uint16_t dQw(rbq *pQ, bool peek) { uint16_t retWord; // IRQMASK_SAVE; retWord = dQ(pQ, peek) | (dQ(pQ, peek) << 8); // IRQMASK_RESTORE; return retWord; }
void printlevel(struct BT *root) { if(!root) return; struct BT **Q=createQ(); printf("\n\n"); nQ(Q,root); while(root) { root=dQ(Q); printf("[%d]\t",root->data); if(root->l) { nQ(Q,root->l);} if(root->r) nQ(Q,root->r); } printf("\n\n"); }
void SmrCCDSolver::process( ) { ColumnVector dQ(3); ColumnVector dQ1(3); computeErrorVect(); computeJacobian(); //cout << m_error << endl; SmrKinematicJoint *currentJoint = m_IKChainPtr->getJoint(m_jointProcessed); //cout << m_jacobianT; try { dQ = m_jacobianT*m_jointProcessed*m_error; } catch(BaseException) { dQ = m_jacobianT*m_jointProcessed*m_error; //cout << BaseException::what() << endl; } float max = dQ.Maximum(); if (max > (0.01)) dQ = 0.01 / max * dQ ; unsigned int k = 0; for (unsigned int j=0; j<currentJoint->getNumDofs(); j++) { SmrDof * currentDof = currentJoint->getDof(j); currentDof->setRotationAngle(currentDof->getRotationAngle()+dQ(k+1)); ++k; } //currentJoint->checkTwist(); currentJoint->updateRot(); m_jointProcessed ++; }
void bfs(int sr, int sc, int p) { nQ(sr, sc, p); do{ dQ(&r, &c, &p); for(int i=0; i<4; i++) { nr = r + R[i], nc = c + C[i]; if(mat[nr][nc]==1) { if(cost[nr][nc]>cost[r][c]+1) cost[nr][nc]=cost[r][c]+1, nQ(nr, nc, p); } } } while (rear!=front); leaf = p; }
/** Purpose ------- SLAEX3 finds the roots of the secular equation, as defined by the values in D, W, and RHO, between 1 and K. It makes the appropriate calls to SLAED4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the K-by-K system which is solved here. It is used in the last step when only a part of the eigenvectors is required. It compute only the required part of the eigenvectors and the rest is not used. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] k INTEGER The number of terms in the rational function to be solved by SLAED4. K >= 0. @param[in] n INTEGER The number of rows and columns in the Q matrix. N >= K (deflation may result in N > K). @param[in] n1 INTEGER The location of the last eigenvalue in the leading submatrix. min(1,N) <= N1 <= N/2. @param[out] d REAL array, dimension (N) D(I) contains the updated eigenvalues for 1 <= I <= K. @param[out] Q REAL array, dimension (LDQ,N) Initially the first K columns are used as workspace. On output the columns ??? to ??? contain the updated eigenvectors. @param[in] ldq INTEGER The leading dimension of the array Q. LDQ >= max(1,N). @param[in] rho REAL The value of the parameter in the rank one update equation. RHO >= 0 required. @param[in,out] dlamda REAL array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. @param[in] Q2 REAL array, dimension (LDQ2, N) The first K columns of this matrix contain the non-deflated eigenvectors for the split problem. @param[in] indx INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups (see SLAED2). The rows of the eigenvectors found by SLAED4 must be likewise permuted before the matrix multiply can take place. @param[in] ctot INTEGER array, dimension (4) A count of the total number of the various types of columns in Q, as described in INDX. The fourth column type is any column which has been deflated. @param[in,out] w REAL array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector. Destroyed on output. @param s (workspace) REAL array, dimension (N1 + 1)*K Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system. @param[out] indxq INTEGER array, dimension (N) On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. @param dwork (devices workspaces) REAL array of arrays, dimension NRGPU. if NRGPU = 1 the dimension of the first workspace should be (3*N*N/2+3*N) otherwise the NRGPU workspaces should have the size ceil((N-N1) * (N-N1) / floor(ngpu/2)) + NB * ((N-N1) + (N-N1) / floor(ngpu/2)) @param queues (device queues) magma_queue_t array, dimension (MagmaMaxGPUs,2) @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. TODO verify range, vl, vu, il, iu -- copied from slaex1. @param[in] vl REAL @param[in] vu REAL if RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER if RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = 1, an eigenvalue did not converge Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. @ingroup magma_ssyev_aux ********************************************************************/ extern "C" magma_int_t magma_slaex3_m( magma_int_t ngpu, magma_int_t k, magma_int_t n, magma_int_t n1, float *d, float *Q, magma_int_t ldq, float rho, float *dlamda, float *Q2, magma_int_t *indx, magma_int_t *ctot, float *w, float *s, magma_int_t *indxq, magmaFloat_ptr dwork[], magma_queue_t queues[MagmaMaxGPUs][2], magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *info ) { #define Q(i_,j_) (Q + (i_) + (j_)*ldq) #define dQ2(id) (dwork[id]) #define dS(id, ii) (dwork[id] + n2*n2_loc + (ii)*(n2*nb)) #define dQ(id, ii) (dwork[id] + n2*n2_loc + 2*(n2*nb) + (ii)*(n2_loc*nb)) if (ngpu == 1) { magma_setdevice(0); magma_slaex3(k, n, n1, d, Q, ldq, rho, dlamda, Q2, indx, ctot, w, s, indxq, *dwork, range, vl, vu, il, iu, info ); return *info; } float d_one = 1.; float d_zero = 0.; magma_int_t ione = 1; magma_int_t ineg_one = -1; magma_int_t iil, iiu, rk; magma_int_t n1_loc, n2_loc, ib, nb, ib2, igpu; magma_int_t ni_loc[MagmaMaxGPUs]; magma_int_t i, ind, iq2, j, n12, n2, n23, tmp; float temp; magma_int_t alleig, valeig, indeig; alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); *info = 0; if (k < 0) *info=-1; else if (n < k) *info=-2; else if (ldq < max(1,n)) *info=-6; else if (! (alleig || valeig || indeig)) *info = -15; else { if (valeig) { if (n > 0 && vu <= vl) *info = -17; } else if (indeig) { if (il < 1 || il > max(1,n)) *info = -18; else if (iu < min(n,il) || iu > n) *info = -19; } } if (*info != 0) { magma_xerbla(__func__, -(*info)); return *info; } // Quick return if possible if (k == 0) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), which on any of these machines zeros out the bottommost bit of DLAMDA(I) if it is 1; this makes the subsequent subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DLAMDA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DLAMDA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DLAMBDA(I) to prevent optimizing compilers from eliminating this code.*/ //#define CHECK_CPU #ifdef CHECK_CPU float *hwS[2][MagmaMaxGPUs], *hwQ[2][MagmaMaxGPUs], *hwQ2[MagmaMaxGPUs]; #define hQ2(id) (hwQ2[id]) #define hS(id, ii) (hwS[ii][id]) #define hQ(id, ii) (hwQ[ii][id]) #endif n2 = n - n1; n12 = ctot[0] + ctot[1]; n23 = ctot[1] + ctot[2]; iq2 = n1 * n12; //lq2 = iq2 + n2 * n23; n1_loc = (n1-1) / (ngpu/2) + 1; n2_loc = (n2-1) / (ngpu/2) + 1; nb = magma_get_slaex3_m_nb(); if (n1 >= magma_get_slaex3_m_k()) { #ifdef CHECK_CPU for (igpu = 0; igpu < ngpu; ++igpu) { magma_smalloc_pinned( &(hwS[0][igpu]), n2*nb ); magma_smalloc_pinned( &(hwS[1][igpu]), n2*nb ); magma_smalloc_pinned( &(hwQ2[igpu]), n2*n2_loc ); magma_smalloc_pinned( &(hwQ[0][igpu]), n2_loc*nb ); magma_smalloc_pinned( &(hwQ[1][igpu]), n2_loc*nb ); } #endif for (igpu = 0; igpu < ngpu-1; igpu += 2) { ni_loc[igpu] = min(n1_loc, n1 - igpu/2 * n1_loc); #ifdef CHECK_CPU lapackf77_slacpy("A", &ni_loc[igpu], &n12, Q2+n1_loc*(igpu/2), &n1, hQ2(igpu), &n1_loc); #endif magma_setdevice(igpu); magma_ssetmatrix_async( ni_loc[igpu], n12, Q2+n1_loc*(igpu/2), n1, dQ2(igpu), n1_loc, queues[igpu][0] ); ni_loc[igpu+1] = min(n2_loc, n2 - igpu/2 * n2_loc); #ifdef CHECK_CPU lapackf77_slacpy("A", &ni_loc[igpu+1], &n23, Q2+iq2+n2_loc*(igpu/2), &n2, hQ2(igpu+1), &n2_loc); #endif magma_setdevice(igpu+1); magma_ssetmatrix_async( ni_loc[igpu+1], n23, Q2+iq2+n2_loc*(igpu/2), n2, dQ2(igpu+1), n2_loc, queues[igpu+1][0] ); } } // #ifdef _OPENMP ///////////////////////////////////////////////////////////////////////////////// //openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); #pragma omp parallel private(i, j, tmp, temp) { magma_int_t id = omp_get_thread_num(); magma_int_t tot = omp_get_num_threads(); magma_int_t ib = ( id * k) / tot; //start index of local loop magma_int_t ie = ((id+1) * k) / tot; //end index of local loop magma_int_t ik = ie - ib; //number of local indices for (i = ib; i < ie; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = ib; j < ie; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) { #pragma omp critical (info) *info = iinfo; break; } } #pragma omp barrier if (*info == 0) { #pragma omp single { //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_svrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_sirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; } if (k == 2) { #pragma omp single { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } } else if (k != 1) { // Compute updated W. blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione); for (j = 0; j < k; ++j) { magma_int_t i_tmp = min(j, ie); for (i = ib; i < i_tmp; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); i_tmp = max(j+1, ib); for (i = i_tmp; i < ie; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = ib; i < ie; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); #pragma omp barrier //reduce the number of used threads to have enough S workspace tot = min(n1, omp_get_num_threads()); if (id < tot) { ib = ( id * rk) / tot + iil - 1; ie = ((id+1) * rk) / tot + iil - 1; ik = ie - ib; } else { ib = -1; ie = -1; ik = -1; } // Compute eigenvectors of the modified rank-1 modification. for (j = ib; j < ie; ++j) { for (i = 0; i < k; ++i) s[id*k + i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s+id*k, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[id*k + iii] / temp; } } } } } if (*info != 0) return *info; timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #else ///////////////////////////////////////////////////////////////////////////////// // Non openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); for (i = 0; i < k; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = 0; j < k; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) *info=iinfo; } if (*info != 0) return *info; //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_svrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_sirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; if (k == 2) { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } else if (k != 1) { // Compute updated W. blasf77_scopy( &k, w, &ione, s, &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &k, Q, &tmp, w, &ione); for (j = 0; j < k; ++j) { for (i = 0; i < j; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); for (i = j+1; i < k; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = 0; i < k; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); // Compute eigenvectors of the modified rank-1 modification. for (j = iil-1; j < iiu; ++j) { for (i = 0; i < k; ++i) s[i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[iii] / temp; } } } timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #endif //_OPENMP // Compute the updated eigenvectors. timer_start( time ); if (rk > 0) { if (n1 < magma_get_slaex3_m_k()) { // stay on the CPU if ( n23 != 0 ) { lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23); blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2, s, &n23, &d_zero, Q(n1,iil-1), &ldq ); } else lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 != 0 ) { lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12); blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1, s, &n12, &d_zero, Q(0,iil-1), &ldq); } else lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } else { //use the gpus ib = min(nb, rk); for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_ssetmatrix_async( n23, ib, Q(ctot[0],iil-1), ldq, dS(igpu+1,0), n23, queues[igpu+1][0] ); } if (n12 != 0) { magma_setdevice(igpu); magma_ssetmatrix_async( n12, ib, Q(0,iil-1), ldq, dS(igpu,0), n12, queues[igpu][0] ); } } for (i = 0; i < rk; i += nb) { ib = min(nb, rk - i); ind = (i/nb)%2; if (i+nb < rk) { ib2 = min(nb, rk - i - nb); for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_ssetmatrix_async( n23, ib2, Q(ctot[0],iil-1+i+nb), ldq, dS(igpu+1,(ind+1)%2), n23, queues[igpu+1][(ind+1)%2] ); } if (n12 != 0) { magma_setdevice(igpu); magma_ssetmatrix_async( n12, ib2, Q(0,iil-1+i+nb), ldq, dS(igpu,(ind+1)%2), n12, queues[igpu][(ind+1)%2] ); } } } // Ensure that the data is copied on gpu since we will overwrite it. for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { #ifdef CHECK_CPU lapackf77_slacpy("A", &n23, &ib, Q(ctot[0],iil-1+i), &ldq, hS(igpu+1,ind), &n23); #endif magma_setdevice(igpu+1); magma_queue_sync( queues[igpu+1][ind] ); } if (n12 != 0) { #ifdef CHECK_CPU lapackf77_slacpy("A", &n12, &ib, Q(0,iil-1+i), &ldq, hS(igpu,ind), &n12); #endif magma_setdevice(igpu); magma_queue_sync( queues[igpu][ind] ); } } for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { #ifdef CHECK_CPU blasf77_sgemm("N", "N", &ni_loc[igpu+1], &ib, &n23, &d_one, hQ2(igpu+1), &n2_loc, hS(igpu+1,ind), &n23, &d_zero, hQ(igpu+1, ind), &n2_loc); #endif magma_setdevice(igpu+1); magmablasSetKernelStream(queues[igpu+1][ind]); magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu+1], ib, n23, d_one, dQ2(igpu+1), n2_loc, dS(igpu+1, ind), n23, d_zero, dQ(igpu+1, ind), n2_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu+1, cpu_gpu_sdiff(ni_loc[igpu+1], ib, hQ(igpu+1, ind), n2_loc, dQ(igpu+1, ind), n2_loc)); #endif } if (n12 != 0) { #ifdef CHECK_CPU blasf77_sgemm("N", "N", &ni_loc[igpu], &ib, &n12, &d_one, hQ2(igpu), &n1_loc, hS(igpu,ind%2), &n12, &d_zero, hQ(igpu, ind%2), &n1_loc); #endif magma_setdevice(igpu); magmablasSetKernelStream(queues[igpu][ind]); magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu], ib, n12, d_one, dQ2(igpu), n1_loc, dS(igpu, ind), n12, d_zero, dQ(igpu, ind), n1_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu, cpu_gpu_sdiff(ni_loc[igpu], ib, hQ(igpu, ind), n1_loc, dQ(igpu, ind), n1_loc)); #endif } } for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_sgetmatrix( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, Q(n1+n2_loc*(igpu/2),iil-1+i), ldq ); // magma_sgetmatrix_async( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, // Q(n1+n2_loc*(igpu/2),iil-1+i), ldq, queues[igpu+1][ind] ); } if (n12 != 0) { magma_setdevice(igpu); magma_sgetmatrix( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, Q(n1_loc*(igpu/2),iil-1+i), ldq ); // magma_sgetmatrix_async( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, // Q(n1_loc*(igpu/2),iil-1+i), ldq, queues[igpu][ind] ); } } } for (igpu = 0; igpu < ngpu; ++igpu) { #ifdef CHECK_CPU magma_free_pinned( hwS[1][igpu] ); magma_free_pinned( hwS[0][igpu] ); magma_free_pinned( hwQ2[igpu] ); magma_free_pinned( hwQ[1][igpu] ); magma_free_pinned( hwQ[0][igpu] ); #endif magma_setdevice(igpu); magma_queue_sync( queues[igpu][0] ); magma_queue_sync( queues[igpu][1] ); } if ( n23 == 0 ) lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 == 0 ) lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } } timer_stop( time ); timer_printf( "gemms = %6.2f\n", time ); magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); return *info; } /* magma_slaed3_m */
/** * The optimal community structure is a subdivision of the network into * nonoverlapping groups of nodes in a way that maximizes the number of * within-group edges, and minimizes the number of between-group edges. * The modularity is a statistic that quantifies the degree to which the * network may be subdivided into such clearly delineated groups. * * The Louvain algorithm is a fast and accurate community detection * algorithm (as of writing). The algorithm may also be used to detect * hierarchical community structure. * * Input: W undirected (weighted or binary) connection matrix. * gamma, modularity resolution parameter (optional) * gamma>1 detects smaller modules * 0<=gamma<1 detects larger modules * gamma=1 (default) classic modularity * * Outputs: Ci, community structure * Q, modularity * Note: Ci and Q may vary from run to run, due to heuristics in the * algorithm. Consequently, it may be worth to compare multiple runs. * * Reference: Blondel et al. (2008) J. Stat. Mech. P10008. * Reichardt and Bornholdt (2006) Phys Rev E 74:016110. */ urowvec Connectome::modularity_louvain(mat W, double *Qopt, double gamma) { uint N = W.n_rows, h = 1, n = N, u =0, ma =0, mb =0; double s = accu(W), wm = 0, max_dQ = -1; uvec M, t; rowvec dQ; field<urowvec> Ci(20); Ci(0) = urowvec(); Ci(1) = linspace<urowvec>(0,n-1,n); rowvec Q = "-1,0"; while (Q(h)-Q(h-1) > 1e-10) { rowvec K = sum(W,0), Km = K; mat Knm = W; M = linspace<uvec>(0,n-1,n); bool flag = true; while (flag) { flag = false; arma_rng::set_seed_random(); t = shuffle(linspace<uvec>(0,n-1,n)); for (uint i =0;i<n;++i) { u = t(i); ma = M(u); dQ = Knm.row(u) - Knm(u,ma)+W(u,u)- gamma*K(u)*(Km-Km(ma)+K(u))/s; dQ(ma) = 0; max_dQ = dQ.max(); mb = as_scalar(find(dQ == max_dQ,1)); if (max_dQ > 1e-10) { flag = true; M(u) = mb; Knm.col(mb) += W.col(u); Knm.col(ma) -= W.col(u); Km(mb) += K(u); Km(ma) -= K(u); } } } Ci(++h) = zeros<urowvec>(1,N); M = matlabUnique(M); for (uint u=0;u<n;++u) { Ci(h)(find(Ci(h-1) == u)).fill(M(u)); } n = M.max()+1; mat w = zeros(n,n); for (uint u =0;u<n;++u) for (uint v=u;v<n;++v) { wm = accu(W(find(M==u),find(M==v))); w(u,v) = wm; w(v,u) = wm; } W = w; Q.resize(h+1); Q(h) = trace(W)/s - gamma*accu((W*W)/(s*s)); } *Qopt = Q(h); return Ci(h); }
void dQAL( int *neq, double *t, double *y, double *ydot, double *yout, int*ip) { // time index //~ int i = (int)min( 1+(int)( hres * (*t) / treeT ), hres); int i = (int)min( (int)( hres * (*t) / treeT ), hres-1); int k,l,z,w; double a[m]; //normalized nlft double sumA = 0.; for (k = 0; k < m; k++) sumA += A(k); double r = Atotal / sumA; for (k = 0; k < m; k++) { dA(k) = 0.; if (Y(i,k) > 0) { a[k] = r * A(k)/ Y(i,k); //~ a[k] = max(0, min(1, r * A(k)/Y(i,k))); //~ a[k] = max( min(r * A(k)/Y(i,k), 1), 0) ; } else{ a[k] = 1.; // } } //dA for (k = 0; k < m; k++){ for (l = 0; l < m; l++){ if (k==l){ dA(k) -= a[l] * (F(i,l,k)) * a[k]; } else{ dA(k) += ( max(0, (1 - a[k])) * F(i,k,l) + G(i,k,l)) * a[l] ; dA(k) -= (F(i,l,k) + G(i,l,k)) * a[k]; } } } //dQ for (z = 0; z < m; z++){ // col of Q for (k = 0; k < m; k++){ //row of Q dQ(k,z) = 0.; for (l = 0. ; l < m; l++){ if (k!=l){ if ( Q(l,z) > 0) { dQ(k,z) += (F(i,k,l) + G(i,k,l)) * Q(l,z)/ max(Q(l,z), Y(i,l)); } if (Q(k,z) > 0) { dQ(k,z) -= (F(i,l,k) + G(i,l,k)) * Q(k,z)/ max(Q(k,z), Y(i,k)); } } // coalescent: //~ dQ(k,z) -= (F(i,k,l)+F(i,l,k)) * a[l] * Q(k,z)/Y(i,k); if (Q(k,z) > 0){ dQ(k,z) -= F(i,k,l) * a[l] * Q(k,z)/ max(Q(k,z), Y(i,k)); } } } } //dL dL = 0.; double Ydenom; for (k = 0; k < m; k++){ for (l =0 ; l < m; l++){ if (k==l){ Ydenom = max( (Y(i,k)-1),(r*A(k)-1) ); if (Ydenom > 0) { dL += max(0,min(1,a[k])) * ( (r*A(k)-1)/Ydenom) * F(i,k,l); } } else{ dL += max(0,min(1,a[k])) * max(0,min(1,a[l])) * F(i,k,l); } } } dL = max(dL, 0); }
void dQAL2012( int *neq, double *t, double *y, double *ydot, double *yout, int*ip) { //p_i from 2012 paper // time index //~ int i = (int)min( 1+(int)( hres * (*t) / treeT ), hres); int i = (int)min( (int)( hres * (*t) / treeT ), hres-1); int k,l,z,w; double a[m]; //normalized nlft double sumA = 0.; for (k = 0; k < m; k++) sumA += A(k); double r = Atotal / sumA; for (k = 0; k < m; k++) { dA(k) = 0.; if (Y(i,k) > 0) { a[k] = r * A(k)/Y(i,k); //~ a[k] = max( min(r * A(k)/Y(i,k), 1), 0) ; } else{ a[k] = 1.; // } } //dA for (k = 0; k < m; k++){ for (l = 0; l < m; l++){ if (k==l){ dA(k) -= a[l] * (F(i,l,k)) * a[k]; } else{ dA(k) += ((1 - a[k]) * F(i,k,l) + G(i,k,l)) * a[l] ; dA(k) -= (F(i,l,k) + G(i,l,k)) * a[k]; } } } //dQ for (z = 0; z < m; z++){ // col of Q for (k = 0; k < m; k++){ //row of Q dQ(k,z) = 0.; for (l = 0. ; l < m; l++){ if (k!=l){ dQ(k,z) += (F(i,k,l)*(1-a[k]) + G(i,k,l)) * Q(l,z)/Y(i,l); dQ(k,z) -= (F(i,l,k)*(1-a[l]) + G(i,l,k)) * Q(k,z)/Y(i,k); } // coalescent: //~ dQ(k,z) -= (F(i,k,l)+F(i,l,k)) * a[l] * Q(k,z)/Y(i,k); //dQ(k,z) -= F(i,k,l) * a[l] * Q(k,z)/Y(i,k); } } } //dL dL = 0.; for (k = 0; k < m; k++){ for (l =0 ; l < m; l++){ if (k==l){ dL += a[k] * ( (r*A(k)-1)/(Y(i,k)-1)) * F(i,k,l); } else{ dL += a[k] * a[l] * F(i,k,l); } } } }
extern "C" magma_int_t magma_dlaex3_m(magma_int_t nrgpu, magma_int_t k, magma_int_t n, magma_int_t n1, double* d, double* q, magma_int_t ldq, double rho, double* dlamda, double* q2, magma_int_t* indx, magma_int_t* ctot, double* w, double* s, magma_int_t* indxq, double** dwork, magma_queue_t stream[MagmaMaxGPUs][2], char range, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t* info ) { /* Purpose ======= DLAEX3 finds the roots of the secular equation, as defined by the values in D, W, and RHO, between 1 and K. It makes the appropriate calls to DLAED4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the K-by-K system which is solved here. It is used in the last step when only a part of the eigenvectors is required. It compute only the required part of the eigenvectors and the rest is not used. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= K (input) INTEGER The number of terms in the rational function to be solved by DLAED4. K >= 0. N (input) INTEGER The number of rows and columns in the Q matrix. N >= K (deflation may result in N>K). N1 (input) INTEGER The location of the last eigenvalue in the leading submatrix. min(1,N) <= N1 <= N/2. D (output) DOUBLE PRECISION array, dimension (N) D(I) contains the updated eigenvalues for 1 <= I <= K. Q (output) DOUBLE PRECISION array, dimension (LDQ,N) Initially the first K columns are used as workspace. On output the columns ??? to ??? contain the updated eigenvectors. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). RHO (input) DOUBLE PRECISION The value of the parameter in the rank one update equation. RHO >= 0 required. DLAMDA (input/output) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N) The first K columns of this matrix contain the non-deflated eigenvectors for the split problem. INDX (input) INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups (see DLAED2). The rows of the eigenvectors found by DLAED4 must be likewise permuted before the matrix multiply can take place. CTOT (input) INTEGER array, dimension (4) A count of the total number of the various types of columns in Q, as described in INDX. The fourth column type is any column which has been deflated. W (input/output) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector. Destroyed on output. S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system. INDXQ (output) INTEGER array, dimension (N) On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. DWORK (devices workspaces) DOUBLE PRECISION array of arrays, dimension NRGPU. if NRGPU = 1 the dimension of the first workspace should be (3*N*N/2+3*N) otherwise the NRGPU workspaces should have the size ceil((N-N1) * (N-N1) / floor(nrgpu/2)) + NB * ((N-N1) + (N-N1) / floor(nrgpu/2)) STREAM (device stream) magma_queue_t array, dimension (MagmaMaxGPUs,2) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an eigenvalue did not converge Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. ===================================================================== */ if (nrgpu==1){ magma_setdevice(0); magma_dlaex3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, indxq, *dwork, range, vl, vu, il, iu, info ); return MAGMA_SUCCESS; } double d_one = 1.; double d_zero = 0.; magma_int_t ione = 1; magma_int_t ineg_one = -1; char range_[] = {range, 0}; magma_int_t iil, iiu, rk; magma_int_t n1_loc, n2_loc, ib, nb, ib2, igpu; magma_int_t ni_loc[MagmaMaxGPUs]; magma_int_t i,ind,iq2,j,n12,n2,n23,tmp,lq2; double temp; magma_int_t alleig, valeig, indeig; alleig = lapackf77_lsame(range_, "A"); valeig = lapackf77_lsame(range_, "V"); indeig = lapackf77_lsame(range_, "I"); *info = 0; if(k < 0) *info=-1; else if(n < k) *info=-2; else if(ldq < max(1,n)) *info=-6; else if (! (alleig || valeig || indeig)) *info = -15; else { if (valeig) { if (n > 0 && vu <= vl) *info = -17; } else if (indeig) { if (il < 1 || il > max(1,n)) *info = -18; else if (iu < min(n,il) || iu > n) *info = -19; } } if(*info != 0){ magma_xerbla(__func__, -(*info)); return MAGMA_ERR_ILLEGAL_VALUE; } // Quick return if possible if(k == 0) return MAGMA_SUCCESS; /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), which on any of these machines zeros out the bottommost bit of DLAMDA(I) if it is 1; this makes the subsequent subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DLAMDA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DLAMDA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DLAMBDA(I) to prevent optimizing compilers from eliminating this code.*/ //#define CHECK_CPU #ifdef CHECK_CPU double *hwS[2][MagmaMaxGPUs], *hwQ[2][MagmaMaxGPUs], *hwQ2[MagmaMaxGPUs]; #define hQ2(id) (hwQ2[id]) #define hS(id, ii) (hwS[ii][id]) #define hQ(id, ii) (hwQ[ii][id]) #endif n2 = n - n1; n12 = ctot[0] + ctot[1]; n23 = ctot[1] + ctot[2]; iq2 = n1 * n12; lq2 = iq2 + n2 * n23; n1_loc = (n1-1) / (nrgpu/2) + 1; n2_loc = (n2-1) / (nrgpu/2) + 1; nb = magma_get_dlaex3_m_nb(); if (n1 >= magma_get_dlaex3_m_k()){ #ifdef CHECK_CPU for (igpu = 0; igpu < nrgpu; ++igpu){ magma_dmalloc_pinned( &(hwS[0][igpu]), n2*nb ); magma_dmalloc_pinned( &(hwS[1][igpu]), n2*nb ); magma_dmalloc_pinned( &(hwQ2[igpu]), n2*n2_loc ); magma_dmalloc_pinned( &(hwQ[0][igpu]), n2_loc*nb ); magma_dmalloc_pinned( &(hwQ[1][igpu]), n2_loc*nb ); } #endif for (igpu = 0; igpu < nrgpu-1; igpu += 2){ ni_loc[igpu] = min(n1_loc, n1 - igpu/2 * n1_loc); #ifdef CHECK_CPU lapackf77_dlacpy("A", &ni_loc[igpu], &n12, q2+n1_loc*(igpu/2), &n1, hQ2(igpu), &n1_loc); #endif magma_setdevice(igpu); magma_dsetmatrix_async( ni_loc[igpu], n12, q2+n1_loc*(igpu/2), n1, dQ2(igpu), n1_loc, stream[igpu][0] ); ni_loc[igpu+1] = min(n2_loc, n2 - igpu/2 * n2_loc); #ifdef CHECK_CPU lapackf77_dlacpy("A", &ni_loc[igpu+1], &n23, q2+iq2+n2_loc*(igpu/2), &n2, hQ2(igpu+1), &n2_loc); #endif magma_setdevice(igpu+1); magma_dsetmatrix_async( ni_loc[igpu+1], n23, q2+iq2+n2_loc*(igpu/2), n2, dQ2(igpu+1), n2_loc, stream[igpu+1][0] ); } } // #ifdef _OPENMP ///////////////////////////////////////////////////////////////////////////////// //openmp implementation ///////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER magma_timestr_t start, end; start = get_current_time(); #endif #pragma omp parallel private(i, j, tmp, temp) { magma_int_t id = omp_get_thread_num(); magma_int_t tot = omp_get_num_threads(); magma_int_t ib = ( id * k) / tot; //start index of local loop magma_int_t ie = ((id+1) * k) / tot; //end index of local loop magma_int_t ik = ie - ib; //number of local indices for(i = ib; i < ie; ++i) dlamda[i]=lapackf77_dlamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for(j = ib; j < ie; ++j){ magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_dlaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if(iinfo != 0){ #pragma omp critical (info) *info=iinfo; break; } } #pragma omp barrier if(*info == 0){ #pragma omp single { //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_dlamrg( &k, &nk, d, &ione , &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_dvrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_dirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; } if (k == 2){ #pragma omp single { for(j = 0; j < k; ++j){ w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } } else if(k != 1){ // Compute updated W. blasf77_dcopy( &ik, &w[ib], &ione, &s[ib], &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_dcopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione); for(j = 0; j < k; ++j){ magma_int_t i_tmp = min(j, ie); for(i = ib; i < i_tmp; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); i_tmp = max(j+1, ib); for(i = i_tmp; i < ie; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for(i = ib; i < ie; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); #pragma omp barrier //reduce the number of used threads to have enough S workspace tot = min(n1, omp_get_num_threads()); if(id < tot){ ib = ( id * rk) / tot + iil - 1; ie = ((id+1) * rk) / tot + iil - 1; ik = ie - ib; } else{ ib = -1; ie = -1; ik = -1; } // Compute eigenvectors of the modified rank-1 modification. for(j = ib; j < ie; ++j){ for(i = 0; i < k; ++i) s[id*k + i] = w[i] / *Q(i,j); temp = cblas_dnrm2( k, s+id*k, 1); for(i = 0; i < k; ++i){ magma_int_t iii = indx[i] - 1; *Q(i,j) = s[id*k + iii] / temp; } } } } } if (*info != 0) return MAGMA_SUCCESS; //?????? #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER end = get_current_time(); printf("eigenvalues/vector D+zzT = %6.2f\n", GetTimerValue(start,end)/1000.); #endif #else ///////////////////////////////////////////////////////////////////////////////// // Non openmp implementation ///////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER magma_timestr_t start, end; start = get_current_time(); #endif for(i = 0; i < k; ++i) dlamda[i]=lapackf77_dlamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for(j = 0; j < k; ++j){ magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_dlaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if(iinfo != 0) *info=iinfo; } if(*info != 0) return MAGMA_SUCCESS; //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_dlamrg( &k, &nk, d, &ione , &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_dvrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_dirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; if (k == 2){ for(j = 0; j < k; ++j){ w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } else if(k != 1){ // Compute updated W. blasf77_dcopy( &k, w, &ione, s, &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_dcopy( &k, q, &tmp, w, &ione); for(j = 0; j < k; ++j){ for(i = 0; i < j; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); for(i = j+1; i < k; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for(i = 0; i < k; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); // Compute eigenvectors of the modified rank-1 modification. for(j = iil-1; j < iiu; ++j){ for(i = 0; i < k; ++i) s[i] = w[i] / *Q(i,j); temp = cblas_dnrm2( k, s, 1); for(i = 0; i < k; ++i){ magma_int_t iii = indx[i] - 1; *Q(i,j) = s[iii] / temp; } } } #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER end = get_current_time(); printf("eigenvalues/vector D+zzT = %6.2f\n", GetTimerValue(start,end)/1000.); #endif #endif //_OPENMP // Compute the updated eigenvectors. #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER start = get_current_time(); #endif if(rk > 0){ if (n1 < magma_get_dlaex3_m_k()){ // stay on the CPU if( n23 != 0 ){ lapackf77_dlacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23); blasf77_dgemm("N", "N", &n2, &rk, &n23, &d_one, &q2[iq2], &n2, s, &n23, &d_zero, Q(n1,iil-1), &ldq ); } else lapackf77_dlaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if( n12 != 0 ) { lapackf77_dlacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12); blasf77_dgemm("N", "N", &n1, &rk, &n12, &d_one, q2, &n1, s, &n12, &d_zero, Q(0,iil-1), &ldq); } else lapackf77_dlaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } else { //use the gpus ib = min(nb, rk); for (igpu = 0; igpu < nrgpu-1; igpu += 2){ if (n23 != 0) { magma_setdevice(igpu+1); magma_dsetmatrix_async( n23, ib, Q(ctot[0],iil-1), ldq, dS(igpu+1,0), n23, stream[igpu+1][0] ); } if (n12 != 0) { magma_setdevice(igpu); magma_dsetmatrix_async( n12, ib, Q(0,iil-1), ldq, dS(igpu,0), n12, stream[igpu][0] ); } } for (i = 0; i<rk; i+=nb){ ib = min(nb, rk - i); ind = (i/nb)%2; if (i+nb<rk){ ib2 = min(nb, rk - i - nb); for (igpu = 0; igpu < nrgpu-1; igpu += 2){ if (n23 != 0) { magma_setdevice(igpu+1); magma_dsetmatrix_async( n23, ib2, Q(ctot[0],iil-1+i+nb), ldq, dS(igpu+1,(ind+1)%2), n23, stream[igpu+1][(ind+1)%2] ); } if (n12 != 0) { magma_setdevice(igpu); magma_dsetmatrix_async( n12, ib2, Q(0,iil-1+i+nb), ldq, dS(igpu,(ind+1)%2), n12, stream[igpu][(ind+1)%2] ); } } } // Ensure that the data is copied on gpu since we will overwrite it. for (igpu = 0; igpu < nrgpu-1; igpu += 2){ if (n23 != 0) { #ifdef CHECK_CPU lapackf77_dlacpy("A", &n23, &ib, Q(ctot[0],iil-1+i), &ldq, hS(igpu+1,ind), &n23); #endif magma_setdevice(igpu+1); magma_queue_sync( stream[igpu+1][ind] ); } if (n12 != 0) { #ifdef CHECK_CPU lapackf77_dlacpy("A", &n12, &ib, Q(0,iil-1+i), &ldq, hS(igpu,ind), &n12); #endif magma_setdevice(igpu); magma_queue_sync( stream[igpu][ind] ); } } for (igpu = 0; igpu < nrgpu-1; igpu += 2){ if (n23 != 0) { #ifdef CHECK_CPU blasf77_dgemm("N", "N", &ni_loc[igpu+1], &ib, &n23, &d_one, hQ2(igpu+1), &n2_loc, hS(igpu+1,ind), &n23, &d_zero, hQ(igpu+1, ind), &n2_loc); #endif magma_setdevice(igpu+1); magmablasSetKernelStream(stream[igpu+1][ind]); magma_dgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu+1], ib, n23, d_one, dQ2(igpu+1), n2_loc, dS(igpu+1, ind), n23, d_zero, dQ(igpu+1, ind), n2_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu+1, cpu_gpu_ddiff(ni_loc[igpu+1], ib, hQ(igpu+1, ind), n2_loc, dQ(igpu+1, ind), n2_loc)); #endif } if (n12 != 0) { #ifdef CHECK_CPU blasf77_dgemm("N", "N", &ni_loc[igpu], &ib, &n12, &d_one, hQ2(igpu), &n1_loc, hS(igpu,ind%2), &n12, &d_zero, hQ(igpu, ind%2), &n1_loc); #endif magma_setdevice(igpu); magmablasSetKernelStream(stream[igpu][ind]); magma_dgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu], ib, n12, d_one, dQ2(igpu), n1_loc, dS(igpu, ind), n12, d_zero, dQ(igpu, ind), n1_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu, cpu_gpu_ddiff(ni_loc[igpu], ib, hQ(igpu, ind), n1_loc, dQ(igpu, ind), n1_loc)); #endif } } for (igpu = 0; igpu < nrgpu-1; igpu += 2){ if (n23 != 0) { magma_setdevice(igpu+1); magma_dgetmatrix( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, Q(n1+n2_loc*(igpu/2),iil-1+i), ldq ); // magma_dgetmatrix_async( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, // Q(n1+n2_loc*(igpu/2),iil-1+i), ldq, stream[igpu+1][ind] ); } if (n12 != 0) { magma_setdevice(igpu); magma_dgetmatrix( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, Q(n1_loc*(igpu/2),iil-1+i), ldq ); // magma_dgetmatrix_async( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, // Q(n1_loc*(igpu/2),iil-1+i), ldq, stream[igpu][ind] ); } } } for (igpu = 0; igpu < nrgpu; ++igpu){ #ifdef CHECK_CPU magma_free_pinned( hwS[1][igpu] ); magma_free_pinned( hwS[0][igpu] ); magma_free_pinned( hwQ2[igpu] ); magma_free_pinned( hwQ[1][igpu] ); magma_free_pinned( hwQ[0][igpu] ); #endif magma_setdevice(igpu); magmablasSetKernelStream(NULL); magma_queue_sync( stream[igpu][0] ); magma_queue_sync( stream[igpu][1] ); } if( n23 == 0 ) lapackf77_dlaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if( n12 == 0 ) lapackf77_dlaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } } #ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER end = get_current_time(); printf("gemms = %6.2f\n", GetTimerValue(start,end)/1000.); #endif return MAGMA_SUCCESS; } /*magma_dlaed3_m*/
/** Purpose ------- SLAEX3 finds the roots of the secular equation, as defined by the values in D, W, and RHO, between 1 and K. It makes the appropriate calls to SLAED4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the K-by-K system which is solved here. It is used in the last step when only a part of the eigenvectors is required. It compute only the required part of the eigenvectors and the rest is not used. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] k INTEGER The number of terms in the rational function to be solved by SLAED4. K >= 0. @param[in] n INTEGER The number of rows and columns in the Q matrix. N >= K (deflation may result in N > K). @param[in] n1 INTEGER The location of the last eigenvalue in the leading submatrix. min(1,N) <= N1 <= N/2. @param[out] d REAL array, dimension (N) D(I) contains the updated eigenvalues for 1 <= I <= K. @param[out] Q REAL array, dimension (LDQ,N) Initially the first K columns are used as workspace. On output the columns ??? to ??? contain the updated eigenvectors. @param[in] ldq INTEGER The leading dimension of the array Q. LDQ >= max(1,N). @param[in] rho REAL The value of the parameter in the rank one update equation. RHO >= 0 required. @param[in,out] dlamda REAL array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. @param[in] Q2 REAL array, dimension (LDQ2, N) The first K columns of this matrix contain the non-deflated eigenvectors for the split problem. TODO what is LDQ2? @param[in] indx INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups (see SLAED2). The rows of the eigenvectors found by SLAED4 must be likewise permuted before the matrix multiply can take place. @param[in] ctot INTEGER array, dimension (4) A count of the total number of the various types of columns in Q, as described in INDX. The fourth column type is any column which has been deflated. @param[in,out] w REAL array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector. Destroyed on output. @param s (workspace) REAL array, dimension (N1 + 1)*K Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system. @param[out] indxq INTEGER array, dimension (N) On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. @param dwork (workspace) REAL array, dimension (3*N*N/2+3*N) @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. TODO verify range, vl, vu, il, iu -- copied from slaex1. @param[in] vl REAL @param[in] vu REAL if RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER if RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = 1, an eigenvalue did not converge Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. @ingroup magma_ssyev_aux ********************************************************************/ extern "C" magma_int_t magma_slaex3( magma_int_t k, magma_int_t n, magma_int_t n1, float *d, float *Q, magma_int_t ldq, float rho, float *dlamda, float *Q2, magma_int_t *indx, magma_int_t *ctot, float *w, float *s, magma_int_t *indxq, magmaFloat_ptr dwork, magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *info ) { #define Q(i_,j_) (Q + (i_) + (j_)*ldq) #define dQ(i_,j_) (dQ + (i_) + (j_)*lddq) #define dQ2(i_,j_) (dQ2 + (i_) + (j_)*lddq) #define dS(i_,j_) (dS + (i_) + (j_)*lddq) float d_one = 1.; float d_zero = 0.; magma_int_t ione = 1; magma_int_t ineg_one = -1; magma_int_t iil, iiu, rk; magma_int_t lddq = n/2 + 1; magmaFloat_ptr dQ2 = dwork; magmaFloat_ptr dS = dQ2 + n*lddq; magmaFloat_ptr dQ = dS + n*lddq; magma_int_t i, iq2, j, n12, n2, n23, tmp, lq2; float temp; magma_int_t alleig, valeig, indeig; alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); *info = 0; if (k < 0) *info=-1; else if (n < k) *info=-2; else if (ldq < max(1,n)) *info=-6; else if (! (alleig || valeig || indeig)) *info = -15; else { if (valeig) { if (n > 0 && vu <= vl) *info = -17; } else if (indeig) { if (il < 1 || il > max(1,n)) *info = -18; else if (iu < min(n,il) || iu > n) *info = -19; } } if (*info != 0) { magma_xerbla(__func__, -(*info)); return *info; } // Quick return if possible if (k == 0) return *info; /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), which on any of these machines zeros out the bottommost bit of DLAMDA(I) if it is 1; this makes the subsequent subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DLAMDA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DLAMDA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DLAMBDA(I) to prevent optimizing compilers from eliminating this code.*/ n2 = n - n1; n12 = ctot[0] + ctot[1]; n23 = ctot[1] + ctot[2]; iq2 = n1 * n12; lq2 = iq2 + n2 * n23; magma_queue_t queue; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); magma_ssetvector_async( lq2, Q2, 1, dQ2(0,0), 1, queue ); #ifdef _OPENMP ///////////////////////////////////////////////////////////////////////////////// //openmp implementation ///////////////////////////////////////////////////////////////////////////////// //magma_timer_t time=0; //timer_start( time ); #pragma omp parallel private(i, j, tmp, temp) { magma_int_t id = omp_get_thread_num(); magma_int_t tot = omp_get_num_threads(); magma_int_t ib = ( id * k) / tot; //start index of local loop magma_int_t ie = ((id+1) * k) / tot; //end index of local loop magma_int_t ik = ie - ib; //number of local indices for (i = ib; i < ie; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = ib; j < ie; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) { #pragma omp critical (info) *info=iinfo; break; } } #pragma omp barrier if (*info == 0) { #pragma omp single { //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) { magma_svrange(k, d, &iil, &iiu, vl, vu); } else if (indeig) { magma_sirange(k, indxq, &iil, &iiu, il, iu); } else { iil = 1; iiu = k; } rk = iiu - iil + 1; } if (k == 2) { #pragma omp single { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } } else if (k != 1) { // Compute updated W. blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione); for (j = 0; j < k; ++j) { magma_int_t i_tmp = min(j, ie); for (i = ib; i < i_tmp; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); i_tmp = max(j+1, ib); for (i = i_tmp; i < ie; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = ib; i < ie; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); #pragma omp barrier //reduce the number of used threads to have enough S workspace tot = min(n1, omp_get_num_threads()); if (id < tot) { ib = ( id * rk) / tot + iil - 1; ie = ((id+1) * rk) / tot + iil - 1; ik = ie - ib; } else { ib = -1; ie = -1; ik = -1; } // Compute eigenvectors of the modified rank-1 modification. for (j = ib; j < ie; ++j) { for (i = 0; i < k; ++i) s[id*k + i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s+id*k, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[id*k + iii] / temp; } } } } } // end omp parallel if (*info != 0) return *info; //timer_stop( time ); //timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #else ///////////////////////////////////////////////////////////////////////////////// // Non openmp implementation ///////////////////////////////////////////////////////////////////////////////// // magma_timer_t time=0; // timer_start( time ); for (i = 0; i < k; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = 0; j < k; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) *info=iinfo; } if (*info != 0) return *info; //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) { magma_svrange(k, d, &iil, &iiu, vl, vu); } else if (indeig) { magma_sirange(k, indxq, &iil, &iiu, il, iu); } else { iil = 1; iiu = k; } rk = iiu - iil + 1; if (k == 2) { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } else if (k != 1) { // Compute updated W. blasf77_scopy( &k, w, &ione, s, &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &k, Q, &tmp, w, &ione); for (j = 0; j < k; ++j) { for (i = 0; i < j; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); for (i = j+1; i < k; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = 0; i < k; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); // Compute eigenvectors of the modified rank-1 modification. for (j = iil-1; j < iiu; ++j) { for (i = 0; i < k; ++i) s[i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[iii] / temp; } } } //timer_stop( time ); //timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #endif //_OPENMP // Compute the updated eigenvectors. //timer_start( time ); //magma_queue_sync( queue ); // previously, needed to setvector finished. Now all on same queue, so not needed? if (rk != 0) { if ( n23 != 0 ) { if (rk < magma_get_slaed3_k()) { lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23); blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2, s, &n23, &d_zero, Q(n1,iil-1), &ldq ); } else { magma_ssetmatrix( n23, rk, Q(ctot[0],iil-1), ldq, dS(0,0), n23, queue ); magma_sgemm( MagmaNoTrans, MagmaNoTrans, n2, rk, n23, d_one, dQ2(iq2,0), n2, dS(0,0), n23, d_zero, dQ(0,0), lddq, queue ); magma_sgetmatrix( n2, rk, dQ(0,0), lddq, Q(n1,iil-1), ldq, queue ); } } else lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 != 0 ) { if (rk < magma_get_slaed3_k()) { lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12); blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1, s, &n12, &d_zero, Q(0,iil-1), &ldq); } else { magma_ssetmatrix( n12, rk, Q(0,iil-1), ldq, dS(0,0), n12, queue ); magma_sgemm( MagmaNoTrans, MagmaNoTrans, n1, rk, n12, d_one, dQ2(0,0), n1, dS(0,0), n12, d_zero, dQ(0,0), lddq, queue ); magma_sgetmatrix( n1, rk, dQ(0,0), lddq, Q(0,iil-1), ldq, queue ); } } else lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } //timer_stop( time ); //timer_printf( "gemms = %6.2f\n", time ); magma_queue_destroy( queue ); return *info; } /* magma_slaex3 */