Example #1
0
void darray_destroy(struct darray *da)
{
        check(da != NULL, "darray is null before destroy");
	darray_clear(da);
	free(da);
error:
	return;
}
Example #2
0
// x in Z_r, g, h in some group of order r
// finds x such that g^x = h
void element_dlog_pollard_rho(element_t x, element_t g, element_t h) {
// see Blake, Seroussi and Smart
// only one snark for this implementation
  int i, s = 20;
  field_ptr Zr = x->field, G = g->field;
  element_t asum;
  element_t bsum;
  element_t a[s];
  element_t b[s];
  element_t m[s];
  element_t g0, snark;
  darray_t hole;
  int interval = 5;
  mpz_t counter;
  int found = 0;

  mpz_init(counter);
  element_init(g0, G);
  element_init(snark, G);
  element_init(asum, Zr);
  element_init(bsum, Zr);
  darray_init(hole);
  //set up multipliers
  for (i = 0; i < s; i++) {
    element_init(a[i], Zr);
    element_init(b[i], Zr);
    element_init(m[i], G);
    element_random(a[i]);
    element_random(b[i]);
    element_pow_zn(g0, g, a[i]);
    element_pow_zn(m[i], h, b[i]);
    element_mul(m[i], m[i], g0);
  }

  element_random(asum);
  element_random(bsum);
  element_pow_zn(g0, g, asum);
  element_pow_zn(snark, h, bsum);
  element_mul(snark, snark, g0);

  record(asum, bsum, snark, hole, counter);
  for (;;) {
    int len = element_length_in_bytes(snark);
    unsigned char *buf = pbc_malloc(len);
    unsigned char hash = 0;

    element_to_bytes(buf, snark);
    for (i = 0; i < len; i++) {
      hash += buf[i];
    }
    i = hash % s;
    pbc_free(buf);

    element_mul(snark, snark, m[i]);
    element_add(asum, asum, a[i]);
    element_add(bsum, bsum, b[i]);

    for (i = 0; i < hole->count; i++) {
      snapshot_ptr ss = hole->item[i];
      if (!element_cmp(snark, ss->snark)) {
        element_sub(bsum, bsum, ss->b);
        element_sub(asum, ss->a, asum);
        //answer is x such that x * bsum = asum
        //complications arise if gcd(bsum, r) > 1
        //which can happen if r is not prime
        if (!mpz_probab_prime_p(Zr->order, 10)) {
          mpz_t za, zb, zd, zm;

          mpz_init(za);
          mpz_init(zb);
          mpz_init(zd);
          mpz_init(zm);

          element_to_mpz(za, asum);
          element_to_mpz(zb, bsum);
          mpz_gcd(zd, zb, Zr->order);
          mpz_divexact(zm, Zr->order, zd);
          mpz_divexact(zb, zb, zd);
          //if zd does not divide za there is no solution
          mpz_divexact(za, za, zd);
          mpz_invert(zb, zb, zm);
          mpz_mul(zb, za, zb);
          mpz_mod(zb, zb, zm);
          do {
            element_pow_mpz(g0, g, zb);
            if (!element_cmp(g0, h)) {
              element_set_mpz(x, zb);
              break;
            }
            mpz_add(zb, zb, zm);
            mpz_sub_ui(zd, zd, 1);
          } while (mpz_sgn(zd));
          mpz_clear(zm);
          mpz_clear(za);
          mpz_clear(zb);
          mpz_clear(zd);
        } else {
          element_div(x, asum, bsum);
        }
        found = 1;
        break;
      }
    }
    if (found) break;

    mpz_add_ui(counter, counter, 1);
    if (mpz_tstbit(counter, interval)) {
      record(asum, bsum, snark, hole, counter);
      interval++;
    }
  }

  for (i = 0; i < s; i++) {
    element_clear(a[i]);
    element_clear(b[i]);
    element_clear(m[i]);
  }
  element_clear(g0);
  element_clear(snark);
  for (i = 0; i < hole->count; i++) {
    snapshot_ptr ss = hole->item[i];
    element_clear(ss->a);
    element_clear(ss->b);
    element_clear(ss->snark);
    pbc_free(ss);
  }
  darray_clear(hole);
  element_clear(asum);
  element_clear(bsum);
  mpz_clear(counter);
}
Example #3
0
void darray_destroy(darray_t *array)
{
    darray_clear(array);
    h_free(array);
}
Example #4
0
void symtab_clear(symtab_t t) {
  darray_forall(t->list, clear);
  darray_clear(t->list);
}
Example #5
0
void darray_clear_destroy(darray_t *array)
{
    darray_clear(array);
    darray_destroy(array);
}
Example #6
0
void darray_free(darray_ptr a) {
  darray_clear(a);
  pbc_free(a);
}
Example #7
0
File: hilbert.c Project: blynn/pbc
// See Cohen; my D is -D in his notation.
size_t pbc_hilbert(mpz_t **arr, int D) {
  int a, b;
  int t;
  int B = (int)floor(sqrt((double) D / 3.0));
  mpc_t alpha;
  mpc_t j;
  mpf_t sqrtD;
  mpf_t f0;
  darray_t Pz;
  mpc_t z0, z1, z2;
  double d = 1.0;
  int h = 1;
  int jcount = 1;

  // Compute required precision.
  b = D % 2;
  for (;;) {
    t = (b*b + D) / 4;
    a = b;
    if (a <= 1) {
      a = 1;
      goto step535_4;
    }
step535_3:
    if (!(t % a)) {
      jcount++;
      if ((a == b) || (a*a == t) || !b) {
        d += 1.0 / ((double) a);
        h++;
      } else {
        d += 2.0 / ((double) a);
        h+=2;
      }
    }
step535_4:
    a++;
    if (a * a <= t) {
      goto step535_3;
    } else {
      b += 2;
      if (b > B) break;
    }
  }

  //printf("modulus: %f\n", exp(3.14159265358979 * sqrt(D)) * d * 0.5);
  d *= sqrt(D) * 3.14159265358979 / log(2);
  precision_init((int)(d + 34));
  pbc_info("class number %d, %d bit precision", h, (int) d + 34);

  darray_init(Pz);
  mpc_init(alpha);
  mpc_init(j);
  mpc_init(z0);
  mpc_init(z1);
  mpc_init(z2);
  mpf_init(sqrtD);
  mpf_init(f0);

  mpf_sqrt_ui(sqrtD, D);
  b = D % 2;
  h = 0;
  for (;;) {
    t = (b*b + D) / 4;
    if (b > 1) {
      a = b;
    } else {
      a = 1;
    }
step3:
    if (t % a) {
step4:
      a++;
      if (a * a <= t) goto step3;
    } else {
      // a, b, t/a are coeffs of an appropriate primitive reduced positive
      // definite form.
      // Compute j((-b + sqrt{-D})/(2a)).
      h++;
      pbc_info("[%d/%d] a b c = %d %d %d", h, jcount, a, b, t/a);
      mpf_set_ui(f0, 1);
      mpf_div_ui(f0, f0, 2 * a);
      mpf_mul(mpc_im(alpha), sqrtD, f0);
      mpf_mul_ui(f0, f0, b);
      mpf_neg(mpc_re(alpha), f0);

      compute_j(j, alpha);
if (0) {
  int i;
  for (i=Pz->count - 1; i>=0; i--) {
    printf("P %d = ", i);
    mpc_out_str(stdout, 10, 4, Pz->item[i]);
    printf("\n");
  }
}
      if (a == b || a * a == t || !b) {
        // P *= X - j
        int i, n;
        mpc_ptr p0;
        p0 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        mpc_init(p0);
        mpc_neg(p0, j);
        n = Pz->count;
        if (n) {
          mpc_set(z1, Pz->item[0]);
          mpc_add(Pz->item[0], z1, p0);
          for (i=1; i<n; i++) {
            mpc_mul(z0, z1, p0);
            mpc_set(z1, Pz->item[i]);
            mpc_add(Pz->item[i], z1, z0);
          }
          mpc_mul(p0, p0, z1);
        }
        darray_append(Pz, p0);
      } else {
        // P *= X^2 - 2 Re(j) X + |j|^2
        int i, n;
        mpc_ptr p0, p1;
        p0 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        p1 = (mpc_ptr) pbc_malloc(sizeof(mpc_t));
        mpc_init(p0);
        mpc_init(p1);
        // p1 = - 2 Re(j)
        mpf_mul_ui(f0, mpc_re(j), 2);
        mpf_neg(f0, f0);
        mpf_set(mpc_re(p1), f0);
        // p0 = |j|^2
        mpf_mul(f0, mpc_re(j), mpc_re(j));
        mpf_mul(mpc_re(p0), mpc_im(j), mpc_im(j));
        mpf_add(mpc_re(p0), mpc_re(p0), f0);
        n = Pz->count;
        if (!n) {
        } else if (n == 1) {
          mpc_set(z1, Pz->item[0]);
          mpc_add(Pz->item[0], z1, p1);
          mpc_mul(p1, z1, p1);
          mpc_add(p1, p1, p0);
          mpc_mul(p0, p0, z1);
        } else {
          mpc_set(z2, Pz->item[0]);
          mpc_set(z1, Pz->item[1]);
          mpc_add(Pz->item[0], z2, p1);
          mpc_mul(z0, z2, p1);
          mpc_add(Pz->item[1], z1, z0);
          mpc_add(Pz->item[1], Pz->item[1], p0);
          for (i=2; i<n; i++) {
            mpc_mul(z0, z1, p1);
            mpc_mul(alpha, z2, p0);
            mpc_set(z2, z1);
            mpc_set(z1, Pz->item[i]);
            mpc_add(alpha, alpha, z0);
            mpc_add(Pz->item[i], z1, alpha);
          }
          mpc_mul(z0, z2, p0);
          mpc_mul(p1, p1, z1);
          mpc_add(p1, p1, z0);
          mpc_mul(p0, p0, z1);
        }
        darray_append(Pz, p1);
        darray_append(Pz, p0);
      }
      goto step4;
    }
    b+=2;
    if (b > B) break;
  }

  // Round polynomial and assign.
  int k = 0;
  {
    *arr = pbc_malloc(sizeof(mpz_t) * (Pz->count + 1));
    int i;
    for (i=Pz->count - 1; i>=0; i--) {
      if (mpf_sgn(mpc_re(Pz->item[i])) < 0) {
        mpf_set_d(f0, -0.5);
      } else {
        mpf_set_d(f0, 0.5);
      }
      mpf_add(f0, f0, mpc_re(Pz->item[i]));
      mpz_init((*arr)[k]);
      mpz_set_f((*arr)[k], f0);
      k++;
      mpc_clear(Pz->item[i]);
      pbc_free(Pz->item[i]);
    }
    mpz_init((*arr)[k]);
    mpz_set_ui((*arr)[k], 1);
    k++;
  }
  darray_clear(Pz);
  mpc_clear(z0);
  mpc_clear(z1);
  mpc_clear(z2);
  mpf_clear(f0);
  mpf_clear(sqrtD);
  mpc_clear(alpha);
  mpc_clear(j);

  precision_clear();
  return k;
}