Example #1
0
/**
 * \brief DACC configuration.
 */
static void dsp_configure_dacc(void)
{
	pmc_enable_periph_clk(ID_DACC);

	/*
	 * DACC setting
	 * -Refresh Period = 1024*REFRESH/DACC Clock
	 * -No max Speed Mode
	 * -Startup time of 0 periods of DACClock
	 */
	dacc_set_timing(DACC, DACC_REFRESH, 0, DACC_MR_STARTUP_0);

	/* Set TIO Output of TC Channel 1 as trigger */
	dacc_set_trigger(DACC,2);

	/* Set to half word transfer */
	dacc_set_transfer_mode(DACC, DACC_MR_WORD_HALF);

#if (SAM3S) || (SAM3XA)
	/* Set to No Sleep Mode and No Fast Wake Up Mode*/
	dacc_set_power_save(DACC, 0, 0);
#endif

	/* Select both left/right speaker channels. */
	dacc_set_channel_selection(DACC, SPEAKER_CHANNEL_R);
	dacc_set_channel_selection(DACC, SPEAKER_CHANNEL_L);

	/* Enable DACC channels. */
	dacc_enable_channel(DACC, SPEAKER_CHANNEL_R);
	dacc_enable_channel(DACC, SPEAKER_CHANNEL_L);

	/* Tag selection mode enabled. */
	dacc_enable_flexible_selection(DACC);

	/* Get board DACC PDC base address. */
	dacc_pdc = dacc_get_pdc_base(DACC);

	/* Enable DACC interrupt. */
	dacc_enable_interrupt(DACC,DACC_IER_ENDTX);
	NVIC_SetPriority(DACC_IRQn, INT_PRIORITY_DACC);
	NVIC_EnableIRQ(DACC_IRQn);
}
Example #2
0
// Set the audio mode
void audioModeSet(AudioMode m) {
	// Don't do anything if mode is not changed
	if (mode == m) {
		return;
	}
	
	// Set new mode
	mode = m;
	audioFrequencySet(0); // Always reset currFreq on mode change
	switch (m) {
		case AM_OFF:
			pwm_channel_disable(PWM, PWM_CHANNEL_2);
			dacc_disable_channel(DACC, 0);
			break;
		case AM_ADC:
			pwm_channel_enable(PWM, PWM_CHANNEL_2);
			dacc_enable_channel(DACC, 0);
			break;
		case AM_HZ:
			pwm_channel_enable(PWM, PWM_CHANNEL_2);
			dacc_enable_channel(DACC, 0);
			break;
	}
}
Example #3
0
void configure_DAC() {
	 /************************************************************************/
	 /* DAC                                                                  */
	 /************************************************************************/
	 
	 /* Enable clock for DACC */
	 sysclk_enable_peripheral_clock(DACC_ID);
	 
	 /* Reset DACC registers */
	 dacc_reset(DACC_BASE);

	 /* Half word transfer mode */
	 dacc_set_transfer_mode(DACC_BASE, 0);

	 /* selects channel */
	 dacc_set_channel_selection(DACC_BASE, DACC_CHANNEL);

	 /* Enable output channel DACC_CHANNEL */
	 dacc_enable_channel(DACC_BASE, DACC_CHANNEL);

	 /* Set up analog current */
	 dacc_set_analog_control(DACC_BASE, DACC_ANALOG_CONTROL);
}
Example #4
0
/**
 *  \brief ACC example application entry point.
 *
 *  \return Unused (ANSI-C compatibility).
 */
int main(void)
{
	uint32_t uc_key;
	int16_t s_volt = 0;
	uint32_t ul_value = 0;
	volatile uint32_t ul_status = 0x0;
	int32_t l_volt_dac0 = 0;

	/* Initialize the system */
	sysclk_init();
	board_init();

	/* Initialize debug console */
	configure_console();

	/* Output example information */
	puts(STRING_HEADER);

	/* Initialize DACC */
	/* Enable clock for DACC */
	pmc_enable_periph_clk(ID_DACC);
	/* Reset DACC registers */
	dacc_reset(DACC);
	/* External trigger mode disabled. DACC in free running mode. */
	dacc_disable_trigger(DACC, DACC_CHANNEL_0);
	/* Half word transfer mode */
	dacc_set_transfer_mode(DACC, 0);
#if (SAM3S) || (SAM3XA)
	/* Power save:
	 * sleep mode  - 0 (disabled)
	 * fast wakeup - 0 (disabled)
	 */
	dacc_set_power_save(DACC, 0, 0);
#endif

	/* Enable output channel DACC_CHANNEL */
	dacc_enable_channel(DACC, DACC_CHANNEL_0);
	/* Setup analog current */
	dacc_set_analog_control(DACC, DACC_ANALOG_CONTROL);

	/* Set DAC0 output at ADVREF/2. The DAC formula is:
	 *
	 * (5/6 * VOLT_REF) - (1/6 * VOLT_REF)     volt - (1/6 * VOLT_REF)
	 * ----------------------------------- = --------------------------
	 *              MAX_DIGITAL                       digit
	 *
	 * Here, digit = MAX_DIGITAL/2
	 */
	dacc_write_conversion_data(DACC, MAX_DIGITAL / 2, DACC_CHANNEL_0);
	l_volt_dac0 = (MAX_DIGITAL / 2) * (2 * VOLT_REF / 3) / MAX_DIGITAL +
			VOLT_REF / 6;

	/* Enable clock for AFEC */
	afec_enable(AFEC0);

	struct afec_config afec_cfg;

	afec_get_config_defaults(&afec_cfg);
	/* Initialize AFEC */
	afec_init(AFEC0, &afec_cfg);

	struct afec_ch_config afec_ch_cfg;
	afec_ch_get_config_defaults(&afec_ch_cfg);
	afec_ch_cfg.gain = AFEC_GAINVALUE_0;
	afec_ch_set_config(AFEC0, AFEC_CHANNEL_POTENTIOMETER, &afec_ch_cfg);
	/*
	 * Because the internal ADC offset is 0x200, it should cancel it and shift
	 * down to 0.
	 */
	afec_channel_set_analog_offset(AFEC0, AFEC_CHANNEL_POTENTIOMETER, 0x200);

	afec_set_trigger(AFEC0, AFEC_TRIG_SW);

	/* Enable channel for potentiometer. */
	afec_channel_enable(AFEC0, AFEC_CHANNEL_POTENTIOMETER);

	/* Enable clock for ACC */
	pmc_enable_periph_clk(ID_ACC);
	
	/* Initialize ACC */
	acc_init(ACC, ACC_MR_SELPLUS_AFE0_AD0, ACC_MR_SELMINUS_DAC0,
			ACC_MR_EDGETYP_ANY, ACC_MR_INV_DIS);

	/* Enable ACC interrupt */
	NVIC_EnableIRQ(ACC_IRQn);

	/* Enable */
	acc_enable_interrupt(ACC);

	dsplay_menu();

	while (1) {
		while (usart_read(CONSOLE_UART, &uc_key)) {
		}

		printf("input: %c\r\n", uc_key);

		switch (uc_key) {
		case 's':
		case 'S':
			printf("Input DAC0 output voltage (%d~%d mv): ",
					(VOLT_REF / 6), (VOLT_REF * 5 / 6));
			s_volt = get_input_voltage();
			puts("\r");

			if (s_volt > 0) {
				l_volt_dac0 = s_volt;
				/* The DAC formula is:
				 *
				 * (5/6 * VOLT_REF) - (1/6 * VOLT_REF)     volt - (1/6 * VOLT_REF)
				 * ----------------------------------- = --------------------------
				 *              MAX_DIGITAL                       digit
				 *
				 */
				ul_value = ((s_volt - (VOLT_REF / 6))
					* (MAX_DIGITAL * 6) / 4) / VOLT_REF;
				dacc_write_conversion_data(DACC, ul_value, DACC_CHANNEL_0);
				puts("-I- Set ok\r");
			} else {
				puts("-I- Input voltage is invalid\r");
			}
			break;
		case 'v':
		case 'V':
			/* Start conversion */
			afec_start_software_conversion(AFEC0);
			ul_status = afec_get_interrupt_status(AFEC0);
			while ((ul_status & AFEC_ISR_EOC0) != AFEC_ISR_EOC0) {
				ul_status = afec_get_interrupt_status(AFEC0);
			}
			/* Conversion is done */
			ul_value = afec_channel_get_value(AFEC0, AFEC_CHANNEL_POTENTIOMETER);

			/*
			 * Convert AFEC sample data to voltage value:
			 * voltage value = (sample data / max. resolution) * reference voltage
			 */
			s_volt = (ul_value * VOLT_REF) / MAX_DIGITAL;
			printf("-I- Voltage on potentiometer(AD0) is %d mv\n\r", s_volt);
			printf("-I- Voltage on DAC0 is %ld mv \n\r", (long)l_volt_dac0);
			break;
			
		case 'm':
		case 'M':
			dsplay_menu();
			break;
		}
	}
}
Example #5
0
void DACClass::begin(uint32_t period) {
	// Enable clock for DAC
	pmc_enable_periph_clk(dacId);

	dacc_reset(dac);

	// Set transfer mode to double word
	dacc_set_transfer_mode(dac, 1);

	// Power save:
	// sleep mode  - 0 (disabled)
	// fast wakeup - 0 (disabled)
	dacc_set_power_save(dac, 0, 0);

	// DAC refresh/startup timings:
	// refresh        - 0x08 (1024*8 dacc clocks)
	// max speed mode -    0 (disabled)
	// startup time   - 0x10 (1024 dacc clocks)
	dacc_set_timing(dac, 0x08, 0, DACC_MR_STARTUP_1024);

	// Flexible channel selection with tags
	dacc_enable_flexible_selection(dac);

	// Set up analog current
	dacc_set_analog_control(dac,
			DACC_ACR_IBCTLCH0(0x02) |
			DACC_ACR_IBCTLCH1(0x02) |
			DACC_ACR_IBCTLDACCORE(0x01));

	// Enable output channels
	dacc_enable_channel(dac, 0);
	dacc_enable_channel(dac, 1);

	// Configure Timer Counter to trigger DAC
	// --------------------------------------
	pmc_enable_periph_clk(ID_TC1);
	TC_Configure(TC0, 1,
		TC_CMR_TCCLKS_TIMER_CLOCK2 |  // Clock at MCR/8
		TC_CMR_WAVE |                 // Waveform mode
		TC_CMR_WAVSEL_UP_RC |         // Counter running up and reset when equals to RC
		TC_CMR_ACPA_SET | TC_CMR_ACPC_CLEAR);
	const uint32_t TC = period / 8;
	TC_SetRA(TC0, 1, TC / 2);
	TC_SetRC(TC0, 1, TC);
	TC_Start(TC0, 1);

	// Configure clock source for DAC (2 = TC0 Output Chan. 1)
	dacc_set_trigger(dac, 2);

	// Configure pins
	PIO_Configure(g_APinDescription[DAC0].pPort,
			g_APinDescription[DAC0].ulPinType,
			g_APinDescription[DAC0].ulPin,
			g_APinDescription[DAC0].ulPinConfiguration);
	PIO_Configure(g_APinDescription[DAC1].pPort,
			g_APinDescription[DAC1].ulPinType,
			g_APinDescription[DAC1].ulPin,
			g_APinDescription[DAC1].ulPinConfiguration);

	// Enable interrupt controller for DAC
	dacc_disable_interrupt(dac, 0xFFFFFFFF);
	NVIC_DisableIRQ(isrId);
	NVIC_ClearPendingIRQ(isrId);
	NVIC_SetPriority(isrId, 0);
	NVIC_EnableIRQ(isrId);
}
Example #6
0
/**
 *  \brief DAC Sinewave application entry point.
 *
 *  \return Unused (ANSI-C compatibility).
 */
int main(void)
{
	uint8_t uc_key;
	uint32_t ul_freq, ul_amp;

	/* Initialize the system */
	sysclk_init();
	board_init();

	/* Initialize debug console */
	configure_console();

	/* Output example information */
	puts(STRING_HEADER);

	/* Enable clock for DACC */
#if SAM4L
	sysclk_enable_peripheral_clock(DACC_BASE);
#else
	sysclk_enable_peripheral_clock(DACC_ID);
#endif

	/* Reset DACC registers */
	dacc_reset(DACC_BASE);

	/* Half word transfer mode */
	dacc_set_transfer_mode(DACC_BASE, 0);

	/* Initialize timing, amplitude and frequency */
#if (SAM3N) || (SAM4L)
	/* Timing:
	 * startup                - 0x10 (17 clocks)
	 * internal trigger clock - 0x60 (96 clocks)
	 */
	dacc_set_timing(DACC_BASE, 0x10, 0x60);

	/* Enable DAC */
	dacc_enable(DACC_BASE);
#else
	/* Power save:
	 * sleep mode  - 0 (disabled)
	 * fast wakeup - 0 (disabled)
	 */
	dacc_set_power_save(DACC_BASE, 0, 0);
	/* Timing:
	 * refresh        - 0x08 (1024*8 dacc clocks)
	 * max speed mode -    0 (disabled)
	 * startup time   - 0x10 (1024 dacc clocks)
	 */
	dacc_set_timing(DACC_BASE, 0x08, 0, 0x10);

	/* Disable TAG and select output channel DACC_CHANNEL */
	dacc_set_channel_selection(DACC_BASE, DACC_CHANNEL);

	/* Enable output channel DACC_CHANNEL */
	dacc_enable_channel(DACC_BASE, DACC_CHANNEL);

	/* Set up analog current */
	dacc_set_analog_control(DACC_BASE, DACC_ANALOG_CONTROL);
#endif /* (SAM3N) */

	g_l_amplitude = MAX_AMPLITUDE / 2;
	g_ul_frequency = DEFAULT_FREQUENCY;

	SysTick_Config(sysclk_get_cpu_hz() / (g_ul_frequency * SAMPLES));

	/* Main menu */
	display_menu();

	while (1) {
		usart_serial_getchar((Usart *)CONSOLE_UART, &uc_key);

		switch (uc_key) {
		case '0':
			puts("Frequency:");
			ul_freq = get_input_value(MIN_FREQUENCY, MAX_FREQUENCY);
			puts("\r");

			if (ul_freq != VAL_INVALID) {
				printf("Set frequency to : %luHz\n\r", (unsigned long)ul_freq);
				SysTick_Config(sysclk_get_cpu_hz() / (ul_freq * SAMPLES));
				g_ul_frequency = ul_freq;
			}
			break;

		case '1':
			puts("Amplitude:");
			ul_amp = get_input_value(MIN_AMPLITUDE, MAX_AMPLITUDE);
			puts("\r");
			if (ul_amp != VAL_INVALID) {
				printf("Set amplitude to : %lu\n\r", (unsigned long)ul_amp);
				g_l_amplitude = ul_amp;
			}
			break;

		case 'i':
		case 'I':
			printf("-I- Frequency : %lu Hz Amplitude : %ld\n\r",
				(unsigned long)g_ul_frequency, (long)g_l_amplitude);
			break;

		case 'w':
		case 'W':
			printf("-I- Switch wave to : %s\n\r", g_uc_wave_sel ?
				"SINE" : "Full Amplitude SQUARE");
			g_uc_wave_sel = (g_uc_wave_sel + 1) & 1;
			break;

		case 'm':
		case 'M':
			display_menu();
			break;
		}
		puts("Press \'m\' or \'M\' to display the main menu again!\r");
	}
}
Example #7
0
/**
 *  \brief ACC example application entry point.
 *
 *  \return Unused (ANSI-C compatibility).
 */
int main(void)
{
	uint8_t uc_key;
	int16_t s_volt = 0;
	uint32_t ul_value = 0;
	volatile uint32_t ul_status = 0x0;
	int32_t l_volt_dac0 = 0;

	/* Initialize the system */
	sysclk_init();
	board_init();

	/* Initialize debug console */
	configure_console();

	/* Output example information */
	puts(STRING_HEADER);

	/* Initialize DACC */
	/* Enable clock for DACC */
	pmc_enable_periph_clk(ID_DACC);
	/* Reset DACC registers */
	dacc_reset(DACC);
	/* External trigger mode disabled. DACC in free running mode. */
	dacc_disable_trigger(DACC);
	/* Half word transfer mode */
	dacc_set_transfer_mode(DACC, 0);
	/* Power save:
	 * sleep mode  - 0 (disabled)
	 * fast wake-up - 0 (disabled)
	 */
	dacc_set_power_save(DACC, 0, 0);
	/* Timing:
	 * refresh        - 0x08 (1024*8 dacc clocks)
	 * max speed mode -    0 (disabled)
	 * startup time   - 0xf (960 dacc clocks)
	 */
	dacc_set_timing(DACC, 0x08, 0, 0xf);
	/* Disable TAG and select output channel DACC_CHANNEL */
	dacc_set_channel_selection(DACC, DACC_CHANNEL_0);
	/* Enable output channel DACC_CHANNEL */
	dacc_enable_channel(DACC, DACC_CHANNEL_0);
	/* Setup analog current */
	dacc_set_analog_control(DACC, DACC_ANALOG_CONTROL);

	/* Set DAC0 output at ADVREF/2. The DAC formula is:
	 *
	 * (5/6 * VOLT_REF) - (1/6 * VOLT_REF)     volt - (1/6 * VOLT_REF)
	 * ----------------------------------- = --------------------------
	 *              MAX_DIGITAL                       digit
	 *
	 * Here, digit = MAX_DIGITAL/2
	 */
	dacc_write_conversion_data(DACC, MAX_DIGITAL / 2);
	l_volt_dac0 = (MAX_DIGITAL / 2) * (2 * VOLT_REF / 3) / MAX_DIGITAL +
			VOLT_REF / 6;

	/* Initialize ADC */
	/* Enable clock for ADC */
	pmc_enable_periph_clk(ID_ADC);
	/*
	 * Formula: ADCClock = MCK / ( (PRESCAL+1) * 2 )
	 * For example, MCK = 64MHZ, PRESCAL = 4, then:
	 *     ADCClock = 64 / ((4+1) * 2) = 6.4MHz;
	 */
	adc_init(ADC, sysclk_get_cpu_hz(), ADC_CLOCK, ADC_STARTUP_TIME_SETTING);

	/* Formula:
	 *     Startup  Time = startup value / ADCClock
	 *     Transfer Time = (TRANSFER * 2 + 3) / ADCClock
	 *     Tracking Time = (TRACKTIM + 1) / ADCClock
	 *     Settling Time = settling value / ADCClock
	 * For example, ADC clock = 6MHz (166.7 ns)
	 *     Startup time = 512 / 6MHz = 85.3 us
	 *     Transfer Time = (1 * 2 + 3) / 6MHz = 833.3 ns
	 *     Tracking Time = (0 + 1) / 6MHz = 166.7 ns
	 *     Settling Time = 3 / 6MHz = 500 ns
	 */
	/* Set ADC timing */
	adc_configure_timing(ADC, ADC_TRACK_SETTING, ADC_SETTLING_TIME_3,
			ADC_TRANSFER_SETTING);

	/* Channel 5 has to be compared */
	adc_enable_channel(ADC, ADC_CHANNEL_5);

	//! [acc_enable_clock]
	/** Enable clock for ACC */
	pmc_enable_periph_clk(ID_ACC);
	//! [acc_enable_clock]

	//! [acc_init]
	/** Initialize ACC */
	acc_init(ACC, ACC_MR_SELPLUS_AD5, ACC_MR_SELMINUS_DAC0,
			ACC_MR_EDGETYP_ANY, ACC_MR_INV_DIS);
	//! [acc_init]

	//! [acc_irq_enable]
	/** Enable ACC interrupt */
	NVIC_EnableIRQ(ACC_IRQn);

	/** Enable */
	acc_enable_interrupt(ACC);
	//! [acc_irq_enable]

	dsplay_menu();

	while (1) {
		while (uart_read(CONSOLE_UART, &uc_key)) {
		}

		printf("input: %c\r\n", uc_key);

		switch (uc_key) {
		case 's':
		case 'S':
			printf("Input DAC0 output voltage (%d~%d mv): ",
					(VOLT_REF / 6), (VOLT_REF * 5 / 6));
			s_volt = get_input_voltage();
			puts("\r");

			if (s_volt > 0) {
				l_volt_dac0 = s_volt;
				/* The DAC formula is:
				 *
				 * (5/6 * VOLT_REF) - (1/6 * VOLT_REF)     volt - (1/6 * VOLT_REF)
				 * ----------------------------------- = --------------------------
				 *              MAX_DIGITAL                       digit
				 *
				 */
				ul_value = ((s_volt - (VOLT_REF / 6))
					* (MAX_DIGITAL * 6) / 4) / VOLT_REF;
				dacc_write_conversion_data(DACC, ul_value);
				puts("-I- Set ok\r");
			} else {
				puts("-I- Input voltage is invalid\r");
			}
			break;
		case 'v':
		case 'V':
			/* Start conversion */
			adc_start(ADC);
			ul_status = adc_get_status(ADC);
			while ((ul_status & ADC_ISR_EOC5) != ADC_ISR_EOC5) {
				ul_status = adc_get_status(ADC);
			}
			/* Conversion is done */
			ul_value = adc_get_channel_value(ADC, ADC_CHANNEL_5);

			/*
			 * Convert ADC sample data to voltage value:
			 * voltage value = (sample data / max. resolution) * reference voltage
			 */
			s_volt = (ul_value * VOLT_REF) / MAX_DIGITAL;
			printf("-I- Voltage on potentiometer(AD5) is %d mv\n\r", s_volt);
			printf("-I- Voltage on DAC0 is %ld mv \n\r", (long)l_volt_dac0);
			break;
			
		case 'm':
		case 'M':
			dsplay_menu();
			break;
		}
	}
}