void magma_scopy( magma_int_t n, const float *dx, magma_int_t incx, float *dy, magma_int_t incy ) { cublasScopy( n, dx, incx, dy, incy ); }
CAMLprim value spoc_cublasScopy (value n, value x, value incx, value y, value incy, value dev){ CAMLparam5(n,x,incx, y, incy); CAMLxparam1(dev); CAMLlocal3(dev_vec_array, dev_vec, gi); int id; CUdeviceptr d_A; CUdeviceptr d_B; GET_VEC(x, d_A); GET_VEC(y, d_B); CUBLAS_GET_CONTEXT; cublasScopy(Int_val(n), (float*)d_A, Int_val(incx), (float*)d_B, Int_val(incy)); CUBLAS_CHECK_CALL(cublasGetError()); CUDA_RESTORE_CONTEXT; CAMLreturn(Val_unit); }
int main(int argc, char **argv) { int N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; const int max_iter = 10000; float *x; float *rhs; float a, b, na, r0, r1; float dot; float *r, *p, *Ax; int k; float alpha, beta, alpham1; printf("Starting [%s]...\n", sSDKname); // This will pick the best possible CUDA capable device cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); #if defined(__APPLE__) || defined(MACOSX) fprintf(stderr, "Unified Memory not currently supported on OS X\n"); cudaDeviceReset(); exit(EXIT_WAIVED); #endif if (sizeof(void *) != 8) { fprintf(stderr, "Unified Memory requires compiling for a 64-bit system.\n"); cudaDeviceReset(); exit(EXIT_WAIVED); } if (((deviceProp.major << 4) + deviceProp.minor) < 0x30) { fprintf(stderr, "%s requires Compute Capability of SM 3.0 or higher to run.\nexiting...\n", argv[0]); cudaDeviceReset(); exit(EXIT_WAIVED); } // Statistics about the GPU device printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); /* Generate a random tridiagonal symmetric matrix in CSR format */ N = 1048576; nz = (N-2)*3 + 4; cudaMallocManaged((void **)&I, sizeof(int)*(N+1)); cudaMallocManaged((void **)&J, sizeof(int)*nz); cudaMallocManaged((void **)&val, sizeof(float)*nz); genTridiag(I, J, val, N, nz); cudaMallocManaged((void **)&x, sizeof(float)*N); cudaMallocManaged((void **)&rhs, sizeof(float)*N); for (int i = 0; i < N; i++) { rhs[i] = 1.0; x[i] = 0.0; } /* Get handle to the CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Get handle to the CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); checkCudaErrors(cusparseStatus); cusparseMatDescr_t descr = 0; cusparseStatus = cusparseCreateMatDescr(&descr); checkCudaErrors(cusparseStatus); cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO); // temp memory for CG checkCudaErrors(cudaMallocManaged((void **)&r, N*sizeof(float))); checkCudaErrors(cudaMallocManaged((void **)&p, N*sizeof(float))); checkCudaErrors(cudaMallocManaged((void **)&Ax, N*sizeof(float))); cudaDeviceSynchronize(); for (int i=0; i < N; i++) { r[i] = rhs[i]; } alpha = 1.0; alpham1 = -1.0; beta = 0.0; r0 = 0.; cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, val, I, J, x, &beta, Ax); cublasSaxpy(cublasHandle, N, &alpham1, Ax, 1, r, 1); cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1); k = 1; while (r1 > tol*tol && k <= max_iter) { if (k > 1) { b = r1 / r0; cublasStatus = cublasSscal(cublasHandle, N, &b, p, 1); cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, r, 1, p, 1); } else { cublasStatus = cublasScopy(cublasHandle, N, r, 1, p, 1); } cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, val, I, J, p, &beta, Ax); cublasStatus = cublasSdot(cublasHandle, N, p, 1, Ax, 1, &dot); a = r1 / dot; cublasStatus = cublasSaxpy(cublasHandle, N, &a, p, 1, x, 1); na = -a; cublasStatus = cublasSaxpy(cublasHandle, N, &na, Ax, 1, r, 1); r0 = r1; cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1); cudaThreadSynchronize(); printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } printf("Final residual: %e\n",sqrt(r1)); fprintf(stdout,"&&&& uvm_cg test %s\n", (sqrt(r1) < tol) ? "PASSED" : "FAILED"); float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i+1]; j++) { rsum += val[j]*x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); cudaFree(I); cudaFree(J); cudaFree(val); cudaFree(x); cudaFree(r); cudaFree(p); cudaFree(Ax); cudaDeviceReset(); printf("Test Summary: Error amount = %f, result = %s\n", err, (k <= max_iter) ? "SUCCESS" : "FAILURE"); exit((k <= max_iter) ? EXIT_SUCCESS : EXIT_FAILURE); }
void caffe_gpu_scale<float>(const int n, const float alpha, const float *x, float* y) { CUBLAS_CHECK(cublasScopy(Caffe::cublas_handle(), n, x, 1, y, 1)); CUBLAS_CHECK(cublasSscal(Caffe::cublas_handle(), n, &alpha, y, 1)); }
cublasStatus_t cublasXcopy(int n, const float* x, int incx, float* y, int incy) { return cublasScopy(g_context->cublasHandle, n, x, incx, y, incy); }
void caffe_gpu_copy<float>(const int N, const float* X, float* Y) { CUBLAS_CHECK(cublasScopy(Caffe::cublas_handle(), N, X, 1, Y, 1)); }
/* Solve Ax=b using the conjugate gradient method a) without any preconditioning, b) using an Incomplete Cholesky preconditioner and c) using an ILU0 preconditioner. */ int main(int argc, char **argv) { const int max_iter = 1000; int k, M = 0, N = 0, nz = 0, *I = NULL, *J = NULL; int *d_col, *d_row; int qatest = 0; const float tol = 1e-12f; float *x, *rhs; float r0, r1, alpha, beta; float *d_val, *d_x; float *d_zm1, *d_zm2, *d_rm2; float *d_r, *d_p, *d_omega, *d_y; float *val = NULL; float *d_valsILU0; float *valsILU0; float rsum, diff, err = 0.0; float qaerr1, qaerr2 = 0.0; float dot, numerator, denominator, nalpha; const float floatone = 1.0; const float floatzero = 0.0; int nErrors = 0; printf("conjugateGradientPrecond starting...\n"); /* QA testing mode */ if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) { qatest = 1; } /* This will pick the best possible CUDA capable device */ cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); printf("GPU selected Device ID = %d \n", devID); if (devID < 0) { printf("Invalid GPU device %d selected, exiting...\n", devID); exit(EXIT_SUCCESS); } checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); /* Statistics about the GPU device */ printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); int version = (deviceProp.major * 0x10 + deviceProp.minor); if (version < 0x11) { printf("%s: requires a minimum CUDA compute 1.1 capability\n", sSDKname); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_SUCCESS); } /* Generate a random tridiagonal symmetric matrix in CSR (Compressed Sparse Row) format */ M = N = 16384; nz = 5*N-4*(int)sqrt((double)N); I = (int *)malloc(sizeof(int)*(N+1)); // csr row pointers for matrix A J = (int *)malloc(sizeof(int)*nz); // csr column indices for matrix A val = (float *)malloc(sizeof(float)*nz); // csr values for matrix A x = (float *)malloc(sizeof(float)*N); rhs = (float *)malloc(sizeof(float)*N); for (int i = 0; i < N; i++) { rhs[i] = 0.0; // Initialize RHS x[i] = 0.0; // Initial approximation of solution } genLaplace(I, J, val, M, N, nz, rhs); /* Create CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Create CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); checkCudaErrors(cusparseStatus); /* Description of the A matrix*/ cusparseMatDescr_t descr = 0; cusparseStatus = cusparseCreateMatDescr(&descr); checkCudaErrors(cusparseStatus); /* Define the properties of the matrix */ cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO); /* Allocate required memory */ checkCudaErrors(cudaMalloc((void **)&d_col, nz*sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_row, (N+1)*sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_val, nz*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_x, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_y, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_r, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_p, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_omega, N*sizeof(float))); cudaMemcpy(d_col, J, nz*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_row, I, (N+1)*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_val, val, nz*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice); /* Conjugate gradient without preconditioning. ------------------------------------------ Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Section 10.2.6 */ printf("Convergence of conjugate gradient without preconditioning: \n"); k = 0; r0 = 0; cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); while (r1 > tol*tol && k <= max_iter) { k++; if (k == 1) { cublasScopy(cublasHandle, N, d_r, 1, d_p, 1); } else { beta = r1/r0; cublasSscal(cublasHandle, N, &beta, d_p, 1); cublasSaxpy(cublasHandle, N, &floatone, d_r, 1, d_p, 1) ; } cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &floatone, descr, d_val, d_row, d_col, d_p, &floatzero, d_omega); cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &dot); alpha = r1/dot; cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1); nalpha = -alpha; cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1); r0 = r1; cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); } printf(" iteration = %3d, residual = %e \n", k, sqrt(r1)); cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost); /* check result */ err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i+1]; j++) { rsum += val[j]*x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } printf(" Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL"); nErrors += (k > max_iter) ? 1 : 0; qaerr1 = err; if (0) { // output result in matlab-style array int n=(int)sqrt((double)N); printf("a = [ "); for (int iy=0; iy<n; iy++) { for (int ix=0; ix<n; ix++) { printf(" %f ", x[iy*n+ix]); } if (iy == n-1) { printf(" ]"); } printf("\n"); } } /* Preconditioned Conjugate Gradient using ILU. -------------------------------------------- Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Algorithm 10.3.1 */ printf("\nConvergence of conjugate gradient using incomplete LU preconditioning: \n"); int nzILU0 = 2*N-1; valsILU0 = (float *) malloc(nz*sizeof(float)); checkCudaErrors(cudaMalloc((void **)&d_valsILU0, nz*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_zm1, (N)*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_zm2, (N)*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_rm2, (N)*sizeof(float))); /* create the analysis info object for the A matrix */ cusparseSolveAnalysisInfo_t infoA = 0; cusparseStatus = cusparseCreateSolveAnalysisInfo(&infoA); checkCudaErrors(cusparseStatus); /* Perform the analysis for the Non-Transpose case */ cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nz, descr, d_val, d_row, d_col, infoA); checkCudaErrors(cusparseStatus); /* Copy A data to ILU0 vals as input*/ cudaMemcpy(d_valsILU0, d_val, nz*sizeof(float), cudaMemcpyDeviceToDevice); /* generate the Incomplete LU factor H for the matrix A using cudsparseScsrilu0 */ cusparseStatus = cusparseScsrilu0(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, descr, d_valsILU0, d_row, d_col, infoA); checkCudaErrors(cusparseStatus); /* Create info objects for the ILU0 preconditioner */ cusparseSolveAnalysisInfo_t info_u; cusparseCreateSolveAnalysisInfo(&info_u); cusparseMatDescr_t descrL = 0; cusparseStatus = cusparseCreateMatDescr(&descrL); cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO); cusparseSetMatFillMode(descrL, CUSPARSE_FILL_MODE_LOWER); cusparseSetMatDiagType(descrL, CUSPARSE_DIAG_TYPE_UNIT); cusparseMatDescr_t descrU = 0; cusparseStatus = cusparseCreateMatDescr(&descrU); cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO); cusparseSetMatFillMode(descrU, CUSPARSE_FILL_MODE_UPPER); cusparseSetMatDiagType(descrU, CUSPARSE_DIAG_TYPE_NON_UNIT); cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nz, descrU, d_val, d_row, d_col, info_u); /* reset the initial guess of the solution to zero */ for (int i = 0; i < N; i++) { x[i] = 0.0; } checkCudaErrors(cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice)); k = 0; cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); while (r1 > tol*tol && k <= max_iter) { // Forward Solve, we can re-use infoA since the sparsity pattern of A matches that of L cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrL, d_valsILU0, d_row, d_col, infoA, d_r, d_y); checkCudaErrors(cusparseStatus); // Back Substitution cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrU, d_valsILU0, d_row, d_col, info_u, d_y, d_zm1); checkCudaErrors(cusparseStatus); k++; if (k == 1) { cublasScopy(cublasHandle, N, d_zm1, 1, d_p, 1); } else { cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator); cublasSdot(cublasHandle, N, d_rm2, 1, d_zm2, 1, &denominator); beta = numerator/denominator; cublasSscal(cublasHandle, N, &beta, d_p, 1); cublasSaxpy(cublasHandle, N, &floatone, d_zm1, 1, d_p, 1) ; } cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nzILU0, &floatone, descrU, d_val, d_row, d_col, d_p, &floatzero, d_omega); cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator); cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &denominator); alpha = numerator / denominator; cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1); cublasScopy(cublasHandle, N, d_r, 1, d_rm2, 1); cublasScopy(cublasHandle, N, d_zm1, 1, d_zm2, 1); nalpha = -alpha; cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1); cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); } printf(" iteration = %3d, residual = %e \n", k, sqrt(r1)); cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost); /* check result */ err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i+1]; j++) { rsum += val[j]*x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } printf(" Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL"); nErrors += (k > max_iter) ? 1 : 0; qaerr2 = err; /* Destroy parameters */ cusparseDestroySolveAnalysisInfo(infoA); cusparseDestroySolveAnalysisInfo(info_u); /* Destroy contexts */ cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); /* Free device memory */ free(I); free(J); free(val); free(x); free(rhs); free(valsILU0); cudaFree(d_col); cudaFree(d_row); cudaFree(d_val); cudaFree(d_x); cudaFree(d_y); cudaFree(d_r); cudaFree(d_p); cudaFree(d_omega); cudaFree(d_valsILU0); cudaFree(d_zm1); cudaFree(d_zm2); cudaFree(d_rm2); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); printf(" Test Summary:\n"); printf(" Counted total of %d errors\n", nErrors); printf(" qaerr1 = %f qaerr2 = %f\n\n", fabs(qaerr1), fabs(qaerr2)); exit((nErrors == 0 &&fabs(qaerr1)<1e-5 && fabs(qaerr2) < 1e-5 ? EXIT_SUCCESS : EXIT_FAILURE)); }
void CQuadraticPath::cudaSolver(float* A, int* rowindex, int* columns,int N,int nz,float*Bx, float*X) { const int max_iter = 10000; const float tol = 1e-12f; float r0, r1, alpha, beta; int *d_col, *d_row; float *d_val, *d_x; float *d_r, *d_p, *d_omega; const float floatone = 1.0; const float floatzero = 0.0; float dot, nalpha; /* Create CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Create CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); checkCudaErrors(cusparseStatus); /* Description of the A matrix*/ cusparseMatDescr_t descr = 0; cusparseStatus = cusparseCreateMatDescr(&descr); checkCudaErrors(cusparseStatus); /* Define the properties of the matrix */ cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO); /* Allocate required memory */ checkCudaErrors(cudaMalloc((void **)&d_col, nz*sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_row, (N+1)*sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_val, nz*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_x, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_r, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_p, N*sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_omega, N*sizeof(float))); cudaMemcpy(d_col, columns, nz*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_row, rowindex, (N+1)*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_val, A, nz*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_x, X, N*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_r, Bx, N*sizeof(float), cudaMemcpyHostToDevice); /* Conjugate gradient without preconditioning. ------------------------------------------ Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Section 10.2.6 */ int k = 0; r0 = 0; cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); while (r1 > tol*tol && k <= max_iter) { k++; if (k == 1) { cublasScopy(cublasHandle, N, d_r, 1, d_p, 1); } else { beta = r1/r0; cublasSscal(cublasHandle, N, &beta, d_p, 1); cublasSaxpy(cublasHandle, N, &floatone, d_r, 1, d_p, 1) ; } cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &floatone, descr, d_val, d_row, d_col, d_p, &floatzero, d_omega); cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &dot); alpha = r1/dot; cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1); nalpha = -alpha; cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1); r0 = r1; cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); } cudaMemcpy(X, d_x, N*sizeof(float), cudaMemcpyDeviceToHost); cudaFree(d_col); cudaFree(d_row); cudaFree(d_val); cudaFree(d_x); cudaFree(d_r); cudaFree(d_p); cudaFree(d_omega); }
// // Overloaded function for dispatching to // * CUBLAS backend, and // * float value-type. // inline void copy( const int n, const float* x, const int incx, float* y, const int incy ) { cublasScopy( n, x, incx, y, incy ); }
int main(int argc, char **argv) { int M = 0, N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; const int max_iter = 10000; float *x; float *rhs; float a, b, na, r0, r1; int *d_col, *d_row; float *d_val, *d_x, dot; float *d_r, *d_p, *d_Ax; int k; float alpha, beta, alpham1; shrQAStart(argc, argv); // This will pick the best possible CUDA capable device cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); if (devID < 0) { printf("exiting...\n"); shrQAFinishExit(argc, (const char **)argv, QA_PASSED); exit(0); } checkCudaErrors( cudaGetDeviceProperties(&deviceProp, devID) ); // Statistics about the GPU device printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); int version = (deviceProp.major * 0x10 + deviceProp.minor); if(version < 0x11) { printf("%s: requires a minimum CUDA compute 1.1 capability\n", sSDKname); cudaDeviceReset(); shrQAFinishExit(argc, (const char **)argv, QA_PASSED); } /* Generate a random tridiagonal symmetric matrix in CSR format */ M = N = 1048576; nz = (N-2)*3 + 4; I = (int*)malloc(sizeof(int)*(N+1)); J = (int*)malloc(sizeof(int)*nz); val = (float*)malloc(sizeof(float)*nz); genTridiag(I, J, val, N, nz); x = (float*)malloc(sizeof(float)*N); rhs = (float*)malloc(sizeof(float)*N); for (int i = 0; i < N; i++) { rhs[i] = 1.0; x[i] = 0.0; } /* Get handle to the CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); if ( checkCublasStatus (cublasStatus, "!!!! CUBLAS initialization error\n") ) return EXIT_FAILURE; /* Get handle to the CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); if ( checkCusparseStatus (cusparseStatus, "!!!! CUSPARSE initialization error\n") ) return EXIT_FAILURE; cusparseMatDescr_t descr = 0; cusparseStatus = cusparseCreateMatDescr(&descr); if ( checkCusparseStatus (cusparseStatus, "!!!! CUSPARSE cusparseCreateMatDescr error\n") ) return EXIT_FAILURE; cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO); checkCudaErrors( cudaMalloc((void**)&d_col, nz*sizeof(int)) ); checkCudaErrors( cudaMalloc((void**)&d_row, (N+1)*sizeof(int)) ); checkCudaErrors( cudaMalloc((void**)&d_val, nz*sizeof(float)) ); checkCudaErrors( cudaMalloc((void**)&d_x, N*sizeof(float)) ); checkCudaErrors( cudaMalloc((void**)&d_r, N*sizeof(float)) ); checkCudaErrors( cudaMalloc((void**)&d_p, N*sizeof(float)) ); checkCudaErrors( cudaMalloc((void**)&d_Ax, N*sizeof(float)) ); cudaMemcpy(d_col, J, nz*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_row, I, (N+1)*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_val, val, nz*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice); alpha = 1.0; alpham1 = -1.0; beta = 0.0; r0 = 0.; cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax); cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1); cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); k = 1; while (r1 > tol*tol && k <= max_iter) { if (k > 1) { b = r1 / r0; cublasStatus = cublasSscal(cublasHandle, N, &b, d_p, 1); cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1); } else { cublasStatus = cublasScopy(cublasHandle, N, d_r, 1, d_p, 1); } cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax); cublasStatus = cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, &dot); a = r1 / dot; cublasStatus = cublasSaxpy(cublasHandle, N, &a, d_p, 1, d_x, 1); na = -a; cublasStatus = cublasSaxpy(cublasHandle, N, &na, d_Ax, 1, d_r, 1); r0 = r1; cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); cudaThreadSynchronize(); printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost); float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i+1]; j++) { rsum += val[j]*x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) err = diff; } cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); free(I); free(J); free(val); free(x); free(rhs); cudaFree(d_col); cudaFree(d_row); cudaFree(d_val); cudaFree(d_x); cudaFree(d_r); cudaFree(d_p); cudaFree(d_Ax); cudaDeviceReset(); printf("Test Summary: Error amount = %f\n", err); shrQAFinishExit(argc, (const char **)argv, (k <= max_iter) ? QA_PASSED : QA_FAILED ); }