(bn));
			break;

		case OP_DROP:
			// (x -- )
			if (stack->len < 1)
				goto out;
			popstack(stack);
			break;

		case OP_DUP: {
			// (x -- x x)
			if (stack->len < 1)
				goto out;
			struct buffer *vch = stacktop(stack, -1);
			stack_push(stack, vch);
			break;
		}

		case OP_NIP:
			// (x1 x2 -- x2)
			if (stack->len < 2)
				goto out;
			parr_remove_idx(stack, stack->len - 2);
			break;

		case OP_OVER: {
			// (x1 x2 -- x1 x2 x1)
			if (stack->len < 2)
				goto out;
			struct buffer *vch = stacktop(stack, -2);
			stack_push(stack, vch);
			break;
		}

		case OP_PICK:
		case OP_ROLL: {
			// (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
			// (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
			if (stack->len < 2)
				goto out;

			int n = stackint(stack, -1, fRequireMinimal);
			popstack(stack);
			if (n < 0 || n >= (int)stack->len)
				goto out;
			struct buffer *vch = stacktop(stack, -n-1);
			if (opcode == OP_ROLL) {
				vch = buffer_copy(vch->p, vch->len);
				parr_remove_idx(stack,
							 stack->len - n - 1);
				stack_push_nocopy(stack, vch);
			} else
				stack_push(stack, vch);
			break;
		}

		case OP_ROT: {
			// (x1 x2 x3 -- x2 x3 x1)
			//  x2 x1 x3  after first swap
			//  x2 x3 x1  after second swap
			if (stack->len < 3)
				goto out;
			stack_swap(stack, -3, -2);
			stack_swap(stack, -2, -1);
			break;
		}

		case OP_SWAP: {
			// (x1 x2 -- x2 x1)
			if (stack->len < 2)
				goto out;
			stack_swap(stack, -2, -1);
			break;
		}

		case OP_TUCK: {
			// (x1 x2 -- x2 x1 x2)
			if (stack->len < 2)
				goto out;
			struct buffer *vch = stacktop(stack, -1);
			stack_insert(stack, vch, -2);
			break;
		}

		case OP_SIZE: {
			// (in -- in size)
			if (stack->len < 1)
				goto out;
			struct buffer *vch = stacktop(stack, -1);
			mpz_set_ui(bn, vch->len);
			stack_push_str(stack, bn_getvch(bn));
			break;
		}


		case OP_EQUAL:
		case OP_EQUALVERIFY: {
			// (x1 x2 - bool)
			if (stack->len < 2)
				goto out;
			struct buffer *vch1 = stacktop(stack, -2);
			struct buffer *vch2 = stacktop(stack, -1);
			bool fEqual = buffer_equal(vch1, vch2);
			// OP_NOTEQUAL is disabled because it would be too easy to say
			// something like n != 1 and have some wiseguy pass in 1 with extra
			// zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
			//if (opcode == OP_NOTEQUAL)
			//	fEqual = !fEqual;
			popstack(stack);
			popstack(stack);
			stack_push_str(stack, fEqual ? bn_getvch(bn_One) : bn_getvch(bn_Zero));
			if (opcode == OP_EQUALVERIFY) {
				if (fEqual)
					popstack(stack);
				else
					goto out;
			}
			break;
		}

		//
		// Numeric
		//
		case OP_1ADD:
		case OP_1SUB:
		case OP_NEGATE:
		case OP_ABS:
		case OP_NOT:
		case OP_0NOTEQUAL: {
			// (in -- out)
			if (stack->len < 1)
				goto out;
			if (!CastToBigNum(bn, stacktop(stack, -1), fRequireMinimal, nDefaultMaxNumSize))
				goto out;
			switch (opcode)
			{
			case OP_1ADD:
				mpz_add_ui(bn, bn, 1);
				break;
			case OP_1SUB:
				mpz_sub_ui(bn, bn, 1);
				break;
			case OP_NEGATE:
				mpz_neg(bn, bn);
				break;
			case OP_ABS:
				mpz_abs(bn, bn);
				break;
			case OP_NOT:
				mpz_set_ui(bn, mpz_sgn(bn) == 0 ? 1 : 0);
				break;
			case OP_0NOTEQUAL:
				mpz_set_ui(bn, mpz_sgn(bn) == 0 ? 0 : 1);
				break;
			default:
				// impossible
				goto out;
			}
			popstack(stack);
			stack_push_str(stack, bn_getvch(bn));
			break;
		}

		case OP_ADD:
		case OP_SUB:
		case OP_BOOLAND:
		case OP_BOOLOR:
		case OP_NUMEQUAL:
		case OP_NUMEQUALVERIFY:
		case OP_NUMNOTEQUAL:
		case OP_LESSTHAN:
		case OP_GREATERTHAN:
		case OP_LESSTHANOREQUAL:
		case OP_GREATERTHANOREQUAL:
		case OP_MIN:
		case OP_MAX: {
			// (x1 x2 -- out)
			if (stack->len < 2)
				goto out;

			mpz_t bn1, bn2;
			mpz_init(bn1);
			mpz_init(bn2);
			if (!CastToBigNum(bn1, stacktop(stack, -2), fRequireMinimal, nDefaultMaxNumSize) ||
			    !CastToBigNum(bn2, stacktop(stack, -1), fRequireMinimal, nDefaultMaxNumSize)) {
				mpz_clear(bn1);
				mpz_clear(bn2);
				goto out;
			}

			switch (opcode)
			{
			case OP_ADD:
				mpz_add(bn, bn1, bn2);
				break;
			case OP_SUB:
				mpz_sub(bn, bn1, bn2);
				break;
			case OP_BOOLAND:
				mpz_set_ui(bn,
				    !(mpz_sgn(bn1) == 0) && !(mpz_sgn(bn2) == 0) ?
				    1 : 0);
				break;
			case OP_BOOLOR:
				mpz_set_ui(bn,
				    !(mpz_sgn(bn1) == 0) || !(mpz_sgn(bn2) == 0) ?
				    1 : 0);
				break;
			case OP_NUMEQUAL:
			case OP_NUMEQUALVERIFY:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) == 0 ?  1 : 0);
				break;
			case OP_NUMNOTEQUAL:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) != 0 ?  1 : 0);
				break;
			case OP_LESSTHAN:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) < 0 ?  1 : 0);
				break;
			case OP_GREATERTHAN:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) > 0 ?  1 : 0);
				break;
			case OP_LESSTHANOREQUAL:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) <= 0 ?  1 : 0);
				break;
			case OP_GREATERTHANOREQUAL:
				mpz_set_ui(bn,
				    mpz_cmp(bn1, bn2) >= 0 ?  1 : 0);
				break;
			case OP_MIN:
				if (mpz_cmp(bn1, bn2) < 0)
					mpz_set(bn, bn1);
				else
					mpz_set(bn, bn2);
				break;
			case OP_MAX:
				if (mpz_cmp(bn1, bn2) > 0)
					mpz_set(bn, bn1);
				else
					mpz_set(bn, bn2);
				break;
			default:
				// impossible
				break;
			}
			popstack(stack);
			popstack(stack);
			stack_push_str(stack, bn_getvch(bn));
			mpz_clear(bn1);
			mpz_clear(bn2);

			if (opcode == OP_NUMEQUALVERIFY)
			{
				if (CastToBool(stacktop(stack, -1)))
					popstack(stack);
				else
					goto out;
			}
			break;
		}

		case OP_WITHIN: {
			// (x min max -- out)
			if (stack->len < 3)
				goto out;
			mpz_t bn1, bn2, bn3;
			mpz_init(bn1);
			mpz_init(bn2);
			mpz_init(bn3);
			bool rc1 = CastToBigNum(bn1, stacktop(stack, -3), fRequireMinimal, nDefaultMaxNumSize);
			bool rc2 = CastToBigNum(bn2, stacktop(stack, -2), fRequireMinimal, nDefaultMaxNumSize);
			bool rc3 = CastToBigNum(bn3, stacktop(stack, -1), fRequireMinimal, nDefaultMaxNumSize);
			bool fValue = (mpz_cmp(bn2, bn1) <= 0 &&
				       mpz_cmp(bn1, bn3) < 0);
			popstack(stack);
			popstack(stack);
			popstack(stack);
			stack_push_str(stack, fValue ? bn_getvch(bn_One) : bn_getvch(bn_Zero));
			mpz_clear(bn1);
			mpz_clear(bn2);
			mpz_clear(bn3);
			if (!rc1 || !rc2 || !rc3)
				goto out;
			break;
		}

		//
		// Crypto
		//
		case OP_RIPEMD160:
		case OP_SHA1:
		case OP_SHA256:
		case OP_HASH160:
		case OP_HASH256: {
			// (in -- hash)
			if (stack->len < 1)
				goto out;
			struct buffer *vch = stacktop(stack, -1);
			unsigned int hashlen;
			unsigned char md[32];

			switch (opcode) {
			case OP_RIPEMD160:
				hashlen = 20;
				ripemd160(vch->p, vch->len, md);
				break;
			case OP_SHA1:
				hashlen = 20;
				sha1_Raw(vch->p, vch->len, md);
				break;
			case OP_SHA256:
				hashlen = 32;
				sha256_Raw(vch->p, vch->len, md);
				break;
			case OP_HASH160:
				hashlen = 20;
				bu_Hash160(md, vch->p, vch->len);
				break;
			case OP_HASH256:
				hashlen = 32;
				bu_Hash(md, vch->p, vch->len);
				break;
			default:
				// impossible
				goto out;
			}

			popstack(stack);
			struct buffer buf = { md, hashlen };
			stack_push(stack, &buf);
			break;
		}

		case OP_CODESEPARATOR:
			// Hash starts after the code separator
			memcpy(&pbegincodehash, &pc, sizeof(pc));
			break;

		case OP_CHECKSIG:
		case OP_CHECKSIGVERIFY: {
			// (sig pubkey -- bool)
			if (stack->len < 2)
				goto out;

			struct buffer *vchSig	= stacktop(stack, -2);
			struct buffer *vchPubKey = stacktop(stack, -1);

			// Subset of script starting at the most recent codeseparator
			cstring *scriptCode = cstr_new_buf(pbegincodehash.p,
                                                pbegincodehash.len);

			// Drop the signature, since there's no way for
			// a signature to sign itself
			string_find_del(scriptCode, vchSig);

			if (!CheckSignatureEncoding(vchSig, flags) || !CheckPubKeyEncoding(vchPubKey, flags)) {
				cstr_free(scriptCode, true);
				goto out;
			}

			bool fSuccess = bp_checksig(vchSig, vchPubKey,
						       scriptCode,
						       txTo, nIn);

			cstr_free(scriptCode, true);

			popstack(stack);
			popstack(stack);
			stack_push_str(stack, fSuccess ? bn_getvch(bn_One) : bn_getvch(bn_Zero));
			if (opcode == OP_CHECKSIGVERIFY)
			{
				if (fSuccess)
					popstack(stack);
				else
					goto out;
			}
			break;
		}

		case OP_CHECKMULTISIG:
		case OP_CHECKMULTISIGVERIFY: {
			// ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)

			int i = 1;
			if ((int)stack->len < i)
				goto out;

			int nKeysCount = stackint(stack, -i, fRequireMinimal);
			if (nKeysCount < 0 || nKeysCount > MAX_PUBKEYS_PER_MULTISIG)
				goto out;
			nOpCount += nKeysCount;
			if (nOpCount > MAX_OPS_PER_SCRIPT)
				goto out;
			int ikey = ++i;
			i += nKeysCount;
			if ((int)stack->len < i)
				goto out;

			int nSigsCount = stackint(stack, -i, fRequireMinimal);
			if (nSigsCount < 0 || nSigsCount > nKeysCount)
				goto out;
			int isig = ++i;
			i += nSigsCount;
			if ((int)stack->len < i)
				goto out;

			// Subset of script starting at the most recent codeseparator
			cstring *scriptCode = cstr_new_buf(pbegincodehash.p,
                                                pbegincodehash.len);

			// Drop the signatures, since there's no way for
			// a signature to sign itself
			int k;
			for (k = 0; k < nSigsCount; k++)
			{
				struct buffer *vchSig =stacktop(stack, -isig-k);
				string_find_del(scriptCode, vchSig);
			}

			bool fSuccess = true;
			while (fSuccess && nSigsCount > 0)
			{
				struct buffer *vchSig	= stacktop(stack, -isig);
				struct buffer *vchPubKey = stacktop(stack, -ikey);

				// Note how this makes the exact order of pubkey/signature evaluation
				// distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set.
				// See the script_(in)valid tests for details.
				if (!CheckSignatureEncoding(vchSig, flags) || !CheckPubKeyEncoding(vchPubKey, flags)) {
					cstr_free(scriptCode, true);
					goto out;
				}

				// Check signature
				bool fOk = bp_checksig(vchSig, vchPubKey,
							  scriptCode, txTo, nIn);

				if (fOk) {
					isig++;
					nSigsCount--;
				}
				ikey++;
				nKeysCount--;

				// If there are more signatures left than keys left,
				// then too many signatures have failed
				if (nSigsCount > nKeysCount)
					fSuccess = false;
			}

			cstr_free(scriptCode, true);

			// Clean up stack of actual arguments
			while (i-- > 1)
				popstack(stack);

			// A bug causes CHECKMULTISIG to consume one extra argument
			// whose contents were not checked in any way.
			//
			// Unfortunately this is a potential source of mutability,
			// so optionally verify it is exactly equal to zero prior
			// to removing it from the stack.
			if ((int)stack->len < 1)
				goto out;
			if ((flags & SCRIPT_VERIFY_NULLDUMMY) && stacktop(stack, -1)->len)
				goto out;
			popstack(stack);

			stack_push_str(stack, fSuccess ? bn_getvch(bn_One) : bn_getvch(bn_Zero));

			if (opcode == OP_CHECKMULTISIGVERIFY)
			{
				if (fSuccess)
					popstack(stack);
				else
					goto out;
			}
			break;
		}

		default:
			goto out;
		}

		// Size limits
		if (stack->len + altstack->len > 1000)
			goto out;
	}

	rc = (vfExec->len == 0 && bp.error == false);

out:
	mpz_clears(bn, bn_Zero, bn_One, NULL);
	parr_free(altstack, true);
	cstr_free(vfExec, true);
	return rc;
}
Example #5
0
bool bp_script_verify(const cstring *scriptSig, const cstring *scriptPubKey,
		      const struct bp_tx *txTo, unsigned int nIn,
		      unsigned int flags, int nHashType)
{
	bool rc = false;
	parr *stack = parr_new(0, buffer_freep);
	parr *stackCopy = NULL;

	struct const_buffer sigbuf = { scriptSig->str, scriptSig->len };
	if ((flags & SCRIPT_VERIFY_SIGPUSHONLY) != 0 && !is_bsp_pushonly(&sigbuf))
		goto out;

	if (!bp_script_eval(stack, scriptSig, txTo, nIn, flags, nHashType))
		goto out;

	if (flags & SCRIPT_VERIFY_P2SH) {
		stackCopy = parr_new(stack->len, buffer_freep);
		stack_copy(stackCopy, stack);
	}

	if (!bp_script_eval(stack, scriptPubKey, txTo, nIn, flags, nHashType))
		goto out;
	if (stack->len == 0)
		goto out;

	if (CastToBool(stacktop(stack, -1)) == false)
		goto out;

	if ((flags & SCRIPT_VERIFY_P2SH) && is_bsp_p2sh_str(scriptPubKey)) {
		// scriptSig must be literals-only or validation fails
		if (!is_bsp_pushonly(&sigbuf))
			goto out;
		// stack cannot be empty here, because if it was the
		// P2SH  HASH <> EQUAL  scriptPubKey would be evaluated with
		// an empty stack and the script_eval above would return false.
		if (stackCopy->len < 1)
			goto out;

		struct buffer *pubKeySerialized = stack_take(stackCopy, -1);
		popstack(stackCopy);

		cstring *pubkey2 = cstr_new_buf(pubKeySerialized->p, pubKeySerialized->len);

		buffer_freep(pubKeySerialized);

		bool rc2 = bp_script_eval(stackCopy, pubkey2, txTo, nIn,
					  flags, nHashType);
		cstr_free(pubkey2, true);

		if (!rc2)
			goto out;
		if (stackCopy->len == 0)
			goto out;
		if (CastToBool(stacktop(stackCopy, -1)) == false)
			goto out;
	}
	// The CLEANSTACK check is only performed after potential P2SH evaluation,
	// as the non-P2SH evaluation of a P2SH script will obviously not result in
	// a clean stack (the P2SH inputs remain).
	if ((flags & SCRIPT_VERIFY_CLEANSTACK) != 0) {
		// Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
		// would be possible, which is not a softfork (and P2SH should be one).
		assert((flags & SCRIPT_VERIFY_P2SH) != 0);
		if (stackCopy->len != 1)
			goto out;
	}

	rc = true;

out:
	parr_free(stack, true);
	if (stackCopy)
		parr_free(stackCopy, true);
	return rc;
}
Example #6
0
File: net.c Project: libbtc/libbtc
void read_cb(struct bufferevent* bev, void* ctx)
{
    struct evbuffer* input = bufferevent_get_input(bev);
    if (!input)
        return;

    size_t length = evbuffer_get_length(input);

    btc_node *node = (btc_node *)ctx;

    // expand the cstring buffer if required
    cstr_alloc_minsize(node->recvBuffer, node->recvBuffer->len+length);

    // copy direct to cstring, avoid another heap buffer
    evbuffer_copyout(input, node->recvBuffer->str+node->recvBuffer->len, length);
    node->recvBuffer->len += length;

    // drain the event buffer
    evbuffer_drain(input, length);

    struct const_buffer buf = {node->recvBuffer->str, node->recvBuffer->len};
    btc_p2p_msg_hdr hdr;
    char *read_upto = NULL;

    do {
        //check if message is complete
        if (buf.len < BTC_P2P_HDRSZ)
        {
            break;
        }

        btc_p2p_deser_msghdr(&hdr, &buf);
        if (buf.len < hdr.data_len)
        {
            //if we haven't read the whole message, continue and wait for the next chunk
            break;
        }
        if (buf.len >= hdr.data_len)
        {
            //at least one message is complete

            struct const_buffer cmd_data_buf = {buf.p, buf.len};
            btc_node_parse_message(node, &hdr, &cmd_data_buf);

            //skip the size of the whole message
            buf.p += hdr.data_len;
            buf.len -= hdr.data_len;

            read_upto = (void *)buf.p;
        }
        if (buf.len == 0)
        {
            //if we have "consumed" the whole buffer
            node->recvBuffer->len = 0;
            break;
        }
    } while(1);

    if (read_upto != NULL && node->recvBuffer->len != 0 && read_upto != (node->recvBuffer->str + node->recvBuffer->len))
    {
        char *end = node->recvBuffer->str + node->recvBuffer->len;
        size_t available_chunk_data = end - read_upto;
        //partial message
        cstring *tmp = cstr_new_buf(read_upto, available_chunk_data);
        cstr_free(node->recvBuffer, true);
        node->recvBuffer = tmp;
    }
}
Example #7
0
void test_cstr()
{
    cstring* s1 = cstr_new("foo");
    cstring* s2 = cstr_new("foo");
    cstring* s3 = cstr_new("bar");
    cstring* s4 = cstr_new("bar1");
    
    cstring* s = cstr_new("foo");
    assert(s != NULL);
    assert(s->len == 3);
    assert(strcmp(s->str, "foo") == 0);

    cstr_free(s, true);

    s = cstr_new_sz(200);
    assert(s != NULL);
    assert(s->alloc > 200);
    assert(s->len == 0);

    cstr_free(s, true);

    s = cstr_new_buf("foo", 2);
    assert(s != NULL);
    assert(s->len == 2);
    assert(strcmp(s->str, "fo") == 0);

    cstr_free(s, true);

    s = cstr_new(NULL);
    assert(s != NULL);
    cstr_append_buf(s, "f", 1);
    cstr_append_buf(s, "o", 1);
    cstr_append_buf(s, "o", 1);
    assert(s->len == 3);
    assert(strcmp(s->str, "foo") == 0);

    cstr_free(s, true);

    s = cstr_new("foo");
    assert(s != NULL);

    cstr_resize(s, 2);
    cstr_resize(s, 2);
    cstr_alloc_minsize(s, 2);
    cstr_alloc_minsize(s, 1);

    assert(s->len == 2);
    assert(strcmp(s->str, "fo") == 0);

    cstr_resize(s, 4);
    assert(s->len == 4);
    assert(s->alloc > 4);
    memcpy(s->str, "food", 4);
    assert(strcmp(s->str, "food") == 0);

    cstr_free(s, true);

    assert(cstr_compare(s1, s2) ==  0);
    assert(cstr_compare(s1, s3) ==  1);
    assert(cstr_compare(s3, s1) ==  -1);
    assert(cstr_compare(s3, s4) ==  -1);
    assert(cstr_compare(s4, s3) ==  1);

    assert(cstr_equal(s1, s2) == true);
    assert(cstr_equal(s1, s3) == false);
    assert(cstr_equal(s1, NULL) == false);
    assert(cstr_equal(s2, s3) == false);
    assert(cstr_equal(s3, s3) == true);
    assert(cstr_equal(s3, s4) == false);
    cstr_erase(s4, 0, 3);
    cstr_erase(s4, 110, 3);
    cstr_erase(s4, s4->len, 0);
    cstr_erase(s4, 0, 100);
    assert(strcmp(s4->str, "1") == 0);

    cstr_free(s1, true);
    cstr_free(s2, true);
    cstr_free(s3, true);
    cstr_free(s4, true);
}
Example #8
0
static void test_basic(void)
{
	cstring *s = cstr_new("foo");
	assert(s != NULL);
	assert(s->len == 3);
	assert(strcmp(s->str, "foo") == 0);

	cstr_free(s, true);

	s = cstr_new_sz(200);
	assert(s != NULL);
	assert(s->alloc > 200);
	assert(s->len == 0);

	cstr_free(s, true);

	s = cstr_new_buf("foo", 2);
	assert(s != NULL);
	assert(s->len == 2);
	assert(strcmp(s->str, "fo") == 0);

	cstr_free(s, true);

	s = cstr_new(NULL);
	assert(s != NULL);
	cstr_append_buf(s, "f", 1);
	cstr_append_buf(s, "o", 1);
	cstr_append_buf(s, "o", 1);
	assert(s->len == 3);
	assert(strcmp(s->str, "foo") == 0);

	cstr_free(s, true);

	s = cstr_new("foo");
	assert(s != NULL);

	cstr_resize(s, 2);
	assert(s->len == 2);
	assert(strcmp(s->str, "fo") == 0);

	cstr_resize(s, 4);
	assert(s->len == 4);
	assert(s->alloc > 4);
	memcpy(s->str, "food", 4);
	assert(strcmp(s->str, "food") == 0);

	cstr_free(s, true);

	cstring *s1 = cstr_new("foo");
	cstring *s2 = cstr_new("foo");
	cstring *s3 = cstr_new("bar");

	assert(cstr_equal(s1, s2) == true);
	assert(cstr_equal(s1, s3) == false);
	assert(cstr_equal(s2, s3) == false);
	assert(cstr_equal(s3, s3) == true);

	cstr_free(s1, true);
	cstr_free(s2, true);
	cstr_free(s3, true);
}
Example #9
0
File: cstr.c Project: libbtc/libbtc
cstring* cstr_new_cstr(cstring* copy_str)
{
    return cstr_new_buf(copy_str->str, copy_str->len);
}