void PatchGodunov::updateState(FArrayBox& a_U, FluxBox& a_F, Real& a_maxWaveSpeed, const FArrayBox& a_S, const Real& a_dt, const Box& a_box) { CH_assert(isDefined()); CH_assert(a_box == m_currentBox); int numPrim = m_gdnvPhysics->numPrimitives(); int numFlux = m_gdnvPhysics->numFluxes(); FluxBox whalf(a_box,numPrim); whalf.setVal(0.0); a_F.resize(a_box,numFlux); a_F.setVal(0.0); computeWHalf(whalf, a_U, a_S, a_dt, a_box); FArrayBox dU(a_U.box(),a_U.nComp()); computeUpdate(dU, a_F, a_U, whalf, a_dt, a_box); a_U += dU; // Get and return the maximum wave speed on this patch/grid a_maxWaveSpeed = m_gdnvPhysics->getMaxWaveSpeed(a_U, m_currentBox); }
float SHRot::Ry(const int k, const int l, const int m, const int n) { if(((l==0 && m==0 && n==0) || (l==1 && m==-1 && n==-1)) && k == 0) return 1.f; else if((l==0 && m==0 && n==0) || (l==1 && m==-1 && n==-1)) return 0.f; else if(l==1 && ((m==-1 && n==0) || (m==-1 && n==1) || (m==0 && n==-1) || (m==1 && n==-1))) return 0.f; else if(l==1 && ((m==0 && n==0) || (m==1 && n==1))) return 1.f - (float)k; // ONLY FOR k <= 2!!!!! else if(l==1 && ((m==0 && n==1))) return -(float)(k%2); // ONLY FOR k <= 2!!!!! else if(l==1 && ((m==1 && n==0))) return (float)(k%2); // ONLY FOR k <= 2!!!!! else return u(l,m,n) * dU(k,l,m,n) + v(l,m,n) * dV(k,l,m,n) + w(l,m,n) * dW(k,l,m,n); }
LowRankVector::LowRankVector(integer Ur, integer Uc, integer Drc, integer Vr, integer Vc) { StieVector dU(Ur, Uc); EucVector dD(Drc, Drc); StieVector dV(Vr, Vc); Element **Elems = new Element *[3]; Elems[0] = &dU; Elems[1] = &dD; Elems[2] = &dV; integer *powsintev = new integer[4]; powsintev[0] = 0; powsintev[1] = 1; powsintev[2] = 2; powsintev[3] = 3; ProductElementInitialization(Elems, 3, powsintev, 3); delete[] powsintev; delete[] Elems; };
VecDoub Actions_AxisymmetricFudge_InterpTables::IuIv(VecDoub X,double Delta,double E,double Lzsq){ CartesianToUVCoords PT(X,Delta); double sh1sq=pow(sinh(us),2), Phiu1=Phiuv({us,PT.v},Delta); double IuS=E*(PT.shu2-sh1sq)-.5*pow(PT.pu,2)/PT.Delta2-.5*Lzsq/PT.Delta2*(1/PT.shu2-1/sh1sq)-dU(PT.u,PT.v,PT.sv2,Phiu1,sh1sq,Delta); double umid = Getu0(us,E,Delta,IuS,Lzsq,sh1sq,PT.v,PT.sv2); sh1sq=pow(sinh(umid),2); Phiu1=Phiuv({umid,PT.v},Delta); IuS=E*(PT.shu2-sh1sq)-.5*pow(PT.pu,2)/PT.Delta2-.5*Lzsq/PT.Delta2*(1/PT.shu2-1/sh1sq)-dU(PT.u,PT.v,PT.sv2,Phiu1,sh1sq,Delta); IuS=IuS/pow(cosh(umid),2); double IvS=.5*pow(PT.pv,2)/PT.Delta2-E*PT.sv2+.5*Lzsq/(PT.Delta2*PT.sv2)-dV(PT.v,PT.u,PT.shu2,Delta); IvS=(IvS+E-.5*Lzsq/PT.Delta2)/pow(cosh(umid),2); return {IuS,IvS}; }
double Actions_AxisymmetricFudge_InterpTables::find_umid(VecDoub X,double Delta,double E,double Lzsq){ CartesianToUVCoords PT(X,Delta); double sh1sq=pow(sinh(us),2), Phiu1=Phiuv({us,PT.v},Delta); double IuS=E*(PT.shu2-sh1sq)-.5*pow(PT.pu,2)/PT.Delta2-.5*Lzsq/PT.Delta2*(1/PT.shu2-1/sh1sq)-dU(PT.u,PT.v,PT.sv2,Phiu1,sh1sq,Delta); return Getu0(us,E,Delta,IuS,Lzsq,sh1sq,PT.v,PT.sv2); }
void CLargeStrainElasticity::flux_matrix(const FEMesh *mesh, const Element *element, const ElementFuncNodeIterator &node, const Flux *flux, const MasterPosition &pt, double time, SmallSystem *fluxmtx) const { int (*ij2voigt)(int,int) = &SymTensorIndex::ij2voigt; // shorter func name SmallMatrix dU(3); // gradient of displacement double Fval; // the value of the shape function (for node) DoubleVec dF(3); // and its derivative at the given pt bool inplane = false; // needed both in 2D & 3D versions regardless, // passed to contract_C_dU_dF #if DIM==2 // in 2D, check if it is an in-plane eqn or a plane-flux eqn. static CompoundField *displacement = dynamic_cast<CompoundField*>(Field::getField("Displacement")); inplane = displacement->in_plane( mesh ); #endif // check for unexpected flux, flux should be a stress flux if (*flux != *stress_flux) { throw ErrProgrammingError("Unexpected flux", __FILE__, __LINE__); } // evaluate the shape function and its gradient (of node) at the given pt Fval = node.shapefunction( pt ); // value of the shape function dF[0] = node.dshapefunction( 0, pt ); // x-deriv of the shape function dF[1] = node.dshapefunction( 1, pt ); // y-deriv of the shape function #if DIM==3 dF[2] = node.dshapefunction( 2, pt ); // z-deriv of the shape function #endif computeDisplacementGradient( mesh, element, pt, dU ); const Cijkl CC = cijkl( mesh, element, pt ); // elasticity modulus // add the flux contributions to stiffness matrix element // k_indx is needed for fluxmtx->stifness_matrix_element function, // which does not take int k as argument VectorFieldIndex k_indx; for (SymTensorIterator ij_iter; !ij_iter.end(); ++ij_iter) { int k0, k1, k2, ij = ij_iter.integer(); double nonlinear_part; // to store the sum from the nonlinear terms // TODO: Use tensor iterators for k0, k1, k2. #if DIM==2 // sum CC(i,j,k,l)*dF(l), k=0 over l=0,1, then add to stiffness_mtx k_indx.set( 0 ); k0 = ij2voigt( 0,0 ); k1 = ij2voigt( 0,1 ); nonlinear_part = contract_C_dU_dF(CC, dU, dF, ij, 0, inplane ); // at ij, k=0 fluxmtx->stiffness_matrix_element( ij_iter, displacement, k_indx, node ) += CC( ij,k0 ) * dF[0] + CC( ij,k1 ) * dF[1] + nonlinear_part; // sum CC(i,j,k,l)*dF(l), k=1 over l=0,1, then add to stiffness_mtx k_indx.set( 1 ); k0 = ij2voigt( 1,0 ); k1 = ij2voigt( 1,1 ); nonlinear_part = contract_C_dU_dF( CC, dU, dF, ij, 1, inplane ); // at ij, k=1 fluxmtx->stiffness_matrix_element( ij_iter, displacement, k_indx, node ) += CC( ij,k0 ) * dF[0] + CC( ij,k1 ) * dF[1] + nonlinear_part; #elif DIM==3 // sum CC(i,j,k,l)*dF(l), k=0 over l=0,1,2 then add to stiffness_mtx k_indx.set( 0 ); k0 = ij2voigt( 0,0 ); k1 = ij2voigt( 0,1 ); k2 = ij2voigt( 0,2 ); nonlinear_part = contract_C_dU_dF( CC, dU, dF, ij, 0, inplane ); // at ij, k=0 fluxmtx->stiffness_matrix_element( ij_iter, displacement, k_indx, node ) += CC( ij,k0 ) * dF[0] + CC( ij,k1 ) * dF[1] + CC( ij,k2 ) * dF[2] + nonlinear_part; // sum CC(i,j,k,l)*dF(l), k=1 over l=0,1,2 then add to stiffness_mtx k_indx.set( 1 ); k0 = ij2voigt( 1,0 ); k1 = ij2voigt( 1,1 ); k2 = ij2voigt( 1,2 ); nonlinear_part = contract_C_dU_dF( CC, dU, dF, ij, 1, inplane ); // at ij, k=1 fluxmtx->stiffness_matrix_element( ij_iter, displacement, k_indx, node ) += CC( ij,k0 ) * dF[0] + CC( ij,k1 ) * dF[1] + CC( ij,k2 ) * dF[2] + nonlinear_part; // sum CC(i,j,k,l)*dF(l), k=2 over l=0,1,2 then add to stiffness_mtx k_indx.set( 2 ); k0 = ij2voigt( 2,0 ); k1 = ij2voigt( 2,1 ); k2 = ij2voigt( 2,2 ); nonlinear_part = contract_C_dU_dF( CC, dU, dF, ij, 2, inplane ); // at ij, k=2 fluxmtx->stiffness_matrix_element( ij_iter, displacement, k_indx, node ) += CC( ij,k0 ) * dF[0] + CC( ij,k1 ) * dF[1] + CC( ij,k2 ) * dF[2] + nonlinear_part; #endif #if DIM==2 if ( !inplane ) // now contributions from z-deriv of displacement field { Field *disp_z_deriv = displacement->out_of_plane(); for(IteratorP k_iter = disp_z_deriv->iterator( ALL_INDICES ); !k_iter.end(); ++k_iter) { double diag_factor = ( k_iter.integer()==2 ? 1.0 : 0.5 ); k2 = ij2voigt( 2, k_iter.integer() ); fluxmtx->stiffness_matrix_element( ij_iter, disp_z_deriv, k_iter, node ) += diag_factor * Fval * CC( ij,k2 ); } } // end of 'if (!inplane)' #endif } // end of loop over ij } // end of 'CLargeStrainElasticity::flux_matrix'
void Foam::kineticTheoryModel::solve(const volTensorField& gradUat) { if (!kineticTheory_) { return; } const scalar sqrtPi = sqrt(constant::mathematical::pi); surfaceScalarField phi(1.5*rhoa_*phia_*fvc::interpolate(alpha_)); volTensorField dU(gradUat.T()); //fvc::grad(Ua_); volSymmTensorField D(symm(dU)); // NB, drag = K*alpha*beta, // (the alpha and beta has been extracted from the drag function for // numerical reasons) volScalarField Ur(mag(Ua_ - Ub_)); volScalarField betaPrim(alpha_*(1.0 - alpha_)*draga_.K(Ur)); // Calculating the radial distribution function (solid volume fraction is // limited close to the packing limit, but this needs improvements) // The solution is higly unstable close to the packing limit. gs0_ = radialModel_->g0 ( min(max(alpha_, scalar(1e-6)), alphaMax_ - 0.01), alphaMax_ ); // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45) volScalarField PsCoeff ( granularPressureModel_->granularPressureCoeff ( alpha_, gs0_, rhoa_, e_ ) ); // 'thermal' conductivity (Table 3.3, p. 49) kappa_ = conductivityModel_->kappa(alpha_, Theta_, gs0_, rhoa_, da_, e_); // particle viscosity (Table 3.2, p.47) mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_); dimensionedScalar Tsmall ( "small", dimensionSet(0 , 2 ,-2 ,0 , 0, 0, 0), 1.0e-6 ); dimensionedScalar TsmallSqrt = sqrt(Tsmall); volScalarField ThetaSqrt(sqrt(Theta_)); // dissipation (Eq. 3.24, p.50) volScalarField gammaCoeff ( 12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi ); // Eq. 3.25, p. 50 Js = J1 - J2 volScalarField J1(3.0*betaPrim); volScalarField J2 ( 0.25*sqr(betaPrim)*da_*sqr(Ur) /(max(alpha_, scalar(1e-6))*rhoa_*sqrtPi*(ThetaSqrt + TsmallSqrt)) ); // bulk viscosity p. 45 (Lun et al. 1984). lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*ThetaSqrt/sqrtPi; // stress tensor, Definitions, Table 3.1, p. 43 volSymmTensorField tau(2.0*mua_*D + (lambda_ - (2.0/3.0)*mua_)*tr(D)*I); if (!equilibrium_) { // construct the granular temperature equation (Eq. 3.20, p. 44) // NB. note that there are two typos in Eq. 3.20 // no grad infront of Ps // wrong sign infront of laplacian fvScalarMatrix ThetaEqn ( fvm::ddt(1.5*alpha_*rhoa_, Theta_) + fvm::div(phi, Theta_, "div(phi,Theta)") == fvm::SuSp(-((PsCoeff*I) && dU), Theta_) + (tau && dU) + fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)") + fvm::Sp(-gammaCoeff, Theta_) + fvm::Sp(-J1, Theta_) + fvm::Sp(J2/(Theta_ + Tsmall), Theta_) ); ThetaEqn.relax(); ThetaEqn.solve(); } else { // equilibrium => dissipation == production // Eq. 4.14, p.82 volScalarField K1(2.0*(1.0 + e_)*rhoa_*gs0_); volScalarField K3 ( 0.5*da_*rhoa_* ( (sqrtPi/(3.0*(3.0-e_))) *(1.0 + 0.4*(1.0 + e_)*(3.0*e_ - 1.0)*alpha_*gs0_) +1.6*alpha_*gs0_*(1.0 + e_)/sqrtPi ) ); volScalarField K2 ( 4.0*da_*rhoa_*(1.0 + e_)*alpha_*gs0_/(3.0*sqrtPi) - 2.0*K3/3.0 ); volScalarField K4(12.0*(1.0 - sqr(e_))*rhoa_*gs0_/(da_*sqrtPi)); volScalarField trD(tr(D)); volScalarField tr2D(sqr(trD)); volScalarField trD2(tr(D & D)); volScalarField t1(K1*alpha_ + rhoa_); volScalarField l1(-t1*trD); volScalarField l2(sqr(t1)*tr2D); volScalarField l3 ( 4.0 *K4 *max(alpha_, scalar(1e-6)) *(2.0*K3*trD2 + K2*tr2D) ); Theta_ = sqr((l1 + sqrt(l2 + l3))/(2.0*(alpha_ + 1.0e-4)*K4)); } Theta_.max(1.0e-15); Theta_.min(1.0e+3); volScalarField pf ( frictionalStressModel_->frictionalPressure ( alpha_, alphaMinFriction_, alphaMax_, Fr_, eta_, p_ ) ); PsCoeff += pf/(Theta_+Tsmall); PsCoeff.min(1.0e+10); PsCoeff.max(-1.0e+10); // update particle pressure pa_ = PsCoeff*Theta_; // frictional shear stress, Eq. 3.30, p. 52 volScalarField muf ( frictionalStressModel_->muf ( alpha_, alphaMax_, pf, D, phi_ ) ); // add frictional stress mua_ += muf; mua_.min(1.0e+2); mua_.max(0.0); Info<< "kinTheory: max(Theta) = " << max(Theta_).value() << endl; volScalarField ktn(mua_/rhoa_); Info<< "kinTheory: min(nua) = " << min(ktn).value() << ", max(nua) = " << max(ktn).value() << endl; Info<< "kinTheory: min(pa) = " << min(pa_).value() << ", max(pa) = " << max(pa_).value() << endl; }
void Foam::kineticTheoryModel::solve(const volTensorField& gradUat) { if(kineticTheory_) { //if (!kineticTheory_) //{ // return; //} //const scalar sqrtPi = sqrt(mathematicalConstant::pi); if(Berzi_) { Info << "Berzi Model is used" << endl; } else{ const scalar sqrtPi = sqrt(constant::mathematical::pi); surfaceScalarField phi = 1.5*rhoa_*phia_*fvc::interpolate(alpha_); volTensorField dU = gradUat.T();//fvc::grad(Ua_); volSymmTensorField D = symm(dU); // NB, drag = K*alpha*beta, // (the alpha and beta has been extracted from the drag function for // numerical reasons) volScalarField Ur = mag(Ua_ - Ub_); volScalarField betaPrim = alpha_*(1.0 - alpha_)*draga_.K(Ur); // Calculating the radial distribution function (solid volume fraction is // limited close to the packing limit, but this needs improvements) // The solution is higly unstable close to the packing limit. gs0_ = radialModel_->g0 ( min(max(alpha_, 1e-6), alphaMax_ - 0.01), alphaMax_ ); // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45) volScalarField PsCoeff = granularPressureModel_->granularPressureCoeff ( alpha_, gs0_, rhoa_, e_ ); // 'thermal' conductivity (Table 3.3, p. 49) kappa_ = conductivityModel_->kappa(alpha_, Theta_, gs0_, rhoa_, da_, e_); // particle viscosity (Table 3.2, p.47) mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_); dimensionedScalar Tsmall ( "small", dimensionSet(0 , 2 ,-2 ,0 , 0, 0, 0), 1.0e-6 ); dimensionedScalar TsmallSqrt = sqrt(Tsmall); volScalarField ThetaSqrt = sqrt(Theta_); // dissipation (Eq. 3.24, p.50) volScalarField gammaCoeff = 12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi; // Eq. 3.25, p. 50 Js = J1 - J2 volScalarField J1 = 3.0*betaPrim; volScalarField J2 = 0.25*sqr(betaPrim)*da_*sqr(Ur) /(max(alpha_, 1e-6)*rhoa_*sqrtPi*(ThetaSqrt + TsmallSqrt)); // bulk viscosity p. 45 (Lun et al. 1984). lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*ThetaSqrt/sqrtPi; // stress tensor, Definitions, Table 3.1, p. 43 volSymmTensorField tau = 2.0*mua_*D + (lambda_ - (2.0/3.0)*mua_)*tr(D)*I; if (!equilibrium_) { // construct the granular temperature equation (Eq. 3.20, p. 44) // NB. note that there are two typos in Eq. 3.20 // no grad infront of Ps // wrong sign infront of laplacian fvScalarMatrix ThetaEqn ( fvm::ddt(1.5*alpha_*rhoa_, Theta_) + fvm::div(phi, Theta_, "div(phi,Theta)") == fvm::SuSp(-((PsCoeff*I) && dU), Theta_) + (tau && dU) + fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)") + fvm::Sp(-gammaCoeff, Theta_) + fvm::Sp(-J1, Theta_) + fvm::Sp(J2/(Theta_ + Tsmall), Theta_) ); ThetaEqn.relax(); ThetaEqn.solve(); } else { // equilibrium => dissipation == production // Eq. 4.14, p.82 volScalarField K1 = 2.0*(1.0 + e_)*rhoa_*gs0_; volScalarField K3 = 0.5*da_*rhoa_* ( (sqrtPi/(3.0*(3.0-e_))) *(1.0 + 0.4*(1.0 + e_)*(3.0*e_ - 1.0)*alpha_*gs0_) +1.6*alpha_*gs0_*(1.0 + e_)/sqrtPi ); volScalarField K2 = 4.0*da_*rhoa_*(1.0 + e_)*alpha_*gs0_/(3.0*sqrtPi) - 2.0*K3/3.0; volScalarField K4 = 12.0*(1.0 - sqr(e_))*rhoa_*gs0_/(da_*sqrtPi); volScalarField trD = tr(D); volScalarField tr2D = sqr(trD); volScalarField trD2 = tr(D & D); volScalarField t1 = K1*alpha_ + rhoa_; volScalarField l1 = -t1*trD; volScalarField l2 = sqr(t1)*tr2D; volScalarField l3 = 4.0*K4*max(alpha_, 1e-6)*(2.0*K3*trD2 + K2*tr2D); Theta_ = sqr((l1 + sqrt(l2 + l3))/(2.0*(alpha_ + 1.0e-4)*K4)); } Theta_.max(1.0e-15); Theta_.min(1.0e+3); volScalarField pf = frictionalStressModel_->frictionalPressure ( alpha_, alphaMinFriction_, alphaMax_, Fr_, eta_, p_ ); PsCoeff += pf/(Theta_+Tsmall); PsCoeff.min(1.0e+10); PsCoeff.max(-1.0e+10); // update particle pressure pa_ = PsCoeff*Theta_; // frictional shear stress, Eq. 3.30, p. 52 volScalarField muf = frictionalStressModel_->muf ( alpha_, alphaMax_, pf, D, phi_ ); // add frictional stress mua_ += muf; //-AO Inconsistency of equations const scalar constSMALL = 0.001; //1.e-06; mua_ /= (fvc::average(alpha_) + scalar(constSMALL)); lambda_ /= (fvc::average(alpha_) + scalar(constSMALL)); //-AO mua_.min(1.0e+2); mua_.max(0.0); Info<< "kinTheory: max(Theta) = " << max(Theta_).value() << endl; volScalarField ktn = mua_/rhoa_; Info<< "kinTheory: min(nua) = " << min(ktn).value() << ", max(nua) = " << max(ktn).value() << endl; Info<< "kinTheory: min(pa) = " << min(pa_).value() << ", max(pa) = " << max(pa_).value() << endl; //} /* volScalarField& Foam::kineticTheoryModel::ppMagf(const volScalarField& alphaUpdate) { volScalarField alpha = alphaUpdate; gs0_ = radialModel_->g0(min(alpha, alphaMinFriction_), alphaMax_); gs0Prime_ = radialModel_->g0prime(min(alpha, alphaMinFriction_), alphaMax_); // Computing ppMagf ppMagf_ = Theta_*granularPressureModel_->granularPressureCoeffPrime ( alpha, gs0_, gs0Prime_, rhoa_, e_ ); volScalarField ppMagfFriction = frictionalStressModel_->frictionalPressurePrime ( alpha, alphaMinFriction_, alphaMax_, Fr_, eta_, p_ ); // NOTE: this might not be appropriate if J&J model is used (verify) forAll(alpha, cellI) { if(alpha[cellI] >= alphaMinFriction_.value()) { ppMagf_[cellI] = ppMagfFriction[cellI]; } } ppMagf_.correctBoundaryConditions(); return ppMagf_; } */} } else if(mofidiedKineticTheoryPU_) { //if (!mofidiedKineticTheoryPU_) //{ // return; //} Info << " " << endl; Info << "Modified kinetic theory model - Chialvo-Sundaresan " << endl; bool testMKTimp(false); if(kineticTheoryProperties_.found("testMKTimp")) { testMKTimp = true; Info << "Modified kinetic theory model - testing implementation (chi=1,eEff=e, ksi=1) " << endl; } bool diluteCorrection(false); if(kineticTheoryProperties_.found("diluteCorrection")) { testMKTimp = false; diluteCorrection = true; Info << "Modified kinetic theory model - Only dilute correction " << endl; } bool denseCorrection(false); if(kineticTheoryProperties_.found("denseCorrection")) { testMKTimp = false; diluteCorrection = false; denseCorrection = true; Info << "Modified kinetic theory model - Only dense correction " << endl; } bool frictionBlending(false); if(kineticTheoryProperties_.found("frictionBlending")) { frictionBlending = true; Info << "Modified kinetic theory model - Include Friction Blneding " << endl; } if(decomposePp_) Info << "Decompose Pp into Pp - PpStar " << endl; bool verboseMKT(false); if(kineticTheoryProperties_.found("verboseMKT")) verboseMKT = true; const scalar Pi = constant::mathematical::pi; const scalar sqrtPi = sqrt(constant::mathematical::pi); const scalar constSMALL = 1.e-06; //1.e-06; 1.e-03; // Read from dictionary muFric_ = readScalar(kineticTheoryProperties_.lookup("muFriction")); eEff_ = e_ - 3.0 / 2.0 * muFric_ * exp(-3.0 * muFric_); // If only test MKT implementation if(testMKTimp) eEff_ = e_; alphaf_ = readScalar(kineticTheoryProperties_.lookup("alphaDiluteInertialUpperLimit")); alphac_ = readScalar(kineticTheoryProperties_.lookup("alphaCritical")); alphad_ = readScalar(kineticTheoryProperties_.lookup("alphaDelta")); upsilons_ = readScalar(kineticTheoryProperties_.lookup("yieldStressRatio")); // Model parameters dimensionedScalar I0(0.2); // Table 2, p.15 dimensionedScalar const_alpha(0.36); // Table 2, p.15 dimensionedScalar const_alpha1(0.06); // Table 2, p.15 // Calculating the radial distribution function (solid volume fraction is // limited close to the packing limit, but this needs improvements) // The solution is higly unstable close to the packing limit. gs0_ = radialModel_->g0jamming ( Ua_.mesh(), //max(alpha, scalar(constSMALL)), min(max(alpha_, scalar(constSMALL)),alphaMax_ - 0.01), //changed by YG alphaMax_, alphad_, ///changed by YG alphac_ ); // particle pressure - coefficient in front of T (Eq. 1, p. 3) volScalarField PsCoeff // -> rho_p * H ( granularPressureModel_->granularPressureCoeff ( alpha_, gs0_, rhoa_, e_ ) ); PsCoeff.max(1.0e-15); // PsCoeff.min(1.0e+10); // PsCoeff.max(-1.0e+10); // Solid kinetic+collisional viscosity mua_ = nu_k^star + nu_c^star, Eq. 8,9, p.4 // If Garzo-Dufty viscosity is used (viscosity is dimensionless), there is issue with dimension of mu1 mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_); // Solid bulk viscosity mua_ = nu_k^star + nu_c^star, Eq. 10, p.4 // If Garzo-Dufty viscosity is used (viscosity is dimensionless), there is issue with dimension of mu1 // Create dimensionedScalar dimensionedScalar viscDim("zero", dimensionSet(1, -1, -1, 0, 0), 1.0); lambda_ = viscDim * 384.0 / ( 25.0 * Pi ) * ( 1.0 + e_ ) * alpha_ * alpha_ * gs0_ ; //lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*sqrt(Theta_)/sqrtPi; volScalarField ratioBulkShearVisc(lambda_/(mua_+lambda_)); // J Eq.5, p3 volScalarField J_( 5.0 * sqrtPi / 96.0 * ( mua_ + lambda_ ) / viscDim ); // Dimension issue // K Eq.6, p3 volScalarField K_(12.0/sqrtPi*alpha_*alpha_*gs0_*(1.0-e_*e_)); // K' Eq.26, p8 modified dissipation due to friction volScalarField Kmod_(K_*(1.0 - eEff_*eEff_)/(1.0 - e_*e_)); // M Eq.30 p.9 volScalarField M_( max( J_ / max( Kmod_, constSMALL) , const_alpha1 / sqrt( max(alphac_ - alpha_, constSMALL) ) ) ); // Shear stress rate tensor volTensorField dU(gradUat.T()); volSymmTensorField D(symm(dU)); // Shear stress rate (gammaDot) volScalarField gammaDot(sqrt(2.*magSqr(D))); dimensionedScalar gammaDotSmall("gammaDotSmall",dimensionSet(0 , 0 , -1 , 0 , 0, 0, 0), constSMALL); // Dilute inertia temperature Eq.24, p8 volScalarField ThetaDil_ = ( J_ / max ( Kmod_ , 1e-1 ) ) * ( gammaDot * da_ ) * ( gammaDot * da_ ); // Dense inertia temperature Eq.27, p8 // volScalarField ThetaDense_ = const_alpha1 * ( gammaDot * da_ ) * ( gammaDot * da_ ) // / sqrt( max(alphac_ - alpha_, constSMALL) ); volScalarField ThetaDense_ = const_alpha1 * ( gammaDot * da_ ) * ( gammaDot * da_ ) / sqrt( max(alphac_ - alpha_, alphad_) ) + max(alpha_ - (alphac_ - alphad_),0.0) * 0.5 *const_alpha1*( gammaDot * da_ ) * ( gammaDot * da_)*pow(alphad_,-1.5); // Theta Theta_ = max(ThetaDil_,ThetaDense_) ; if(testMKTimp || diluteCorrection) Theta_ = ThetaDil_; if(denseCorrection) Theta_ = ThetaDense_; // Limit granular temperature Theta_.max(1.0e-15); Theta_.min(1.0e+3); // Particle pressure pa_ = PsCoeff * Theta_; if(frictionBlending) { /* volScalarField pf = frictionalStressModel_->frictionalPressure ( alpha_, alphaMinFriction_-0.001, alphaMax_, Fr_, eta_, p_ ); pa_ = pa_ + pf; */ // pa_ =pa_ + dimensionedScalar("1e24", dimensionSet(1, -1, -2, 0, 0), Fr_.value())*pow(max(alpha_ - (alphaMinFriction_), scalar(0)), 2/3); pa_ =pa_ + dimensionedScalar("5810", dimensionSet(1, 0, -2, 0, 0), 581.0)/da_*pow(max(alpha_ - (alphaMinFriction_-0.0), scalar(0)), 2.0/3.0); // pa_ =pa_ + dimensionedScalar("4.7e9", dimensionSet(1, -1, -2, 0, 0), 4.7e9)*pow(max(alpha_ - (alphaMinFriction_-0.0), scalar(0)), 1.56); // forAll(alpha_, cellI) // { // if(alpha_[cellI] >= (alphaMinFriction_.value()-0.00001)) // { // pa_[cellI] = pa_[cellI] + 581.0/da_.value()*pow(alpha_[cellI] - (alphaMinFriction_.value()-0.00001), 2.0/3.0); // } // } } // Psi Eq.32, p.12 dimensionedScalar psi(1.0 + 3.0/10.0*pow((1.0-e_*e_),-1.5)*(1.0-exp(-8.0*muFric_))); if(testMKTimp) psi = 1.0; // Shear stress ratio in dilute regime, Eq.33, p.12 dimensionedScalar paSmall("paSmall",dimensionSet(1, -1, -2, 0, 0), constSMALL); volScalarField inertiaNumber( gammaDot * da_ / sqrt( (pa_ + paSmall) / rhoa_ ) ); // Modified inertia number Eq.35, p.13 volScalarField modInertiaNumber( inertiaNumber / max( alpha_, constSMALL ) ); // Model parameters volScalarField chi( 1.0 / ( pow( I0 / max( modInertiaNumber,constSMALL ) , 1.5 ) + 1.0 )); if(testMKTimp || diluteCorrection) chi = max( modInertiaNumber,constSMALL ) / max( modInertiaNumber,constSMALL ) ; if(denseCorrection) chi= modInertiaNumber - modInertiaNumber; // Beta + Sigma_tau Eq.49 p.14 volScalarField beta(alpha_ * psi * J_ * sqrt( K_ /( max ( (Kmod_ * ( PsCoeff / rhoa_)), constSMALL ) ) ) ); volScalarField sigmaTau( const_alpha / max( beta, constSMALL ) + ( 1 - const_alpha / max( beta, constSMALL ) ) * chi); // Sigma_gamma Eq.51 p.14 volScalarField sigmaGamma( beta * sqrt( PsCoeff/rhoa_ ) / max( ( Kmod_ * M_ ), constSMALL ) * sigmaTau); // dissipation volScalarField gammaCoeff ( // van Wachem (Eq. 3.24, p.50) 12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi // Chialvo & Sundaresan Eq.50 p.14 //rhoa_ / da_ * Kmod_ * Theta_ * sqrt(Theta_) * sigmaGamma rhoa_ / da_ * Kmod_ * sqrt(Theta_) * sigmaGamma ); // Blending function volScalarField func_B( const_alpha + ( beta-const_alpha ) * chi ); // Shear stress ratio upsilon_ = upsilons_ * (1 - chi) + func_B * modInertiaNumber; // Shear stress volSymmTensorField S( D - 1./3.*tr(D)*I ); volSymmTensorField hatS( 2. * S / max( gammaDot, gammaDotSmall ) ); // Shear stress based on pressure and ratio tau_ = pa_ * upsilon_ * hatS; // Viscosity mua_ = ( pa_ * upsilon_ ) / (max( gammaDot, gammaDotSmall )) ; // Divide by alpha (to be consistent with OpenFOAM implementation) /* mua_ /= (fvc::average(alpha_) + scalar(0.001)); tau_ /= (fvc::average(alpha_) + scalar(0.001)); lambda_ /= (fvc::average(alpha_) + scalar(0.001)); */ mua_ /= max(alpha_, scalar(constSMALL)); // Limit mua mua_.min(3e+02); mua_.max(0.0); // Limit lambda lambda_ = mua_ * ratioBulkShearVisc; // Limit shear stress tau_ = mua_ * gammaDot * hatS; // tau_ /= max(alpha_, scalar(constSMALL)); // lambda_ /= max(alpha_, scalar(constSMALL)); //mua_ /= max(alpha_, scalar(constSMALL)); //tau_ /= max(alpha_, scalar(constSMALL)); //lambda_ /= max(alpha_, scalar(constSMALL)); if(verboseMKT) { #include "verboseMKT.H" } //-AO, YG - Decompose particle pressure, Sundar's idea if(decomposePp_) { pa_ /= (fvc::average(alpha_) + scalar(0.001)); //pa_.correctBoundaryConditions(); pa_.max(1.0e-15); } } else { return; } }