static Bool da_enumerate_recursive (const DArray *d, TrieIndex state, DAEnumFunc enum_func, void *user_data) { Bool ret; TrieIndex base; base = da_get_base (d, state); if (base < 0) { TrieChar *key; key = da_get_state_key (d, state); ret = (*enum_func) (key, state, user_data); free (key); } else { Symbols *symbols; int i; ret = TRUE; symbols = da_output_symbols (d, state); for (i = 0; ret && i < symbols_num (symbols); i++) { ret = da_enumerate_recursive (d, base + symbols_get (symbols, i), enum_func, user_data); } symbols_free (symbols); } return ret; }
/** * @brief Get all walkable characters from state * * @param s : the state to get * @param chars : the storage for the result * @param chars_nelm : the size of @a chars[] in number of elements * * @return total walkable characters * * Get the list of all walkable characters from state @a s. At most * @a chars_nelm walkable characters are stored in @a chars[] on return. * * The function returns the actual number of walkable characters from @a s. * Note that this may not equal the number of characters stored in @a chars[] * if @a chars_nelm is less than the actual number. * * Available since: 0.2.6 */ int trie_state_walkable_chars (const TrieState *s, AlphaChar chars[], int chars_nelm) { int syms_num = 0; if (!s->is_suffix) { Symbols *syms = da_output_symbols (s->trie->da, s->index); int i; syms_num = symbols_num (syms); for (i = 0; i < syms_num && i < chars_nelm; i++) { TrieChar tc = symbols_get (syms, i); chars[i] = alpha_map_trie_to_char (s->trie->alpha_map, tc); } symbols_free (syms); } else { const TrieChar *suffix = tail_get_suffix (s->trie->tail, s->index); chars[0] = alpha_map_trie_to_char (s->trie->alpha_map, suffix[s->suffix_idx]); syms_num = 1; } return syms_num; }
/** * @brief Insert a branch from trie node * * @param d : the double-array structure * @param s : the state to add branch to * @param c : the character for the branch label * * @return the index of the new node * * Insert a new arc labelled with character @a c from the trie node * represented by index @a s in double-array structure @a d. * Note that it assumes that no such arc exists before inserting. */ TrieIndex da_insert_branch (DArray *d, TrieIndex s, TrieChar c) { TrieIndex base, next; base = da_get_base (d, s); if (base > 0) { next = base + c; /* if already there, do not actually insert */ if (da_get_check (d, next) == s) return next; /* if (base + c) > TRIE_INDEX_MAX which means 'next' is overflow, * or cell [next] is not free, relocate to a free slot */ if (base > TRIE_INDEX_MAX - c || !da_check_free_cell (d, next)) { Symbols *symbols; TrieIndex new_base; /* relocate BASE[s] */ symbols = da_output_symbols (d, s); symbols_add (symbols, c); new_base = da_find_free_base (d, symbols); symbols_free (symbols); if (TRIE_INDEX_ERROR == new_base) return TRIE_INDEX_ERROR; da_relocate_base (d, s, new_base); next = new_base + c; } } else { Symbols *symbols; TrieIndex new_base; symbols = symbols_new (); symbols_add (symbols, c); new_base = da_find_free_base (d, symbols); symbols_free (symbols); if (TRIE_INDEX_ERROR == new_base) return TRIE_INDEX_ERROR; da_set_base (d, s, new_base); next = new_base + c; } da_alloc_cell (d, next); da_set_check (d, next, s); return next; }
static void da_relocate_base (DArray *d, TrieIndex s, TrieIndex new_base) { TrieIndex old_base; Symbols *symbols; int i; old_base = da_get_base (d, s); symbols = da_output_symbols (d, s); for (i = 0; i < symbols_num (symbols); i++) { TrieIndex old_next, new_next, old_next_base; old_next = old_base + symbols_get (symbols, i); new_next = new_base + symbols_get (symbols, i); old_next_base = da_get_base (d, old_next); /* allocate new next node and copy BASE value */ da_alloc_cell (d, new_next); da_set_check (d, new_next, s); da_set_base (d, new_next, old_next_base); /* old_next node is now moved to new_next * so, all cells belonging to old_next * must be given to new_next */ /* preventing the case of TAIL pointer */ if (old_next_base > 0) { TrieIndex c, max_c; max_c = MIN_VAL (TRIE_CHAR_MAX, TRIE_INDEX_MAX - old_next_base); for (c = 0; c < max_c; c++) { if (da_get_check (d, old_next_base + c) == old_next) da_set_check (d, old_next_base + c, new_next); } } /* free old_next node */ da_free_cell (d, old_next); } symbols_free (symbols); /* finally, make BASE[s] point to new_base */ da_set_base (d, s, new_base); }