Example #1
0
string MCRenderer::response(const IplImage* currentImage)
{
	int key = cvWaitKey(10);
	
	switch(key)
	{
	case 's':
		if(currentImage)
		{
			IplImage *temp = cvCreateImage(cvSize(currentImage->width, currentImage->height), IPL_DEPTH_32F, 3);
			cvConvertScale(currentImage, temp, 1);
			saveImagePFM(savePath, temp);
			cvReleaseImage(&temp);
		}
		break;
	case 'q':
		return "quit";
	}
	return "";
}
Example #2
0
bool optimizeDepthMap()
{	
	cvErode(uImage,uImage,0,2);		//Smoothen the User Map as well
	cvDilate(uImage,uImage,0,2);
	CvScalar depthMean=cvAvg(dImage,uImage);							//Get teh Average Depth Value of the User Pixels
	cvNot(uImage,uImage);												//Invert the user pixels to paint the rest of the image with average user depth									 
	//viewImage(dImage);
	cvSet(dImage,depthMean,uImage);										 
	IplImage* tempImage=cvCreateImage(dSize,IPL_DEPTH_8U,1);
	cvConvertScale(dImage,tempImage,1.0/256);
	cvSmooth(tempImage,tempImage,CV_GAUSSIAN,7);//Perform Gaussian Smoothing, depth map is optimized.
	cvConvert(tempImage,dImage);
	cvScale(dImage,dImage,256);
	cvSet(dImage,cvScalar(0),uImage);	
	//viewImage(dImage);
	//cvSmooth(dImage,dImage,CV_GAUSSIAN,gaussian_m,gaussian_n,gaussian_e);//Perform Gaussian Smoothing, depth map is optimized.
	cvNot(uImage,uImage);
	cvReleaseImage(&tempImage);
	return true;
}
Example #3
0
File: utils.cpp Project: cherip/dct
IplImage *get_gray(const IplImage *img) {
    if (!img) {
        return NULL;    
    }

    IplImage *gray8, *gray32;

    gray32 = cvCreateImage(cvGetSize(img), IPL_DEPTH_32F, 1);
    if (img->nChannels == 1) {
        gray8 = (IplImage *)cvClone(img);
    } else {
        gray8 = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
        cvCvtColor(img, gray8, CV_BGR2GRAY);
    }

    cvConvertScale(gray8, gray32, 1.0 / 255.0, 0);
    cvReleaseImage(&gray8);

    return gray32;
}
Example #4
0
/* Create a camshift tracked object from a region in image. */
TrackedObj* FaceBl0r::create_tracked_object (IplImage* image, CvRect* region) {
  TrackedObj* obj;
  
  //allocate memory for tracked object struct
  if((obj = (TrackedObj *) malloc(sizeof *obj)) != NULL) {
    //create-image: size(w,h), bit depth, channels
    obj->hsv  = cvCreateImage(cvGetSize(image), 8, 3);
    obj->mask = cvCreateImage(cvGetSize(image), 8, 1);
    obj->hue  = cvCreateImage(cvGetSize(image), 8, 1);
    obj->prob = cvCreateImage(cvGetSize(image), 8, 1);

    int hist_bins = 30;           //number of histogram bins
    float hist_range[] = {0,180}; //histogram range
    float* range = hist_range;
    obj->hist = cvCreateHist(1,             //number of hist dimensions
                             &hist_bins,    //array of dimension sizes
                             CV_HIST_ARRAY, //representation format
                             &range,        //array of ranges for bins
                             1);            //uniformity flag
  }
  
  //create a new hue image
  update_hue_image(image, obj);

  float max_val = 0.f;
  
  //create a histogram representation for the face
  cvSetImageROI(obj->hue, *region);
  cvSetImageROI(obj->mask, *region);
  cvCalcHist(&obj->hue, obj->hist, 0, obj->mask);
  cvGetMinMaxHistValue(obj->hist, 0, &max_val, 0, 0 );
  cvConvertScale(obj->hist->bins, obj->hist->bins,
                 max_val ? 255.0/max_val : 0, 0);
  cvResetImageROI(obj->hue);
  cvResetImageROI(obj->mask);
  
  //store the previous face location
  obj->prev_rect = *region;

  return obj;
}
Example #5
0
/**
 * @brief Convierte una imágen RGB a HSV
 * @param bgr La imágen original en RGB
 * @param objFRAME El objeto OpenCL asociado a la imágen RGB usado en el kernel
 * @param context El contexto de dispositivos OpenCL
 * @param kernelHSV El kernel OpenCL que se debe ejecutar para calcular la imágen HSV
 * @param command_queue La cola del dispositivo OpenCL
 * @param work_items El número de unidades de cómputo a usar en el cálculo
 * @return Una nueva imágen ya en HSV de 32-bit con S y V en el rango [0,1] y H en [0,360]
 */
IplImage* bgr2hsv( IplImage *bgr, cl_mem *objFRAME, cl_context *context, cl_kernel *kernelHSV, cl_command_queue *command_queue, size_t work_items ) {
	
	cl_int ret;
	IplImage *bgr32f;
	bgr32f = cvCreateImage( cvGetSize(bgr), IPL_DEPTH_32F, 3 );
	cvConvertScale( bgr, bgr32f, 1.0 / 255.0, 0 );
	ret = clEnqueueWriteBuffer(command_queue[0], objFRAME[0], CL_FALSE, 0, bgr32f->imageSize, bgr32f->imageData, 0, NULL, NULL);

	// Establecemos los argumentos del kernel
	ret = clSetKernelArg(kernelHSV[0], 0, sizeof(cl_mem), (void *)objFRAME);
	ret = clSetKernelArg(kernelHSV[0], 1, sizeof(int), &bgr32f->widthStep);
	ret = clSetKernelArg(kernelHSV[0], 2, sizeof(int), &bgr32f->height);
	ret = clSetKernelArg(kernelHSV[0], 3, sizeof(int), &bgr32f->width);
	
	size_t local = 128;
	size_t global = work_items * local;

	// Ejecutamos el kernel como paralelismo de datos
	ret = clEnqueueNDRangeKernel(command_queue[0], kernelHSV[0], 1, NULL, &global, &local, 0, NULL, NULL);
	return bgr32f;
}
Example #6
0
/**
 * Create Mask from comp buf node
 * @param cbuf
 * @return IplImage of Mask
 */
IplImage* BOCV_Mask_attach(CompBuf* cbuf)
{
    IplImage *mask;
    IplImage *img;
    if(cbuf == NULL)
        return NULL;
    if(cbuf->x>0 && cbuf->y>0 ){
        //Create image from comp buf
    	img = cvCreateImageHeader(cvSize(cbuf->x,cbuf->y),IPL_DEPTH_32F,cbuf->type);
	cvSetData(img,cbuf->rect,cbuf->x * cbuf->type * sizeof(float)); // always 4 byte align.
        
        mask= cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, cbuf->type);
        //Convert to 8 bit unsigned
        cvConvertScale(img, mask,1,0);
            
        return mask;
    }else{
        return NULL;
    }
	
}
Example #7
0
static void
gst_motiondetect_log_image (const IplImage * image,
    const char * debugDirectory, int index, const char * filename)
{
  if (image && debugDirectory) {
    char *filepath;
    asprintf (&filepath, "%s/%05d_%s", debugDirectory, index, filename);

    if (image->depth == IPL_DEPTH_32F) {
      IplImage *scaledImageToLog = cvCreateImage (
          cvSize (image->width, image->height), IPL_DEPTH_8U, 1);
      cvConvertScale (image, scaledImageToLog, 255.0, 0);
      cvSaveImage (filepath, scaledImageToLog, NULL);
      cvReleaseImage (&scaledImageToLog);
    } else {
      cvSaveImage (filepath, image, NULL);
    }

    free (filepath);
  }
}
Example #8
0
void CamShift::CalcHistogram(const ImgBgr& img, const CRect& sel)
{
  selection.x = sel.left;
  selection.y = img.Height()-sel.bottom-1;
  selection.width = sel.Width();
  selection.height = sel.Height();

  cvCopy(ImgIplImage(img), image, 0 );
  cvCvtColor( image, hsv, CV_BGR2HSV );
  cvFlip(hsv,hsv,0);
  //cvSaveImage("hsv.bmp", hsv);
  //cvSaveImage("img.bmp", image);
  int _vmin = vmin, _vmax = vmax;
  cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),
  cvScalar(180,256,MAX(_vmin,_vmax),0), mask );
  cvSplit( hsv, hue, 0, 0, 0 );
  float max_val = 0.f;
  cvSetImageROI(hue, selection );
  cvSetImageROI( mask, selection );
  cvCalcHist( &hue, hist, 0, mask );
  cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );
  cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 );
  cvResetImageROI( hue );
  cvResetImageROI( mask );
  track_window = selection;
//  cvZero( histimg );
//  int bin_w = histimg->width / hdims;
//  for(int i = 0; i < hdims; i++ )
//  {
//    int a = cvGetReal1D(hist->bins,i);
//    int val = cvRound( cvGetReal1D(hist->bins,i)*histimg->height/255 );
//    CvScalar color = hsv2rgb(i*180.f/hdims);
//    cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
//      cvPoint((i+1)*bin_w,histimg->height - val),
//      color, -1, 8, 0 );
//  }
//  cvNamedWindow( "Histogram", 1 );
//  
//  cvShowImage( "Histogram", histimg );
}
Example #9
0
//////////////////////////////////
// startTracking()
//
void startTracking(IplImage * pImg, CvRect * pFaceRect)
{
	float maxVal = 0.f;

	// Make sure internal data structures have been allocated
	if( !pHist ) createTracker(pImg);

	// Create a new hue image
	updateHueImage(pImg);

	// Create a histogram representation for the face
    cvSetImageROI( pHueImg, *pFaceRect );
    cvSetImageROI( pMask,   *pFaceRect );
    cvCalcHist( &pHueImg, pHist, 0, pMask );
    cvGetMinMaxHistValue( pHist, 0, &maxVal, 0, 0 );
    cvConvertScale( pHist->bins, pHist->bins, maxVal? 255.0/maxVal : 0, 0 );
    cvResetImageROI( pHueImg );
    cvResetImageROI( pMask );

	// Store the previous face location
	prevFaceRect = *pFaceRect;
}
Example #10
0
int cvL1QCSolve( CvMat* A, CvMat* B, CvMat* X, double epsilon, double mu, CvTermCriteria lb_term_crit, CvTermCriteria cg_term_crit )
{
	CvMat* AAt = cvCreateMat( A->rows, A->rows, CV_MAT_TYPE(A->type) );
	cvGEMM( A, A, 1, NULL, 0, AAt, CV_GEMM_B_T );
	CvMat* W = cvCreateMat( A->rows, 1, CV_MAT_TYPE(X->type) );
	if ( cvCGSolve( AAt, B, W, cg_term_crit ) > .5 )
	{
		cvReleaseMat( &W );
		cvReleaseMat( &AAt );
		return -1;
	}
	cvGEMM( A, W, 1, NULL, 0, X, CV_GEMM_A_T );
	cvReleaseMat( &W );
	cvReleaseMat( &AAt );

	CvMat* U = cvCreateMat( X->rows, X->cols, CV_MAT_TYPE(X->type) );
	cvAbsDiffS( X, U, cvScalar(0) );
	CvScalar sumAbsX = cvSum( U );
	double minAbsX, maxAbsX;
	cvMinMaxLoc( U, &minAbsX, &maxAbsX );
	cvConvertScale( U, U, .95, maxAbsX * .1 );
	
	double tau = MAX( (2 * X->rows + 1) / sumAbsX.val[0], 1 );

	if ( !(lb_term_crit.type & CV_TERMCRIT_ITER) )
		lb_term_crit.max_iter = ceil( (log(2 * X->rows + 1) - log(lb_term_crit.epsilon) - log(tau)) / log(mu) );

	CvTermCriteria nt_term_crit = cvTermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 50, lb_term_crit.epsilon );
	
	for ( int i = 0; i < lb_term_crit.max_iter; ++i )
	{
		icvL1QCNewton( A, B, X, U, epsilon, tau, nt_term_crit, cg_term_crit );
		tau *= mu;
	}

	cvReleaseMat( &U );

	return 0;
}
void BoatDetecting::startTrackObject(){
		cvInRangeS(hsv, cvScalar(0, smin, MIN(vmin, vmax), 0), cvScalar(180, 256, MAX(vmin, vmax), 0), mask);
	// 10,256,30
	
	cvSplit(hsv, hue, 0, 0, 0);
	if (!isTrackingInitialized){ // 如果跟踪窗口未初始化
		float max_val = 0.f;		
		cvSetImageROI(hue, selection);
		cvSetImageROI(mask, selection);		
		cvCalcHist(&hue, hist, 0, mask);
		cvGetMinMaxHistValue(hist, 0, &max_val, 0, 0);
		cvConvertScale(hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0);
		cvResetImageROI(hue);
		cvResetImageROI(mask);
		trackWindow = selection;
		isTrackingInitialized = true;

	}

	cvCalcBackProject(&hue, backproject, hist);
	//cvShowImage("Hue Channel",backproject);
	
	cvAnd(backproject, mask, backproject, 0);
	
	//if (trackWindow.x + trackWindow.width/2< allfWidth &&trackWindow.y + trackWindow.height/2< allfHeight &&trackWindow.x>0)
	if (trackWindow.x + trackWindow.width< allfWidth &&trackWindow.y + trackWindow.height< allfHeight &&trackWindow.x>0)
		cvCamShift(backproject, trackWindow, cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 1), &trackComp, 0);//初始化跟踪窗口以后直接用trackWindow做跟踪,每帧都会更新
	

	//if (trackComp.rect.width<90 && trackComp.rect.y<200){
	//	trackWindow = trackComp.rect;
	//}
	//if (trackComp.rect.y>200)
	//{
	//	trackWindow = trackComp.rect;
	//}
	trackWindow = trackComp.rect;
	
}
Example #12
0
/*
Converts an image to 32-bit grayscale
@param img a 3-channel 8-bit color (BGR) or 8-bit gray image
@return Returns a 32-bit grayscale image
*/
static IplImage* convert_to_gray32( IplImage* img )
{
	IplImage* gray8, * gray32;

    gray32 = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 );//创建32位单通道图像

    //首先将原图转换为8位单通道图像
    if( img->nChannels == 1 )//若原图本身就是单通道,直接克隆原图
		gray8 = cvClone( img );
    else//若原图是3通道图像
	{
        gray8 = cvCreateImage( cvGetSize(img), IPL_DEPTH_8U, 1 );//创建8位单通道图像
        cvCvtColor( img, gray8, CV_BGR2GRAY );//将原图转换为8为单通道图像
	}

    //然后将8为单通道图像gray8转换为32位单通道图像,并进行归一化处理(除以255)
	cvConvertScale( gray8, gray32, 1.0 / 255.0, 0 );

    cvReleaseImage( &gray8 );//释放临时图像

    return gray32;//返回32位单通道图像
}
Example #13
0
void renderChainsWithBoxes(IplImage * SWTImage,
		std::vector<std::vector<Point2d> > & components,
		std::vector<Chain> & chains,
		std::vector<std::pair<Point2d, Point2d> > & compBB,
		std::vector<std::pair<CvPoint, CvPoint> > & bb,
		IplImage * output) {
	// keep track of included components
	std::vector<bool> included;
	included.reserve(components.size());
	for (unsigned int i = 0; i != components.size(); i++) {
		included.push_back(false);
	}
	for (std::vector<Chain>::iterator it = chains.begin(); it != chains.end();
			it++) {
		for (std::vector<int>::iterator cit = it->components.begin();
				cit != it->components.end(); cit++) {
			included[*cit] = true;
		}
	}
	std::vector<std::vector<Point2d> > componentsRed;
	for (unsigned int i = 0; i != components.size(); i++) {
		if (included[i]) {
			componentsRed.push_back(components[i]);
		}
	}
	IplImage * outTemp = cvCreateImage(cvGetSize(output), IPL_DEPTH_32F, 1);

	LOGL(LOG_CHAINS, componentsRed.size() << " components after chaining");

	renderComponents(SWTImage, componentsRed, outTemp);

	bb = findBoundingBoxes(chains, compBB, outTemp);

	IplImage * out = cvCreateImage(cvGetSize(output), IPL_DEPTH_8U, 1);
	cvConvertScale(outTemp, out, 255, 0);
	cvCvtColor(out, output, CV_GRAY2RGB);
	cvReleaseImage(&out);
	cvReleaseImage(&outTemp);
}
Example #14
0
//------------------------------------------------------------------------------
// Color Similarity Matrix Calculation
//------------------------------------------------------------------------------
CvMat *colorsim(int nbins, double sigma) {

	CvMat *xc=cvCreateMat(1,nbins, CV_32FC1);
	CvMat *yr=cvCreateMat(nbins,1, CV_32FC1);

	CvMat *x=cvCreateMat(nbins,nbins, CV_32FC1);
	CvMat *y=cvCreateMat(nbins,nbins, CV_32FC1);
	CvMat *m=cvCreateMat(x->rows,x->rows, CV_32FC1);


	// Set x,y directions 
	for (int j=0;j<nbins;j++) {
		cvSetReal2D(xc,0,j,(j+1-0.5)/nbins);
		cvSetReal2D(yr,j,0,(j+1-0.5)/nbins);
	}

	// Set u,v, meshgrids
	for (int i=0;i<x->rows;i++) {
		cvRepeat(xc,x);
		cvRepeat(yr,y);
	}

	CvMat *sub = cvCreateMat(x->rows,y->cols,CV_32FC1);
	cvSub(x,y,sub);
	cvAbs(sub,sub);
	cvMul(sub,sub,sub);
	cvConvertScale(sub,sub,-1.0/(2*sigma*sigma));
	cvExp(sub,sub);
	cvSubRS(sub,cvScalar(1.0),m);

	cvReleaseMat(&xc);
	cvReleaseMat(&yr);
	cvReleaseMat(&x);
	cvReleaseMat(&y);
	cvReleaseMat(&sub);

	return m;
}
Example #15
0
//============================================================================
void AAM_IC::InverseCompose(const CvMat* dpq, const CvMat* s, CvMat* NewS)
{
	// Firstly: Estimate the corresponding changes to the base mesh
	cvConvertScale(dpq, __inv_pq, -1);
	__shape.CalcShape(__inv_pq, __update_s0);	// __update_s0 = N.W(s0, -delta_p, -delta_q)

	//Secondly: Composing the Incremental Warp with the Current Warp Estimate.
	double *S0 = __update_s0->data.db;
	double *S = s->data.db;
	double *SEst = NewS->data.db;
	double x, y, xw, yw;
	int k, tri_idx;
	int v1, v2, v3;
	const std::vector<std::vector<int> >& tri = __paw.__tri;
	const std::vector<std::vector<int> >& vtri = __paw.__vtri;

	for(int i = 0; i < __shape.nPoints(); i++)
	{
		x = 0.0;	y = 0.0;
		k = 0;
		//The only problem with this approach is which triangle do we use?
		//In general there will be several triangles that share the i-th vertex.
		for(k = 0; k < vtri[i].size(); k++)// see Figure (11)
		{
			tri_idx = vtri[i][k];
			v1 = tri[tri_idx][0];
			v2 = tri[tri_idx][1];
			v3 = tri[tri_idx][2];

			AAM_PAW::Warp(S0[2*i],S0[2*i+1],
				__sMean[v1].x, __sMean[v1].y,__sMean[v2].x, __sMean[v2].y,__sMean[v3].x, __sMean[v3].y,
					xw, yw,	S[2*v1], S[2*v1+1], S[2*v2], S[2*v2+1], S[2*v3], S[2*v3+1]);
			x += xw;		y += yw;
		}
		// average the result so as to smooth the warp at each vertex
		SEst[2*i] = x/k;		SEst[2*i+1] = y/k;
	}
}
Example #16
0
File: cd.c Project: j0sh/thesis
static IplImage* splat(int *coeffs, CvSize size, int *plane_coeffs)
{
    IplImage *g = cvCreateImage(size, IPL_DEPTH_16S, 1);
    IplImage *b = cvCreateImage(size, IPL_DEPTH_16S, 1);
    IplImage *r = cvCreateImage(size, IPL_DEPTH_16S, 1);
    IplImage *rgb = cvCreateImage(size, IPL_DEPTH_16S, 3);
    IplImage *img = cvCreateImage(size, IPL_DEPTH_8U, 3);
    IplImage *trans = cvCreateImage(size, IPL_DEPTH_16S, 1);
    int dim = plane_coeffs[0] + plane_coeffs[1] + plane_coeffs[2];
    unsigned *order_p0 = build_path(plane_coeffs[0], KERNS);
    unsigned *order_p1 = build_path(plane_coeffs[1], KERNS);
    unsigned *order_p2 = build_path(plane_coeffs[2], KERNS);

    memset(trans->imageData, 0, trans->imageSize);
    dequantize(trans, plane_coeffs[0], order_p0, KERNS, coeffs, dim);
    iwht2d(trans, g);
    memset(trans->imageData, 0, trans->imageSize);
    dequantize(trans, plane_coeffs[1], order_p1, KERNS,
        coeffs+plane_coeffs[0], dim);
    iwht2d(trans, b);
    memset(trans->imageData, 0, trans->imageSize);
    dequantize(trans, plane_coeffs[2], order_p2, KERNS,
        coeffs+plane_coeffs[0]+plane_coeffs[1], dim);
    iwht2d(trans, r);

    cvMerge(g, b, r, NULL, rgb);
    cvConvertScale(rgb, img, 1, 0);

    cvReleaseImage(&g);
    cvReleaseImage(&b);
    cvReleaseImage(&r);
    cvReleaseImage(&rgb);
    cvReleaseImage(&trans);
    free(order_p0);
    free(order_p1);
    free(order_p2);
    return img;
}
DMZ_INTERNAL void prepare_image_for_cat(IplImage *image, IplImage *as_float, CharacterRectListIterator rect) {
  // Input image: IPL_DEPTH_8U [0 - 255]
  // Data for models: IPL_DEPTH_32F [0.0 - 1.0]
  
  cvSetImageROI(image, cvRect(rect->left, rect->top, kTrimmedCharacterImageWidth, kTrimmedCharacterImageHeight));
  
  // TODO: optimize this a lot!
  
  // Gradient
  IplImage *filtered_image = cvCreateImage(cvSize(kTrimmedCharacterImageWidth, kTrimmedCharacterImageHeight), IPL_DEPTH_8U, 1);
  //llcv_morph_grad3_2d_cross_u8(image, filtered_image);
  IplConvKernel *kernel = cvCreateStructuringElementEx(3, 3, 1, 1, CV_SHAPE_CROSS, NULL);
  cvMorphologyEx(image, filtered_image, NULL, kernel, CV_MOP_GRADIENT, 1);
  cvReleaseStructuringElement(&kernel);
  
  // Equalize
  llcv_equalize_hist(filtered_image, filtered_image);
  
  // Bilateral filter
  int aperture = 3;
  double space_sigma = (aperture / 2.0 - 1) * 0.3 + 0.8;
  double color_sigma = (aperture - 1) / 3.0;
  IplImage *smoothed_image = cvCreateImage(cvSize(kTrimmedCharacterImageWidth, kTrimmedCharacterImageHeight), IPL_DEPTH_8U, 1);
  cvSmooth(filtered_image, smoothed_image, CV_BILATERAL, aperture, aperture, space_sigma, color_sigma);
  
  // Convert to float
  cvConvertScale(smoothed_image, as_float, 1.0f / 255.0f, 0);
  
  cvReleaseImage(&smoothed_image);
  cvReleaseImage(&filtered_image);
  
  cvResetImageROI(image);

#if DEBUG_EXPIRY_CATEGORIZATION_PERFORMANCE
  dmz_debug_timer_print("prepare image", 2);
#endif
}
int main( int argc, char** argv )
{
  IplImage* hsv_img;
  IplImage** hsv_ref_imgs;
  IplImage* l32f, * l;
  histogram* ref_histo;
  double max;
  int i;

  arg_parse( argc, argv );

  /* compute HSV histogram over all reference image */
  hsv_img = bgr2hsv( in_img );
  hsv_ref_imgs = (IplImage**)malloc( num_ref_imgs * sizeof( IplImage* ) );
  for( i = 0; i < num_ref_imgs; i++ )
    hsv_ref_imgs[i] = bgr2hsv( ref_imgs[i] );
  ref_histo = calc_histogram( hsv_ref_imgs, num_ref_imgs );
  normalize_histogram( ref_histo );

  /* compute likelihood at every pixel in input image */
  fprintf( stderr, "Computing likelihood... " );
  fflush( stderr );
  l32f = likelihood_image( hsv_img, ref_imgs[0]->width,
			   ref_imgs[0]->height, ref_histo );
  fprintf( stderr, "done\n");

  /* convert likelihood image to uchar and display */
  cvMinMaxLoc( l32f, NULL, &max, NULL, NULL, NULL );
  l = cvCreateImage( cvGetSize( l32f ), IPL_DEPTH_8U, 1 );
  cvConvertScale( l32f, l, 255.0 / max, 0 );
  cvNamedWindow( "likelihood", 1 );
  cvShowImage( "likelihood", l );
  cvNamedWindow( "image", 1 );
  cvShowImage( "image", in_img );
  cvWaitKey(0);
}
void CamShift::Track(IplImage *frame, CvRect &selection, bool calc_hist)
{
	int i, bin_w, c;

	cvCvtColor( frame, _hsv, CV_BGR2HSV );

	cvInRangeS( _hsv, cvScalar(0,_smin,MIN(_vmin,_vmax),0),
		cvScalar(180,256,MAX(_vmin,_vmax),0), _mask );
	cvSplit( _hsv, _hue, 0, 0, 0 );

	if(calc_hist)
	{
		float max_val = 0.f;
		cvSetImageROI( _hue, selection );
		cvSetImageROI( _mask, selection );
		cvCalcHist( &_hue, _hist, 0, _mask );
		cvGetMinMaxHistValue( _hist, 0, &max_val, 0, 0 );
		cvConvertScale( _hist->bins, _hist->bins, max_val ? 255. / max_val : 0., 0 );
		cvResetImageROI( _hue );
		cvResetImageROI( _mask );
		_track_window = selection; 
	}

	cvCalcBackProject( &_hue, _backproject, _hist );
	cvAnd( _backproject, _mask, _backproject, 0 );
	cvCamShift( _backproject, _track_window,
		cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ),
		&_track_comp, &_track_box );
	_track_window = _track_comp.rect;

	if( frame->origin )
		_track_box.angle = -_track_box.angle;

	selection = cvRect(_track_box.center.x-_track_box.size.width/2, _track_box.center.y-_track_box.size.height/2,
		selection.width, selection.height);
}
Example #20
0
static IplImage*
get_convolution (const IplImage *image,
                 const IplImage *filter)
{
  CvSize dft_size;
  IplImage *reversed_image, *reversed_filter;
  IplImage *dft_image, *dft_filter, *dft_res;
  IplImage *res;

  dft_size.height = cvGetOptimalDFTSize(image->height + filter->height - 1);
  dft_size.width = cvGetOptimalDFTSize(image->width + filter->width - 1);

  res = cvCreateImage(cvSize(image->width,
                             image->height),
                      IPL_DEPTH_32F,
                      N_CHANNELS_GRAY);
  reversed_image = cvCreateImage(cvGetSize(image),
                                 IPL_DEPTH_8U,
                                 N_CHANNELS_GRAY);
  reversed_filter = cvCreateImage(cvGetSize(filter),
                                  IPL_DEPTH_8U,
                                  N_CHANNELS_GRAY);

  cvNot(image, reversed_image);
  cvNot(filter, reversed_filter);

  dft_image = cvCreateImage(dft_size,
                            IPL_DEPTH_32F,
                            N_CHANNELS_GRAY);
  cvSet(dft_image, cvScalar(0, 0, 0, 0), NULL);
  dft_filter = cvCreateImage(dft_size,
                             IPL_DEPTH_32F,
                             N_CHANNELS_GRAY);
  cvSet(dft_filter, cvScalar(0, 0, 0, 0), NULL);

  cvSetImageROI(dft_image, cvRect(0, 0,
                                  reversed_image->width,
                                  reversed_image->height));
  cvSetImageROI(dft_filter, cvRect(0, 0,
                                   reversed_filter->width,
                                   reversed_filter->height));
  double scaling_factor = 1.0/255;
  cvConvertScale(reversed_image, dft_image, scaling_factor, 0);
  cvConvertScale(reversed_filter, dft_filter, scaling_factor, 0);
  cvResetImageROI(dft_image);
  cvResetImageROI(dft_filter);


  cvDFT(dft_image, dft_image, CV_DXT_FORWARD, image->height);
  cvDFT(dft_filter, dft_filter, CV_DXT_FORWARD, filter->height);

  dft_res = cvCreateImage(dft_size,
                          IPL_DEPTH_32F,
                          N_CHANNELS_GRAY);

  cvMulSpectrums(dft_image, dft_filter, dft_res, 0);

  cvDFT(dft_res, dft_res, CV_DXT_INVERSE, res->height);
  cvSetImageROI(dft_res, cvRect(0, 0, res->width, res->height));
  cvCopy(dft_res, res, NULL);
  cvResetImageROI(dft_res);

  cvReleaseImage(&reversed_filter);
  cvReleaseImage(&reversed_image);
  cvReleaseImage(&dft_image);
  cvReleaseImage(&dft_filter);
  cvReleaseImage(&dft_res);

  return res;
}
void
icvCrossCorr( const CvArr* _img, const CvArr* _templ, CvArr* _corr,
              CvPoint anchor, double delta, int borderType )
{
    // disable OpenMP in the case of Visual Studio,
    // otherwise the performance drops significantly
#undef USE_OPENMP
#if !defined _MSC_VER || defined CV_ICC
    #define USE_OPENMP 1
#endif

    const double block_scale = 4.5;
    const int min_block_size = 256;
    cv::Ptr<CvMat> dft_img[CV_MAX_THREADS];
    cv::Ptr<CvMat> dft_templ;
    std::vector<uchar> buf[CV_MAX_THREADS];
    int k, num_threads = 0;
    
    CvMat istub, *img = (CvMat*)_img;
    CvMat tstub, *templ = (CvMat*)_templ;
    CvMat cstub, *corr = (CvMat*)_corr;
    CvSize dftsize, blocksize;
    int depth, templ_depth, corr_depth, max_depth = CV_32F,
        cn, templ_cn, corr_cn, buf_size = 0,
        tile_count_x, tile_count_y, tile_count;

    img = cvGetMat( img, &istub );
    templ = cvGetMat( templ, &tstub );
    corr = cvGetMat( corr, &cstub );

    if( CV_MAT_DEPTH( img->type ) != CV_8U &&
        CV_MAT_DEPTH( img->type ) != CV_16U &&
        CV_MAT_DEPTH( img->type ) != CV_32F &&
        CV_MAT_DEPTH( img->type ) != CV_64F )
        CV_Error( CV_StsUnsupportedFormat,
        "The function supports only 8u, 16u and 32f data types" );

    if( !CV_ARE_DEPTHS_EQ( img, templ ) && CV_MAT_DEPTH( templ->type ) != CV_32F )
        CV_Error( CV_StsUnsupportedFormat,
        "Template (kernel) must be of the same depth as the input image, or be 32f" );
    
    if( !CV_ARE_DEPTHS_EQ( img, corr ) && CV_MAT_DEPTH( corr->type ) != CV_32F &&
        CV_MAT_DEPTH( corr->type ) != CV_64F )
        CV_Error( CV_StsUnsupportedFormat,
        "The output image must have the same depth as the input image, or be 32f/64f" );

    if( (!CV_ARE_CNS_EQ( img, corr ) || CV_MAT_CN(templ->type) > 1) &&
        (CV_MAT_CN( corr->type ) > 1 || !CV_ARE_CNS_EQ( img, templ)) )
        CV_Error( CV_StsUnsupportedFormat,
        "The output must have the same number of channels as the input (when the template has 1 channel), "
        "or the output must have 1 channel when the input and the template have the same number of channels" );

    depth = CV_MAT_DEPTH(img->type);
    cn = CV_MAT_CN(img->type);
    templ_depth = CV_MAT_DEPTH(templ->type);
    templ_cn = CV_MAT_CN(templ->type);
    corr_depth = CV_MAT_DEPTH(corr->type);
    corr_cn = CV_MAT_CN(corr->type);

    CV_Assert( corr_cn == 1 || delta == 0 );

    max_depth = MAX( max_depth, templ_depth );
    max_depth = MAX( max_depth, depth );
    max_depth = MAX( max_depth, corr_depth );
    if( depth > CV_8U )
        max_depth = CV_64F;

    /*if( img->cols < templ->cols || img->rows < templ->rows )
        CV_Error( CV_StsUnmatchedSizes,
        "Such a combination of image and template/filter size is not supported" );*/

    if( corr->rows > img->rows + templ->rows - 1 ||
        corr->cols > img->cols + templ->cols - 1 )
        CV_Error( CV_StsUnmatchedSizes,
        "output image should not be greater than (W + w - 1)x(H + h - 1)" );

    blocksize.width = cvRound(templ->cols*block_scale);
    blocksize.width = MAX( blocksize.width, min_block_size - templ->cols + 1 );
    blocksize.width = MIN( blocksize.width, corr->cols );
    blocksize.height = cvRound(templ->rows*block_scale);
    blocksize.height = MAX( blocksize.height, min_block_size - templ->rows + 1 );
    blocksize.height = MIN( blocksize.height, corr->rows );

    dftsize.width = cvGetOptimalDFTSize(blocksize.width + templ->cols - 1);
    if( dftsize.width == 1 )
        dftsize.width = 2;
    dftsize.height = cvGetOptimalDFTSize(blocksize.height + templ->rows - 1);
    if( dftsize.width <= 0 || dftsize.height <= 0 )
        CV_Error( CV_StsOutOfRange, "the input arrays are too big" );

    // recompute block size
    blocksize.width = dftsize.width - templ->cols + 1;
    blocksize.width = MIN( blocksize.width, corr->cols );
    blocksize.height = dftsize.height - templ->rows + 1;
    blocksize.height = MIN( blocksize.height, corr->rows );

    dft_templ = cvCreateMat( dftsize.height*templ_cn, dftsize.width, max_depth );

#ifdef USE_OPENMP
    num_threads = cvGetNumThreads();
#else
    num_threads = 1;
#endif

    for( k = 0; k < num_threads; k++ )
        dft_img[k] = cvCreateMat( dftsize.height, dftsize.width, max_depth );

    if( templ_cn > 1 && templ_depth != max_depth )
        buf_size = templ->cols*templ->rows*CV_ELEM_SIZE(templ_depth);

    if( cn > 1 && depth != max_depth )
        buf_size = MAX( buf_size, (blocksize.width + templ->cols - 1)*
            (blocksize.height + templ->rows - 1)*CV_ELEM_SIZE(depth));

    if( (corr_cn > 1 || cn > 1) && corr_depth != max_depth )
        buf_size = MAX( buf_size, blocksize.width*blocksize.height*CV_ELEM_SIZE(corr_depth));

    if( buf_size > 0 )
    {
        for( k = 0; k < num_threads; k++ )
            buf[k].resize(buf_size);
    }

    // compute DFT of each template plane
    for( k = 0; k < templ_cn; k++ )
    {
        CvMat dstub, *src, *dst, temp;
        CvMat* planes[] = { 0, 0, 0, 0 };
        int yofs = k*dftsize.height;

        src = templ;
        dst = cvGetSubRect( dft_templ, &dstub, cvRect(0,yofs,templ->cols,templ->rows));
    
        if( templ_cn > 1 )
        {
            planes[k] = templ_depth == max_depth ? dst :
                cvInitMatHeader( &temp, templ->rows, templ->cols, templ_depth, &buf[0][0] );
            cvSplit( templ, planes[0], planes[1], planes[2], planes[3] );
            src = planes[k];
            planes[k] = 0;
        }

        if( dst != src )
            cvConvert( src, dst );

        if( dft_templ->cols > templ->cols )
        {
            cvGetSubRect( dft_templ, dst, cvRect(templ->cols, yofs,
                          dft_templ->cols - templ->cols, templ->rows) );
            cvZero( dst );
        }
        cvGetSubRect( dft_templ, dst, cvRect(0,yofs,dftsize.width,dftsize.height) );
        cvDFT( dst, dst, CV_DXT_FORWARD + CV_DXT_SCALE, templ->rows );
    }

    tile_count_x = (corr->cols + blocksize.width - 1)/blocksize.width;
    tile_count_y = (corr->rows + blocksize.height - 1)/blocksize.height;
    tile_count = tile_count_x*tile_count_y;

#if defined _OPENMP && defined USE_OPENMP
    #pragma omp parallel for num_threads(num_threads) schedule(dynamic)
#endif
    // calculate correlation by blocks
    for( k = 0; k < tile_count; k++ )
    {
#ifdef USE_OPENMP
        int thread_idx = cvGetThreadNum();
#else
        int thread_idx = 0;
#endif
        int x = (k%tile_count_x)*blocksize.width;
        int y = (k/tile_count_x)*blocksize.height;
        int i, yofs;
        CvMat sstub, dstub, *src, *dst, temp;
        CvMat* planes[] = { 0, 0, 0, 0 };
        CvMat* _dft_img = dft_img[thread_idx];
        uchar* _buf = buf_size > 0 ? &buf[thread_idx][0] : 0;
        CvSize csz = { blocksize.width, blocksize.height }, isz;
        int x0 = x - anchor.x, y0 = y - anchor.y;
        int x1 = MAX( 0, x0 ), y1 = MAX( 0, y0 ), x2, y2;
        csz.width = MIN( csz.width, corr->cols - x );
        csz.height = MIN( csz.height, corr->rows - y );
        isz.width = csz.width + templ->cols - 1;
        isz.height = csz.height + templ->rows - 1;
        x2 = MIN( img->cols, x0 + isz.width );
        y2 = MIN( img->rows, y0 + isz.height );
        
        for( i = 0; i < cn; i++ )
        {
            CvMat dstub1, *dst1;
            yofs = i*dftsize.height;

            src = cvGetSubRect( img, &sstub, cvRect(x1,y1,x2-x1,y2-y1) );
            dst = cvGetSubRect( _dft_img, &dstub,
                cvRect(0,0,isz.width,isz.height) );
            dst1 = dst;
            
            if( x2 - x1 < isz.width || y2 - y1 < isz.height )
                dst1 = cvGetSubRect( _dft_img, &dstub1,
                    cvRect( x1 - x0, y1 - y0, x2 - x1, y2 - y1 ));

            if( cn > 1 )
            {
                planes[i] = dst1;
                if( depth != max_depth )
                    planes[i] = cvInitMatHeader( &temp, y2 - y1, x2 - x1, depth, _buf );
                cvSplit( src, planes[0], planes[1], planes[2], planes[3] );
                src = planes[i];
                planes[i] = 0;
            }

            if( dst1 != src )
                cvConvert( src, dst1 );

            if( dst != dst1 )
                cvCopyMakeBorder( dst1, dst, cvPoint(x1 - x0, y1 - y0), borderType );

            if( dftsize.width > isz.width )
            {
                cvGetSubRect( _dft_img, dst, cvRect(isz.width, 0,
                      dftsize.width - isz.width,dftsize.height) );
                cvZero( dst );
            }

            cvDFT( _dft_img, _dft_img, CV_DXT_FORWARD, isz.height );
            cvGetSubRect( dft_templ, dst,
                cvRect(0,(templ_cn>1?yofs:0),dftsize.width,dftsize.height) );

            cvMulSpectrums( _dft_img, dst, _dft_img, CV_DXT_MUL_CONJ );
            cvDFT( _dft_img, _dft_img, CV_DXT_INVERSE, csz.height );

            src = cvGetSubRect( _dft_img, &sstub, cvRect(0,0,csz.width,csz.height) );
            dst = cvGetSubRect( corr, &dstub, cvRect(x,y,csz.width,csz.height) );

            if( corr_cn > 1 )
            {
                planes[i] = src;
                if( corr_depth != max_depth )
                {
                    planes[i] = cvInitMatHeader( &temp, csz.height, csz.width,
                                                 corr_depth, _buf );
                    cvConvertScale( src, planes[i], 1, delta );
                }
                cvMerge( planes[0], planes[1], planes[2], planes[3], dst );
                planes[i] = 0;                    
            }
            else
            {
                if( i == 0 )
                    cvConvertScale( src, dst, 1, delta );
                else
                {
                    if( max_depth > corr_depth )
                    {
                        cvInitMatHeader( &temp, csz.height, csz.width,
                                         corr_depth, _buf );
                        cvConvert( src, &temp );
                        src = &temp;
                    }
                    cvAcc( src, dst );
                }
            }
        }
    }
}
Example #22
0
void run()
{
	int key;
	IplImage *mask = cvCreateImage( cvGetSize(img_gui), 8, 1 );
	IplImage *display = cvCreateImage( cvGetSize(img_gui), 8, 3 );

	IplImage *fgcolor = cvCloneImage( img_gui), *bgcolor = cvCloneImage( img_gui);
	cvSet( fgcolor, cvScalar( 255, 0, 0)), cvSet( bgcolor, cvScalar( 0, 255, 255));

	// gui
	int swmin = _swmin;
	int swmax = std::max( std::max( img_gui->width, img_gui->height) / 8, 1);
	int swstep = std::max( std::min( img_gui->width, img_gui->height) / 100, 1);
	int swdefault = std::min( std::max( std::min( img_gui->width, img_gui->height) / 32, swmin), swmax);

	strokewidth = swdefault;
	
	RenderMsg( display);
	cvNamedWindow( "working space" );
	cvNamedWindow( "trimap" );
	cvShowImage( "working space" , display );
	cvShowImage( "trimap" , usr); 
	
	cvSetMouseCallback( "working space", DrawStroke);
	cvSetMouseCallback( "trimap", DrawStroke);

	while(1)
	{
		key = cvWaitKey(5);
		if(key=='q')
			break;
		else if(key=='w')
		{
			stroketype++;
			stroketype = stroketype % 3;
			printf("%d\n", stroketype);
		}
		else if( key == 'd')	// decrease stroke width
			strokewidth = ( strokewidth - swstep < swmin) ? swmin : strokewidth - swstep;
		else if( key == 'a')	// increase stroke width
			strokewidth = ( strokewidth + swstep > swmax) ? swmax : strokewidth + swstep;
		else if( key == 'u' && flashOnlyImg_gui!=NULL )
		{
			T += T_step;
			FlashMatting::GenerateTrimap( flashOnlyImg_gui, usr, T);
		}
		else if( key == 'i' && flashOnlyImg_gui!=NULL )
		{
			T -= T_step;
			FlashMatting::GenerateTrimap( flashOnlyImg_gui, usr, T);
		}
			

		

		// display
		
		cvCopy( img_gui, display );
		cvCmpS( usr, _strokeColor[_strokebg], mask, CV_CMP_EQ);
		cvOr( img_gui, bgcolor, display, mask);
		cvCmpS( usr, _strokeColor[_strokefg], mask, CV_CMP_EQ);
		cvOr( img_gui, fgcolor, display, mask);
		cvConvertScale( display, display, 0.7);
		//cvCmpS( usr, _strokeColor[_strokeu], mask, CV_CMP_EQ);
		//cvCopy( img_gui, display, mask);
		
		RenderMsg( display);
		cvShowImage( "working space", display);
		cvShowImage( "trimap" , usr);
	}

	cvReleaseImage( &display );
	cvDestroyAllWindows();
}
Example #23
0
QRect WebCamData::detectFace(const char* faceData)
{

    if (d->hasFace) {
        trackFace();
        return QRect();
    }
    if (!d->mCascade) {
        qDebug() << Q_FUNC_INFO << ": " << "Error incorrect Haar classifier cascade";
        return QRect();
    }

    CvRect* rect = 0;
    int faceSize = d->data->width / 5;
    d->mFaceSeq = cvHaarDetectObjects(d->data,
                                      d->mCascade, d->mFaceStore, 1.1, 6,
                                      CV_HAAR_DO_CANNY_PRUNING,
                                      cvSize(faceSize, faceSize));
//   qDebug() << "Number of Faces Detected" << d->mFaceSeq->total;

    if (d->mFaceSeq && d->mFaceSeq->total) {
        rect = (CvRect*) cvGetSeqElem(d->mFaceSeq, 0);
        d->hasFace = true;

        int radius = cvRound((rect->width + rect->height) * 0.25);
        CvPoint center;
        center.x = cvRound(rect->x + rect->width * 0.5);
        center.y = cvRound(rect->y + rect->height * 0.5);

        //qDebug() << "Radius : " << radius << " X: " << center.x << "Y : " << center.y;
        //histogram

        float max = 0.f;
        float range[]  = {0, 180};
        float* ranges = range;
        int bins = 30;
        d->hsvImage = cvCreateImage(cvGetSize(d->data), 8, 3);
        d->hueImage = cvCreateImage(cvGetSize(d->data), 8, 1);
        d->mask = cvCreateImage(cvGetSize(d->data), 8, 1);
        d->prob = cvCreateImage(cvGetSize(d->data), 8, 1);
        d->histogram = cvCreateHist(1, &bins, CV_HIST_ARRAY, &ranges, 1);

        updateHugeImage(d->data);

        cvSetImageROI(d->hueImage, *rect);
        cvSetImageROI(d->mask, *rect);
        cvCalcHist(&d->hueImage, d->histogram, 0, d->mask);
        cvGetMinMaxHistValue(d->histogram, 0, &max, 0, 0);
        cvConvertScale(d->histogram->bins, d->histogram->bins, max ? 255.0 / max : 0, 0);
        cvResetImageROI(d->hueImage);
        cvResetImageROI(d->mask);

        d->faceRect = *rect;

        /*
                      */
    }


    return QRect();

}
Example #24
0
bool photometric_calibration(CalibModel &model, CvCapture *capture, 
			     int nbImages, bool cache)
{

  if (cache) model.map.load();

  const char *win = "BazAR";

  IplImage*gray=0;

  cvNamedWindow(win, CV_WINDOW_AUTOSIZE);
  cvNamedWindow("LightMap", CV_WINDOW_AUTOSIZE);

  IplImage* frame = 0;
  IplImage* display=cvCloneImage(cvQueryFrame(capture));

  int nbHomography =0;
  LightCollector lc(model.map.reflc);
  IplImage *lightmap = cvCreateImage(cvGetSize(model.map.map.getIm()), IPL_DEPTH_8U, 
				     lc.avgChannels);
  while (1)
    {
      // acquire image
      frame = cvQueryFrame( capture );
      /*
	if (frame) cvReleaseImage(&frame);
	frame = cvLoadImage("model.bmp",1);
      */
      if( !frame )
	break;

      // convert it to gray levels, if required
      if (frame->nChannels >1) {
	if( !gray ) 
	  gray = cvCreateImage( cvGetSize(frame), IPL_DEPTH_8U, 1 );
	cvCvtColor(frame, gray, CV_RGB2GRAY);
      } else {
	gray = frame;
      }

      // run the detector
      if (model.detector.detect(gray)) {
	// 2d homography found
	nbHomography++;

	// Computes 3D pose and surface normal
	model.augm.Clear();
	add_detected_homography(model.detector, model.augm);
	model.augm.Accomodate(4, 1e-4);
	CvMat *mat = model.augm.GetObjectToWorld();
	float normal[3];
	for (int j=0;j<3;j++) normal[j] = cvGet2D(mat, j, 2).val[0];
	cvReleaseMat(&mat);

	// average pixels over triangles
	lc.averageImage(frame,model.detector.H);

	// add observations
	if (!model.map.isReady())
	  model.map.addNormal(normal, lc, 0);

	if (!model.map.isReady() && nbHomography >= nbImages) {
	  if (model.map.computeLightParams()) {
	    model.map.save();
	    const float *gain = model.map.getGain(0);
	    const float *bias = model.map.getBias(0);
	    cout << "Gain: " << gain[0] << ", " << gain[1] << ", " << gain[2] << endl;
	    cout << "Bias: " << bias[0] << ", " << bias[1] << ", " << bias[2] << endl;
	  }
	} 
      } 
		
      if (model.map.isReady()) {
	double min, max;
	IplImage *map = model.map.map.getIm();
	cvSetImageCOI(map, 2);
	cvMinMaxLoc(map, &min, &max);
	cvSetImageCOI(map, 0);
	assert(map->nChannels == lightmap->nChannels);
	cvConvertScale(map, lightmap, 128, 0);
	cvShowImage("LightMap", lightmap);
	augment_scene(model, frame, display);
      } else {
	cvCopy(frame,display);
	if (model.detector.object_is_detected)
	  lc.drawGrid(display, model.detector.H);
      }

      cvShowImage(win, display);

      int k=cvWaitKey(10);
      if (k=='q' || k== 27)
	break;
    }

  cvReleaseImage(&lightmap);
  cvReleaseImage(&display);
  if (frame->nChannels > 1)
    cvReleaseImage(&gray);
  return 0;
}
Example #25
0
void StdDCT()
{
	allocateImages();

	if(!cvIm32F) {
		cvIm32Fin = cvCreateImage(cvGetSize(cvImGray), IPL_DEPTH_32F, 1);
		cvIm32F = cvCreateImage(cvGetSize(cvImGray), IPL_DEPTH_32F, 1);
		cvImDCT = cvCreateImage(cvGetSize(cvImGray), IPL_DEPTH_32F, 1);
	}


	cvConvertScale(cvImGray, cvIm32Fin);
	cvCopy(cvIm32Fin, cvIm32F);

	cvDCT(cvIm32F, cvImDCT, CV_DXT_FORWARD);
	/* OUTPUTS
	 *
	 char * LogDCT_outputnames_list[] = {
		"LogDCT",
		"Log DCT Cropped",
		"Log DCT Inv",
		"DCT Inv",
		"Final"};
		*/
	if(StdDCT_output.curitem == 0) // "StdDCT"
	{
		cvConvertScale(cvImDCT, cvImGray, 1.);
	}

	// Reduce low DCT
	float rad = (float)StdDCT_radius / 100.f;
	for(int r  = 0; r<cvImDCT->height; r++)
	{
		float fr = (float)r / (float)cvImDCT->height;
		if(fr > rad)
		{
			float * line = (float *)(cvImDCT->imageData + r*cvImDCT->widthStep);
			for(int c  = 0; c<cvImDCT->width; c++)
			{
				float fc = (float)c / (float)cvImDCT->width;
	//			float dc = fc*fc;
	//			float dr = fr*fr;
				if(fc > rad)
				{
					line[c] = 0;
				}
			}
		}
	}
	if(StdDCT_output.curitem == 1) // "Log DCT Cropped"
	{
		cvConvertScale(cvImDCT, cvImGray, 1.);
	}



	cvDCT(cvImDCT, cvIm32F, CV_DXT_INVERSE);
	if(StdDCT_output.curitem == 2) // "StdDCT Inv"
	{
		cvConvertScale(cvIm32F, cvImGray, 1.);
	}


	cvConvertScale(cvIm32F, cvImDCT, LogDCT_coef);
	if(StdDCT_output.curitem == 3) // "DCT Inv"
	{
		cvConvertScale(cvImDCT, cvImGray, 1.);
	}

	// Substract low pass image from input image
	cvSub(cvIm32Fin, cvImDCT, cvIm32F);
	if(StdDCT_output.curitem == 4) // "DCT Inv - scal"
	{
		cvConvertScale(cvIm32F, cvImGray, 1.);
	}

	cvAddS(cvIm32F, cvScalarAll(LogDCT_add), cvImDCT);
	if(StdDCT_output.curitem == 5) // "Out"
	{
		cvConvertScale(cvImDCT, cvImGray, 1.);
	}

	finishImages();
}
Example #26
0
bool AgentDetector::updateModule()
{
    LockGuard lg(m);

    bool isRefreshed = client.getDepthAndPlayers(depth,players);
    client.getRgb(rgb);

    bool tracked;

    if (handleMultiplePlayers)
        tracked=client.getJoints(joints);
    else
        tracked=client.getJoints(joint, EFAA_KINECT_CLOSEST_PLAYER);
    //cout<<"Tracking value = "<<tracked<<endl;

    if (tracked)
    {
        if (handleMultiplePlayers)
            client.getSkeletonImage(joints,skeletonImage);
        else
        {
            client.getSkeletonImage(joint,skeletonImage);
            joints.clear();
            joints.push_back(joint);
        }
    } 

    client.getPlayersImage(players,playersImage);
    client.getDepthImage(depth,depthToDisplay);

    if (depthPort.getOutputCount()>0)
    {
        depthPort.prepare()=depthToDisplay;
        depthPort.write();
    }

    if (imagePort.getOutputCount()>0)
    {
        imagePort.prepare()=rgb;
        imagePort.write();
    }

    if (playersPort.getOutputCount()>0)
    {
        playersPort.prepare()=playersImage;
        playersPort.write();
    }

    if (skeletonPort.getOutputCount()>0)
    {
        skeletonPort.prepare()=skeletonImage;
        skeletonPort.write();
    }

    if (showImages)
    {        
        cvConvertScale((IplImage*)depthToDisplay.getIplImage(),depthTmp,1.0/255);
        cvCvtColor((IplImage*)rgb.getIplImage(),rgbTmp,CV_BGR2RGB);

        string mode=showMode;
        string submode;
        while (!mode.empty())
        {
            if (showImageParser(mode,submode))
            {            
                if (submode=="rgb")
                    cvShowImage("rgb",rgbTmp);
                else if (submode=="depth")
                    cvShowImage("depth",depthTmp);
                else if (submode=="skeleton")
                    cvShowImage("skeleton",(IplImage*)skeletonImage.getIplImage());
                else if (submode=="players")
                    cvShowImage("players",(IplImage*)playersImage.getIplImage());
                else
                    yError("unrecognized show mode!");
            }
        }

        cvWaitKey(1);
    }

    //Send the players information to the OPC
    //Allow click calibration
    if (!checkCalibration())
    {
        if (AgentDetector::clicked==clicked_left)
        {
            AgentDetector::clicked=idle;

            //Get the clicked point coordinate in Kinect space
            Vector clickedPoint(3);
            cout<<"Processing a click on ("<<AgentDetector::clickX<<" "<<AgentDetector::clickY<<") --> ";
            client.get3DPoint((int)AgentDetector::clickX,(int)AgentDetector::clickY,clickedPoint);
            cout<<clickedPoint.toString(3,3)<<endl;

            Bottle bCond;
            Bottle bObject;
            Bottle bRTObject;

            bObject.addString(EFAA_OPC_ENTITY_TAG);
            bObject.addString("==");
            bObject.addString(EFAA_OPC_ENTITY_OBJECT);

            bRTObject.addString(EFAA_OPC_ENTITY_TAG);
            bRTObject.addString("==");
            bRTObject.addString(EFAA_OPC_ENTITY_RTOBJECT);

            Bottle bPresent;
            bPresent.addString(EFAA_OPC_OBJECT_PRESENT_TAG);
            bPresent.addString("==");
            bPresent.addDouble(1.0);

            bCond.addList()=bObject;
            bCond.addString("&&");
            bCond.addList()=bPresent;
            bCond.addString("||");
            bCond.addList()=bRTObject;
            bCond.addString("&&");
            bCond.addList()=bPresent;
            opc->checkout();
            opc->isVerbose=true;
            list<Entity*> presentObjects=opc->Entities(bCond);
            opc->isVerbose=false;
            
            Object *o=nullptr;
            if (presentObjects.size()==1) {
                o=dynamic_cast<Object*>(presentObjects.front());
            } else {
                for(auto& presentObject : presentObjects) {
                    if(presentObject->name() == "target") {
                        o=dynamic_cast<Object*>(presentObject);
                        break;
                    }
                }
            }
            if(o) {
                Bottle botRPH, botRPHRep;
                botRPH.addString("add");
                botRPH.addString("kinect");
                Bottle &cooKinect=botRPH.addList();
                cooKinect.addDouble(clickedPoint[0]);
                cooKinect.addDouble(clickedPoint[1]);
                cooKinect.addDouble(clickedPoint[2]);

                Bottle &cooiCub=botRPH.addList();
                cooiCub.addDouble(o->m_ego_position[0]);
                cooiCub.addDouble(o->m_ego_position[1]);
                cooiCub.addDouble(o->m_ego_position[2]);
                rfh.write(botRPH,botRPHRep);
                cout<<"Sent to RFH: "<<botRPH.toString().c_str()<<endl;
                cout<<"Got from RFH: "<<botRPHRep.toString().c_str()<<endl;

                pointsCnt++;
            } else {
                yWarning("There should be 1 and only 1 object on the table");
                yWarning("If there is more than one object, the object you want");
                yWarning("to calibrate must be called \"target\"");
            }
        }
        else if (AgentDetector::clicked==clicked_right)
        {
            AgentDetector::clicked=idle;
            if (pointsCnt>=3)
            {
                Bottle calibBottle,calibReply; 
                calibBottle.addString("cal");
                calibBottle.addString("kinect");
                rfh.write(calibBottle,calibReply);
                cout<<"Calibrated ! "<<calibReply.toString().c_str()<<endl;

                calibBottle.clear();
                calibBottle.addString("save");
                rfh.write(calibBottle,calibReply);
                cout<<"Saved to file ! "<<calibReply.toString().c_str()<<endl;
                checkCalibration();
            }
            else
                yWarning("Unable to calibrate with less than 3 points pairs collected");
        }
    }

    if (isRefreshed)
    {
//        yInfo() << " refreshed";
        //////////////////////////////////////////////////////////////////
        //Clear the previous agents
        //for(map<int, Agent*>::iterator pA=identities.begin(); pA!=identities.end() ; pA++)
        //{
        //    pA->second->m_present = 0.0;
        //}  
        //partner->m_present = 0.0;

        // check if last apparition was more than dThreshlodDisaparition ago


        if (tracked)
        {
            //Go through all skeletons
            for(deque<Player>::iterator p=joints.begin(); p!=joints.end(); p++)
            {
                //check if this skeletton is really tracked
                bool reallyTracked = false;
                for(map<string,Joint>::iterator jnt = p->skeleton.begin() ; jnt != p->skeleton.end() ; jnt++)
                {
                    if (jnt->second.x != 0 && jnt->second.y != 0 && jnt->second.z != 0)
                    {
                        reallyTracked = true; break;
                    }
                }
                if (reallyTracked)
                {
                    dSince = (clock() - dTimingLastApparition) / (double) CLOCKS_PER_SEC;
                    //yInfo() << " is REALLY tracked";
                    string playerName = partner_default_name;

                    //If the skeleton is tracked we dont identify
                    if (identities.find(p->ID) != identities.end())
                    {
                        playerName = identities[p->ID];
                    }
                    else
                    {   
                        //Check if we should learn this face
                        if (currentTrainingFace != "")
                        {
                            setIdentity(*p,currentTrainingFace);
                            currentTrainingFace = "";
                        }

                        //if (useFaceRecognition)
                        playerName = getIdentity(*p);
                    }

                    //We interact with OPC only if the calibration is done
                    if (isCalibrated)
                    {
                        //main bottle to be streamed with loc of all agent body part
                        Bottle& bAgentLoc = agentLocOutPort.prepare();
                        bAgentLoc.clear();

                        //Retrieve this player in OPC or create if does not exist
                        opc->checkout();
                        partner = opc->addOrRetrieveEntity<Agent>(partner_default_name);
                        partner->m_present = 1.0;

                        // reset the timing.
                        dTimingLastApparition = clock();
                        
                        if (identities.find(p->ID) == identities.end())
                        {
                            cout<<"Assigning name "<<playerName<<" to skeleton "<<p->ID<<endl;

                            //Agent* specificAgent = opc->addEntity<Agent>(playerName);
                            Agent* specificAgent = opc->addOrRetrieveEntity<Agent>(playerName);
                            if(specificAgent == nullptr) {
                                yError() << "SHIT specificAgent";
                            } else {
                                identities[p->ID] = specificAgent->name();
                                specificAgent->m_present = 1.0;
                                yInfo() << " specific agent is commited";
                                opc->commit(specificAgent);
                                yInfo() << " specific agent is commited done";
                            }
                        }

//                        Relation r(partner->name(),"named",playerName);
//                        opc->addRelation(r,1.0);

//                        cout<<"Commiting : "<<r.toString()<<endl;
                        yarp::os::Bottle &skeleton = outputSkeletonPort.prepare();
                        skeleton.clear();
                        //Convert the skeleton into efaaHelpers body. We loose orientation in the process...
                        for(map<string,Joint>::iterator jnt = p->skeleton.begin() ; jnt != p->skeleton.end() ; jnt++)
                        {
                            Bottle bBodyPartLoc;

                            Vector kPosition(4);
                            kPosition[0] = jnt->second.x;
                            kPosition[1] = jnt->second.y;
                            kPosition[2] = jnt->second.z;
                            kPosition[3] = 1;
                            Vector icubPos = kinect2icub * kPosition;
                            Vector irPos = icubPos.subVector(0,2);

                            if (isMounted)
                            {
                                irPos = transform2IR(irPos);
                                Bottle jntBtl;
                                jntBtl.clear();
                                jntBtl.addString(jnt->first);
                                jntBtl.addDouble(jnt->second.x);
                                jntBtl.addDouble(jnt->second.y);
                                jntBtl.addDouble(jnt->second.z);
                                skeleton.addList() = jntBtl;
                            }

                            if (jnt->first == EFAA_OPC_BODY_PART_TYPE_HEAD)
                            {
                                partner->m_ego_position = irPos;
                            }
                            partner->m_body.m_parts[jnt->first] = irPos;

                            bBodyPartLoc.addString(jnt->first);
                            bBodyPartLoc.addString(irPos.toString());

                            bAgentLoc.addList() = bBodyPartLoc;
                        }

                        agentLocOutPort.write();

                        opc->commit(partner);
//                        cout << skeleton.toString()<< endl;
                        outputSkeletonPort.write();
                        //opc->commit(agent);
                    }
//                    cout<<'1'<<endl;
                }
            }
        }
        else
        {
            if (dSince > dThresholdDisparition)
            {
                opc->checkout();
                partner = opc->addOrRetrieveEntity<Agent>(partner_default_name);
                partner->m_present = 0.0;
                opc->commit(partner);
            }
            else
            {
                //yInfo() << " clock is: " << clock() << "\t last apparition: " << dTimingLastApparition  << "\t dSince: " << dSince;
                //yInfo() << " agent dissapeared but not for too long.";
            }
        }
    }
    return true;
}
Example #27
0
File: mlem.cpp Project: glo/ee384b
/* log_weight_div_det[k] = -2*log(weights_k) + log(det(Sigma_k)))

   covs[k] = cov_rotate_mats[k] * cov_eigen_values[k] * (cov_rotate_mats[k])'
   cov_rotate_mats[k] are orthogonal matrices of eigenvectors and
   cov_eigen_values[k] are diagonal matrices (represented by 1D vectors) of eigen values.

   The <alpha_ik> is the probability of the vector x_i to belong to the k-th cluster:
   <alpha_ik> ~ weights_k * exp{ -0.5[ln(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] }
   We calculate these probabilities here by the equivalent formulae:
   Denote
   S_ik = -0.5(log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)) + log(weights_k),
   M_i = max_k S_ik = S_qi, so that the q-th class is the one where maximum reaches. Then
   alpha_ik = exp{ S_ik - M_i } / ( 1 + sum_j!=q exp{ S_ji - M_i })
*/
double CvEM::run_em( const CvVectors& train_data )
{
    CvMat* centered_sample = 0;
    CvMat* covs_item = 0;
    CvMat* log_det = 0;
    CvMat* log_weights = 0;
    CvMat* cov_eigen_values = 0;
    CvMat* samples = 0;
    CvMat* sum_probs = 0;
    log_likelihood = -DBL_MAX;

    CV_FUNCNAME( "CvEM::run_em" );
    __BEGIN__;

    int nsamples = train_data.count, dims = train_data.dims, nclusters = params.nclusters;
    double min_variation = FLT_EPSILON;
    double min_det_value = MAX( DBL_MIN, pow( min_variation, dims ));
    double likelihood_bias = -CV_LOG2PI * (double)nsamples * (double)dims / 2., _log_likelihood = -DBL_MAX;
    int start_step = params.start_step;

    int i, j, k, n;
    int is_general = 0, is_diagonal = 0, is_spherical = 0;
    double prev_log_likelihood = -DBL_MAX / 1000., det, d;
    CvMat whdr, iwhdr, diag, *w, *iw;
    double* w_data;
    double* sp_data;

    if( nclusters == 1 )
    {
        double log_weight;
        CV_CALL( cvSet( probs, cvScalar(1.)) );

        if( params.cov_mat_type == COV_MAT_SPHERICAL )
        {
            d = cvTrace(*covs).val[0]/dims;
            d = MAX( d, FLT_EPSILON );
            inv_eigen_values->data.db[0] = 1./d;
            log_weight = pow( d, dims*0.5 );
        }
        else
        {
            w_data = inv_eigen_values->data.db;

            if( params.cov_mat_type == COV_MAT_GENERIC )
                cvSVD( *covs, inv_eigen_values, *cov_rotate_mats, 0, CV_SVD_U_T );
            else
                cvTranspose( cvGetDiag(*covs, &diag), inv_eigen_values );

            cvMaxS( inv_eigen_values, FLT_EPSILON, inv_eigen_values );
            for( j = 0, det = 1.; j < dims; j++ )
                det *= w_data[j];
            log_weight = sqrt(det);
            cvDiv( 0, inv_eigen_values, inv_eigen_values );
        }

        log_weight_div_det->data.db[0] = -2*log(weights->data.db[0]/log_weight);
        log_likelihood = DBL_MAX/1000.;
        EXIT;
    }

    if( params.cov_mat_type == COV_MAT_GENERIC )
        is_general  = 1;
    else if( params.cov_mat_type == COV_MAT_DIAGONAL )
        is_diagonal = 1;
    else if( params.cov_mat_type == COV_MAT_SPHERICAL )
        is_spherical  = 1;
    /* In the case of <cov_mat_type> == COV_MAT_DIAGONAL, the k-th row of cov_eigen_values
    contains the diagonal elements (variations). In the case of
    <cov_mat_type> == COV_MAT_SPHERICAL - the 0-ths elements of the vectors cov_eigen_values[k]
    are to be equal to the mean of the variations over all the dimensions. */

    CV_CALL( log_det = cvCreateMat( 1, nclusters, CV_64FC1 ));
    CV_CALL( log_weights = cvCreateMat( 1, nclusters, CV_64FC1 ));
    CV_CALL( covs_item = cvCreateMat( dims, dims, CV_64FC1 ));
    CV_CALL( centered_sample = cvCreateMat( 1, dims, CV_64FC1 ));
    CV_CALL( cov_eigen_values = cvCreateMat( inv_eigen_values->rows, inv_eigen_values->cols, CV_64FC1 ));
    CV_CALL( samples = cvCreateMat( nsamples, dims, CV_64FC1 ));
    CV_CALL( sum_probs = cvCreateMat( 1, nclusters, CV_64FC1 ));
    sp_data = sum_probs->data.db;

    // copy the training data into double-precision matrix
    for( i = 0; i < nsamples; i++ )
    {
        const float* src = train_data.data.fl[i];
        double* dst = (double*)(samples->data.ptr + samples->step*i);

        for( j = 0; j < dims; j++ )
            dst[j] = src[j];
    }

    if( start_step != START_M_STEP )
    {
        for( k = 0; k < nclusters; k++ )
        {
            if( is_general || is_diagonal )
            {
                w = cvGetRow( cov_eigen_values, &whdr, k );
                if( is_general )
                    cvSVD( covs[k], w, cov_rotate_mats[k], 0, CV_SVD_U_T );
                else
                    cvTranspose( cvGetDiag( covs[k], &diag ), w );
                w_data = w->data.db;
                for( j = 0, det = 1.; j < dims; j++ )
                    det *= w_data[j];
                if( det < min_det_value )
                {
                    if( start_step == START_AUTO_STEP )
                        det = min_det_value;
                    else
                        EXIT;
                }
                log_det->data.db[k] = det;
            }
            else
            {
                d = cvTrace(covs[k]).val[0]/(double)dims;
                if( d < min_variation )
                {
                    if( start_step == START_AUTO_STEP )
                        d = min_variation;
                    else
                        EXIT;
                }
                cov_eigen_values->data.db[k] = d;
                log_det->data.db[k] = d;
            }
        }

        cvLog( log_det, log_det );
        if( is_spherical )
            cvScale( log_det, log_det, dims );
    }

    for( n = 0; n < params.term_crit.max_iter; n++ )
    {
        if( n > 0 || start_step != START_M_STEP )
        {
            // e-step: compute probs_ik from means_k, covs_k and weights_k.
            CV_CALL(cvLog( weights, log_weights ));

            // S_ik = -0.5[log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] + log(weights_k)
            for( k = 0; k < nclusters; k++ )
            {
                CvMat* u = cov_rotate_mats[k];
                const double* mean = (double*)(means->data.ptr + means->step*k);
                w = cvGetRow( cov_eigen_values, &whdr, k );
                iw = cvGetRow( inv_eigen_values, &iwhdr, k );
                cvDiv( 0, w, iw );

                w_data = (double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);

                for( i = 0; i < nsamples; i++ )
                {
                    double *csample = centered_sample->data.db, p = log_det->data.db[k];
                    const double* sample = (double*)(samples->data.ptr + samples->step*i);
                    double* pp = (double*)(probs->data.ptr + probs->step*i);
                    for( j = 0; j < dims; j++ )
                        csample[j] = sample[j] - mean[j];
                    if( is_general )
                        cvGEMM( centered_sample, u, 1, 0, 0, centered_sample, CV_GEMM_B_T );
                    for( j = 0; j < dims; j++ )
                        p += csample[j]*csample[j]*w_data[is_spherical ? 0 : j];
                    pp[k] = -0.5*p + log_weights->data.db[k];

                    // S_ik <- S_ik - max_j S_ij
                    if( k == nclusters - 1 )
                    {
                        double max_val = 0;
                        for( j = 0; j < nclusters; j++ )
                            max_val = MAX( max_val, pp[j] );
                        for( j = 0; j < nclusters; j++ )
                            pp[j] -= max_val;
                    }
                }
            }

            CV_CALL(cvExp( probs, probs )); // exp( S_ik )
            cvZero( sum_probs );

            // alpha_ik = exp( S_ik ) / sum_j exp( S_ij ),
            // log_likelihood = sum_i log (sum_j exp(S_ij))
            for( i = 0, _log_likelihood = likelihood_bias; i < nsamples; i++ )
            {
                double* pp = (double*)(probs->data.ptr + probs->step*i), sum = 0;
                for( j = 0; j < nclusters; j++ )
                    sum += pp[j];
                sum = 1./MAX( sum, DBL_EPSILON );
                for( j = 0; j < nclusters; j++ )
                {
                    double p = pp[j] *= sum;
                    sp_data[j] += p;
                }
                _log_likelihood -= log( sum );
            }

            // check termination criteria
            if( fabs( (_log_likelihood - prev_log_likelihood) / prev_log_likelihood ) < params.term_crit.epsilon )
                break;
            prev_log_likelihood = _log_likelihood;
        }

        // m-step: update means_k, covs_k and weights_k from probs_ik
        cvGEMM( probs, samples, 1, 0, 0, means, CV_GEMM_A_T );

        for( k = 0; k < nclusters; k++ )
        {
            double sum = sp_data[k], inv_sum = 1./sum;
            CvMat* cov = covs[k], _mean, _sample;

            w = cvGetRow( cov_eigen_values, &whdr, k );
            w_data = w->data.db;
            cvGetRow( means, &_mean, k );
            cvGetRow( samples, &_sample, k );

            // update weights_k
            weights->data.db[k] = sum;

            // update means_k
            cvScale( &_mean, &_mean, inv_sum );

            // compute covs_k
            cvZero( cov );
            cvZero( w );

            for( i = 0; i < nsamples; i++ )
            {
                double p = probs->data.db[i*nclusters + k]*inv_sum;
                _sample.data.db = (double*)(samples->data.ptr + samples->step*i);

                if( is_general )
                {
                    cvMulTransposed( &_sample, covs_item, 1, &_mean );
                    cvScaleAdd( covs_item, cvRealScalar(p), cov, cov );
                }
                else
                    for( j = 0; j < dims; j++ )
                    {
                        double val = _sample.data.db[j] - _mean.data.db[j];
                        w_data[is_spherical ? 0 : j] += p*val*val;
                    }
            }

            if( is_spherical )
            {
                d = w_data[0]/(double)dims;
                d = MAX( d, min_variation );
                w->data.db[0] = d;
                log_det->data.db[k] = d;
            }
            else
            {
                if( is_general )
                    cvSVD( cov, w, cov_rotate_mats[k], 0, CV_SVD_U_T );
                cvMaxS( w, min_variation, w );
                for( j = 0, det = 1.; j < dims; j++ )
                    det *= w_data[j];
                log_det->data.db[k] = det;
            }
        }

        cvConvertScale( weights, weights, 1./(double)nsamples, 0 );
        cvMaxS( weights, DBL_MIN, weights );

        cvLog( log_det, log_det );
        if( is_spherical )
            cvScale( log_det, log_det, dims );
    } // end of iteration process

    //log_weight_div_det[k] = -2*log(weights_k/det(Sigma_k))^0.5) = -2*log(weights_k) + log(det(Sigma_k)))
    if( log_weight_div_det )
    {
        cvScale( log_weights, log_weight_div_det, -2 );
        cvAdd( log_weight_div_det, log_det, log_weight_div_det );
    }

    /* Now finalize all the covariation matrices:
    1) if <cov_mat_type> == COV_MAT_DIAGONAL we used array of <w> as diagonals.
       Now w[k] should be copied back to the diagonals of covs[k];
    2) if <cov_mat_type> == COV_MAT_SPHERICAL we used the 0-th element of w[k]
       as an average variation in each cluster. The value of the 0-th element of w[k]
       should be copied to the all of the diagonal elements of covs[k]. */
    if( is_spherical )
    {
        for( k = 0; k < nclusters; k++ )
            cvSetIdentity( covs[k], cvScalar(cov_eigen_values->data.db[k]));
    }
    else if( is_diagonal )
    {
        for( k = 0; k < nclusters; k++ )
            cvTranspose( cvGetRow( cov_eigen_values, &whdr, k ),
                         cvGetDiag( covs[k], &diag ));
    }
    cvDiv( 0, cov_eigen_values, inv_eigen_values );

    log_likelihood = _log_likelihood;

    __END__;

    cvReleaseMat( &log_det );
    cvReleaseMat( &log_weights );
    cvReleaseMat( &covs_item );
    cvReleaseMat( &centered_sample );
    cvReleaseMat( &cov_eigen_values );
    cvReleaseMat( &samples );
    cvReleaseMat( &sum_probs );

    return log_likelihood;
}
Example #28
0
File: mlem.cpp Project: glo/ee384b
float
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const
{
    float* sample_data   = 0;
    void* buffer = 0;
    int allocated_buffer = 0;
    int cls = 0;

    CV_FUNCNAME( "CvEM::predict" );
    __BEGIN__;

    int i, k, dims;
    int nclusters;
    int cov_mat_type = params.cov_mat_type;
    double opt = FLT_MAX;
    size_t size;
    CvMat diff, expo;

    dims = means->cols;
    nclusters = params.nclusters;

    CV_CALL( cvPreparePredictData( _sample, dims, 0, params.nclusters, _probs, &sample_data ));

// allocate memory and initializing headers for calculating
    size = sizeof(double) * (nclusters + dims);
    if( size <= CV_MAX_LOCAL_SIZE )
        buffer = cvStackAlloc( size );
    else
    {
        CV_CALL( buffer = cvAlloc( size ));
        allocated_buffer = 1;
    }
    expo = cvMat( 1, nclusters, CV_64FC1, buffer );
    diff = cvMat( 1, dims, CV_64FC1, (double*)buffer + nclusters );

// calculate the probabilities
    for( k = 0; k < nclusters; k++ )
    {
        const double* mean_k = (const double*)(means->data.ptr + means->step*k);
        const double* w = (const double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);
        double cur = log_weight_div_det->data.db[k];
        CvMat* u = cov_rotate_mats[k];
        // cov = u w u'  -->  cov^(-1) = u w^(-1) u'
        if( cov_mat_type == COV_MAT_SPHERICAL )
        {
            double w0 = w[0];
            for( i = 0; i < dims; i++ )
            {
                double val = sample_data[i] - mean_k[i];
                cur += val*val*w0;
            }
        }
        else
        {
            for( i = 0; i < dims; i++ )
                diff.data.db[i] = sample_data[i] - mean_k[i];
            if( cov_mat_type == COV_MAT_GENERIC )
                cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T );
            for( i = 0; i < dims; i++ )
            {
                double val = diff.data.db[i];
                cur += val*val*w[i];
            }
        }

        expo.data.db[k] = cur;
        if( cur < opt )
        {
            cls = k;
            opt = cur;
        }
        /* probability = (2*pi)^(-dims/2)*exp( -0.5 * cur ) */
    }

    if( _probs )
    {
        CV_CALL( cvConvertScale( &expo, &expo, -0.5 ));
        CV_CALL( cvExp( &expo, &expo ));
        if( _probs->cols == 1 )
            CV_CALL( cvReshape( &expo, &expo, 0, nclusters ));
        CV_CALL( cvConvertScale( &expo, _probs, 1./cvSum( &expo ).val[0] ));
    }

    __END__;

    if( sample_data != _sample->data.fl )
        cvFree( &sample_data );
    if( allocated_buffer )
        cvFree( &buffer );

    return (float)cls;
}
Example #29
0
gint compose_skin_matrix(IplImage* rgbin, IplImage* gray_out)
{
/*
  int skin_under_seed = 0;

  static IplImage* imageHSV = cvCreateImage( cvSize(rgbin->width, rgbin->height), IPL_DEPTH_8U, 3);
  cvCvtColor(rgbin, imageHSV, CV_RGB2HSV);

  static IplImage* planeH = cvCreateImage( cvGetSize(imageHSV), 8, 1);	// Hue component.
  ///IplImage* planeH2= cvCreateImage( cvGetSize(imageHSV), 8, 1);	// Hue component, 2nd threshold
  static IplImage* planeS = cvCreateImage( cvGetSize(imageHSV), 8, 1);	// Saturation component.
  static IplImage* planeV = cvCreateImage( cvGetSize(imageHSV), 8, 1);	// Brightness component.
  cvCvtPixToPlane(imageHSV, planeH, planeS, planeV, 0);	// Extract the 3 color components.

  // Detect which pixels in each of the H, S and V channels are probably skin pixels.
  // Assume that skin has a Hue between 0 to 18 (out of 180), and Saturation above 50, and Brightness above 80.
  ///cvThreshold(planeH , planeH2, 10, UCHAR_MAX, CV_THRESH_BINARY);         //(hue > 10)
  cvThreshold(planeH , planeH , 20, UCHAR_MAX, CV_THRESH_BINARY_INV);     //(hue < 20)
  cvThreshold(planeS , planeS , 48, UCHAR_MAX, CV_THRESH_BINARY);         //(sat > 48)
  cvThreshold(planeV , planeV , 80, UCHAR_MAX, CV_THRESH_BINARY);         //(val > 80)

  // erode the HUE to get rid of noise.
  cvErode(planeH, planeH, NULL, 1);

  // Combine all 3 thresholded color components, so that an output pixel will only
  // be white (255) if the H, S and V pixels were also white.

  // gray_out = (hue > 10) ^ (hue < 20) ^ (sat > 48) ^ (val > 80), where   ^ mean pixels-wise AND
  cvAnd(planeH  , planeS , gray_out);	
  //cvAnd(gray_out, planeH2, gray_out);	
  cvAnd(gray_out, planeV , gray_out);	

  return(skin_under_seed);
*/

  static IplImage* planeR  = cvCreateImage( cvGetSize(rgbin), 8, 1);	// R component.
  static IplImage* planeG  = cvCreateImage( cvGetSize(rgbin), 8, 1);	// G component.
  static IplImage* planeB  = cvCreateImage( cvGetSize(rgbin), 8, 1);	// B component.

  static IplImage* planeAll = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// (R+G+B) component.
  static IplImage* planeR2  = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// R component, 32bits
  static IplImage* planeRp  = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// R' and >0.4
  static IplImage* planeGp  = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// G' and > 0.28

  static IplImage* planeRp2 = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// R' <0.6
  static IplImage* planeGp2 = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1);	// G' <0.4

  cvCvtPixToPlane(rgbin, planeR, planeG, planeB, 0);	// Extract the 3 color components.
  cvAdd( planeR, planeG,   planeAll, NULL);
  cvAdd( planeB, planeAll, planeAll, NULL);  // All = R + G + B
  cvDiv( planeR, planeAll, planeRp, 1.0);    // R' = R / ( R + G + B)
  cvDiv( planeG, planeAll, planeGp, 1.0);    // G' = G / ( R + G + B)

  cvConvertScale( planeR, planeR2, 1.0, 0.0);
  cvCopy(planeGp, planeGp2, NULL);
  cvCopy(planeRp, planeRp2, NULL);

  cvThreshold(planeR2 , planeR2,   60, UCHAR_MAX, CV_THRESH_BINARY);     //(R > 60)
  cvThreshold(planeRp , planeRp, 0.40, UCHAR_MAX, CV_THRESH_BINARY);     //(R'> 0.4)
  cvThreshold(planeRp2, planeRp2, 0.6, UCHAR_MAX, CV_THRESH_BINARY_INV); //(R'< 0.6)
  cvThreshold(planeGp , planeGp, 0.28, UCHAR_MAX, CV_THRESH_BINARY);     //(G'> 0.28)
  cvThreshold(planeGp2, planeGp2, 0.4, UCHAR_MAX, CV_THRESH_BINARY_INV); //(G'< 0.4)

  // R’ = R / (R+G+B), G’ = G / (R + G + B)
  //  Skin pixel if:
  // R > 60 AND R’ > 0.4 AND R’ < 0.6 AND G’ > 0.28 and G’ < 0.4  
  static IplImage* imageSkinPixels = cvCreateImage( cvGetSize(rgbin), IPL_DEPTH_32F, 1); 
  cvAnd( planeR2 ,         planeRp , imageSkinPixels);	
  cvAnd( planeRp , imageSkinPixels , imageSkinPixels);	
  cvAnd( planeRp2, imageSkinPixels , imageSkinPixels);	
  cvAnd( planeGp , imageSkinPixels , imageSkinPixels);	
  cvAnd( planeGp2, imageSkinPixels , imageSkinPixels);	
  
  cvConvertScale( imageSkinPixels, gray_out, 1.0, 0.0);
  return(0);
}
Example #30
0
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
CvMat *tgso (CvMat &tmap, int ntex, double sigma, double theta, CvMat &tsim, int useChi2) {


	CvMat *roundTmap=cvCreateMat(tmap.rows,tmap.cols,CV_32FC1);
	CvMat *comp=cvCreateMat(tmap.rows,tmap.cols,CV_32FC1);

	for (int i=0;i<tmap.rows;i++)
		for (int j=0;j<tmap.cols;j++)
			cvSetReal2D(roundTmap,i,j,cvRound(cvGetReal2D(&tmap,i,j)));

	cvSub(&tmap,roundTmap,comp);
	if (cvCountNonZero(comp)) {
		printf("texton labels not integral");
		cvReleaseMat(&roundTmap);
		cvReleaseMat(&comp);
		exit(1);
	}

	double min,max;
	cvMinMaxLoc(&tmap,&min,&max);
	if (min<1 && max>ntex) {
		char *msg=new char[50];
		printf(msg,"texton labels out of range [1,%d]",ntex);
		cvReleaseMat(&roundTmap);
		cvReleaseMat(&comp);
		exit(1);
	}

	cvReleaseMat(&roundTmap);
	cvReleaseMat(&comp);


	double wr=floor(sigma); //sigma=radius (Leo) 

	CvMat *x=cvCreateMat(1,wr-(-wr)+1, CV_64FC1);
	CvMat *y=cvCreateMat(wr-(-wr)+1,1, CV_64FC1);

	CvMat *u=cvCreateMat(wr-(-wr)+1,wr-(-wr)+1, CV_64FC1);
	CvMat *v=cvCreateMat(wr-(-wr)+1,wr-(-wr)+1, CV_64FC1);
	CvMat *gamma=cvCreateMat(u->rows,v->rows, CV_64FC1);

	// Set x,y directions 
	for (int j=-wr;j<=wr;j++) {
		cvSetReal2D(x,0,(j+wr),j);
		cvSetReal2D(y,(j+wr),0,j);
	}

	// Set u,v, meshgrids
	for (int i=0;i<u->rows;i++) {
		cvRepeat(x,u);
		cvRepeat(y,v);
	}

	// Compute the gamma matrix from the grid
	for (int i=0;i<u->rows;i++) 
		for (int j=0;j<u->cols;j++)
			cvSetReal2D(gamma,i,j,atan2(cvGetReal2D(v,i,j),cvGetReal2D(u,i,j)));

	cvReleaseMat(&x);
	cvReleaseMat(&y);

	CvMat *sum=cvCreateMat(u->rows,u->cols, CV_64FC1);
	cvMul(u,u,u);
	cvMul(v,v,v);
	cvAdd(u,v,sum);
	CvMat *mask=cvCreateMat(u->rows,u->cols, CV_8UC1);
	cvCmpS(sum,sigma*sigma,mask,CV_CMP_LE);
	cvConvertScale(mask,mask,1.0/255);
	cvSetReal2D(mask,wr,wr,0);
	int count=cvCountNonZero(mask);

	cvReleaseMat(&u);
	cvReleaseMat(&v);
	cvReleaseMat(&sum);

	CvMat *sub=cvCreateMat(mask->rows,mask->cols, CV_64FC1);
	CvMat *side=cvCreateMat(mask->rows,mask->cols, CV_8UC1);

	cvSubS(gamma,cvScalar(theta),sub);
	cvReleaseMat(&gamma);

	for (int i=0;i<mask->rows;i++){
		for (int j=0;j<mask->cols;j++) {
			double n=cvmGet(sub,i,j);
			double n_mod = n-floor(n/(2*M_PI))*2*M_PI;
			cvSetReal2D(side,i,j, 1 + int(n_mod < M_PI));
		}
	}

	cvMul(side,mask,side);
	cvReleaseMat(&sub);
	cvReleaseMat(&mask);

	CvMat *lmask=cvCreateMat(side->rows,side->cols, CV_8UC1);
	CvMat *rmask=cvCreateMat(side->rows,side->cols, CV_8UC1);
	cvCmpS(side,1,lmask,CV_CMP_EQ);
	cvCmpS(side,2,rmask,CV_CMP_EQ);
	int count1=cvCountNonZero(lmask), count2=cvCountNonZero(rmask);
	if (count1 != count2) {
		printf("Bug: imbalance\n");
	}

	CvMat *rlmask=cvCreateMat(side->rows,side->cols, CV_32FC1);
	CvMat *rrmask=cvCreateMat(side->rows,side->cols, CV_32FC1);
	cvConvertScale(lmask,rlmask,1.0/(255*count)*2);
	cvConvertScale(rmask,rrmask,1.0/(255*count)*2);


	cvReleaseMat(&lmask);
	cvReleaseMat(&rmask);
	cvReleaseMat(&side);

	int h=tmap.rows;
	int w=tmap.cols;


	CvMat *d       = cvCreateMat(h*w,ntex,CV_32FC1);
	CvMat *coltemp = cvCreateMat(h*w,1,CV_32FC1);
	CvMat *tgL     = cvCreateMat(h,w, CV_32FC1);
	CvMat *tgR     = cvCreateMat(h,w, CV_32FC1);
	CvMat *temp    = cvCreateMat(h,w,CV_8UC1);
	CvMat *im      = cvCreateMat(h,w, CV_32FC1);
	CvMat *sub2    = cvCreateMat(h,w,CV_32FC1);
	CvMat *sub2t   = cvCreateMat(w,h,CV_32FC1);
	CvMat *prod    = cvCreateMat(h*w,ntex,CV_32FC1);
	CvMat reshapehdr,*reshape;

	CvMat* tgL_pad = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);
	CvMat* tgR_pad = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);
	CvMat* im_pad  = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);

	CvMat *tg=cvCreateMat(h,w,CV_32FC1);
	cvZero(tg);
	
	if (useChi2 == 1){
		CvMat* temp_add1 = cvCreateMat(h,w,CV_32FC1);
		for (int i=0;i<ntex;i++) {
			cvCmpS(&tmap,i+1,temp,CV_CMP_EQ); 
			cvConvertScale(temp,im,1.0/255);

			cvCopyMakeBorder(tgL,tgL_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(tgR,tgR_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(im,im_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);

			cvFilter2D(im_pad,tgL_pad,rlmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));
			cvFilter2D(im_pad,tgR_pad,rrmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));

			cvGetSubRect(tgL_pad,tgL,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgL->cols,tgL->rows));
			cvGetSubRect(tgR_pad,tgR,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgR->cols,tgR->rows));

			cvSub(tgL,tgR,sub2);
			cvPow(sub2,sub2,2.0);
			cvAdd(tgL,tgR,temp_add1);
			cvAddS(temp_add1,cvScalar(0.0000000001),temp_add1);
			cvDiv(sub2,temp_add1,sub2);
			cvAdd(tg,sub2,tg);
		}
		cvScale(tg,tg,0.5);

		cvReleaseMat(&temp_add1);

	}
	else{// if not chi^2
		for (int i=0;i<ntex;i++) {
			cvCmpS(&tmap,i+1,temp,CV_CMP_EQ); 
			cvConvertScale(temp,im,1.0/255);

			cvCopyMakeBorder(tgL,tgL_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(tgR,tgR_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(im,im_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);

			cvFilter2D(im_pad,tgL_pad,rlmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));
			cvFilter2D(im_pad,tgR_pad,rrmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));

			cvGetSubRect(tgL_pad,tgL,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgL->cols,tgL->rows));
			cvGetSubRect(tgR_pad,tgR,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgR->cols,tgR->rows));

			cvSub(tgL,tgR,sub2);
			cvAbs(sub2,sub2);
			cvTranspose(sub2,sub2t);
			reshape=cvReshape(sub2t,&reshapehdr,0,h*w);
			cvGetCol(d,coltemp,i);
			cvCopy(reshape,coltemp);
		}

		cvMatMul(d,&tsim,prod);
		cvMul(prod,d,prod);


		CvMat *sumcols=cvCreateMat(h*w,1,CV_32FC1);
		cvSetZero(sumcols);
		for (int i=0;i<prod->cols;i++) {
			cvGetCol(prod,coltemp,i);
			cvAdd(sumcols,coltemp,sumcols);
		}

		reshape=cvReshape(sumcols,&reshapehdr,0,w);
		cvTranspose(reshape,tg);

		cvReleaseMat(&sumcols);
	}


	//Smooth the gradient now!!
	tg=fitparab(*tg,sigma,sigma/4,theta);
	cvMaxS(tg,0,tg); 

	
	cvReleaseMat(&im_pad);
	cvReleaseMat(&tgL_pad);
	cvReleaseMat(&tgR_pad);
	cvReleaseMat(&rlmask);
	cvReleaseMat(&rrmask);
	cvReleaseMat(&im);
	cvReleaseMat(&tgL);
	cvReleaseMat(&tgR);
	cvReleaseMat(&temp);
	cvReleaseMat(&coltemp);
	cvReleaseMat(&sub2);
	cvReleaseMat(&sub2t);
	cvReleaseMat(&d);
	cvReleaseMat(&prod);

	return tg;

}