Example #1
0
void Demultiplexer::dataChanged()
{
	if ( hasProperty("numInput") && dataInt("numInput") != -1 )
	{
		int addressSize = int( std::ceil( std::log( (double)dataInt("numInput") ) / std::log(2.0) ) );
		property("numInput")->setValue(-1);
		
		if ( addressSize < 1 )
			addressSize = 1;
		else if ( addressSize > 8 )
			addressSize = 8;
		
		// This function will get called again when we set the value of numInput
		property("addressSize")->setValue(addressSize);
		return;
	}
	
	if ( hasProperty("numInput") )
	{
		m_variantData["numInput"]->deleteLater();
		m_variantData.remove("numInput");
	}
	
	initPins( unsigned(dataInt("addressSize")) );
}
Example #2
0
void MatrixDisplay::dataChanged() {
    QColor color = dataColor("color");
    m_r = double(color.red())   / 0x100;
    m_g = double(color.green()) / 0x100;
    m_b = double(color.blue())  / 0x100;

    int numRows = dataInt("0-rows");
    int numCols = dataInt("1-cols");

    bool ledsChanged = (numRows != int(m_numRows)) || (numCols != int(m_numCols));

    if (ledsChanged) { 
        for (unsigned i = 0; i < m_numCols; i++)
            for (unsigned j = 0; j < m_numRows; j++)  // must remove elements before re-organizing storage. 
                removeElement(&(m_LEDs[i][j].m_pDiode), (i == (m_numCols - 1)) && (j == (m_numRows - 1))); 

        initPins(numRows, numCols);
        }

    bool rowCathode = dataString("diode-configuration") == "Row Cathode";

    if ((rowCathode != m_bRowCathode) || ledsChanged) {
        m_bRowCathode = rowCathode;

        for (unsigned i = 0; i < m_numCols; i++) {
            for (unsigned j = 0; j < m_numRows; j++) {

                if (rowCathode) {
                    setup2pinElement(m_LEDs[i][j].m_pDiode, m_pColNodes[i]->pin(), m_pRowNodes[j]->pin());
                } else setup2pinElement(m_LEDs[i][j].m_pDiode, m_pRowNodes[j]->pin(), m_pColNodes[i]->pin());
            }
        }
    }
}
Example #3
0
void RAM::dataChanged() {
    m_wordSize = dataInt("wordSize");
    m_addressSize = dataInt("addressSize");

    int newSize = int(m_wordSize * std::pow(2., m_addressSize));
    m_data.resize(newSize);

    initPins();
}
Example #4
0
void BinaryCounter::dataChanged()
{
	initPins( dataInt("bitcount") );
	
	b_triggerHigh = dataString("trig") == "Rising";
	setDisplayText( ">", b_triggerHigh ? "^>" : "_>" );
}
Example #5
0
void ResistorDIP::initPins()
{
	const int count = dataInt("count");
	const double resistance = dataDouble("resistance");
	
	if ( count == m_resistorCount )
		return;
	
	if ( count < m_resistorCount )
	{
		for ( int i=count; i<m_resistorCount; ++i )
		{
			removeElement( m_resistance[i], false );
			m_resistance[i] = 0l;
			removeNode( "n"+QString::number(i) );
			removeNode( "p"+QString::number(i) );
		}
	}
	else
	{
		for ( int i=m_resistorCount; i<count; ++i )
		{
			const QString nid = "n"+QString::number(i);
			const QString pid = "p"+QString::number(i);
			m_resistance[i] = createResistance( createPin( -24, 0, 0, nid ), createPin( 24, 0, 180, pid ), resistance );
		}
	}
	m_resistorCount = count;
	
	setSize( -16, -count*8, 32, count*16, true );
	updateDIPNodePositions();
}
Example #6
0
void LEDBarGraphDisplay::initPins() {
	unsigned int numRows = dataInt("rows");

	if (numRows == m_numRows)
		return;

	if (numRows > max_LED_rows)
		numRows = max_LED_rows;

	if (numRows < 1)
		numRows = 1;

	// Create a list of named pins.
	// A default setup looks like:
	//       -------
	// p_0--|1    14|--n_0
	// p_1--|2    13|--n_1
	// p_2--|3    12|--n_2
	// p_3--|4    11|--n_3
	// p_4--|5    10|--n_4
	// p_5--|6     9|--n_5
	// p_6--|7     8|--n_6
	//		 -------
	// And this is the scheme used to create the nodes and diodes.

	// Create the positive & negative pin names in an anticlockwise fashion
	// as shown in the pin schematic above.
	QStringList pins;

	for (unsigned i = 0; i < numRows; i++)
		pins += QString("p_" + QString::number(i));

	for (int i = numRows - 1; i >= 0; i--)
		pins += QString("n_" + QString::number(i));

	// Set the size of the component *BEFORE* initDIP() is called
	// as initDIP() uses this data to initialise the pin positions.
	setSize(-16, -(numRows + 1) * 8, 32, (numRows + 1) * 16, true);

	// Create the nodes.
	initDIP(pins);

	// Create or remove LED parts
	if (numRows > m_numRows) {
		// Create the extra LED parts required.
		for (unsigned i = m_numRows; i < numRows; i++)
			m_LEDParts[i] = new LEDPart((Component*)this, QString("p_" + QString::number(i)),
		                            QString("n_" + QString::number(i)));
	} else {
		// Remove excess LED parts.
		for (unsigned i = numRows; i < m_numRows; i++) {
			delete m_LEDParts[i];
			m_LEDParts[i] = 0;
		}
	}

	m_numRows = numRows;
}
Example #7
0
void DPLine::dataChanged()
{
	setPen( QPen( dataColor("line-color"),
			unsigned( dataInt("line-width") ),
			getDataPenStyle("line-style"),
			getDataPenCapStyle("cap-style"),
			Qt::MiterJoin ) );
	
	postResize(); // in case the pen width has changed
	update();
}
Example #8
0
void ECKeyPad::dataChanged() {
    initPins(dataInt("numCols"));

    bool useToggle = dataBool("useToggles");
    bool bounce = dataBool("bounce");
    int bouncePeriod_ms = int(dataDouble("bounce_period") * 1e3);

    for (unsigned i = 0; i < 4; i++) {
        for (unsigned j = 0; j < m_numCols; j++) {
            button(buttonID(i, j))->setToggle(useToggle);
            m_switch[i][j]->setBounce(bounce, bouncePeriod_ms);
        }
    }
}
Example #9
0
void DPRectangle::dataChanged()
{
	bool displayBackground = dataBool("background");
	QColor line_color = dataColor("line-color");
	unsigned width = unsigned( dataInt("line-width") );
	Qt::PenStyle style = getDataPenStyle("line-style");
	
	setPen( QPen( line_color, width, style ) );
	
	if (displayBackground)
		setBrush( dataColor("background-color") );
	else
		setBrush( Qt::NoBrush );
	
	postResize();
	update();
}
Example #10
0
void BusSplitter::dataChanged()
{
	unsigned busSize = dataInt("size");
	
	if ( busSize < 1 )
		busSize = 1;
	
	else if ( busSize > MAX_BUS_SIZE )
		busSize = MAX_BUS_SIZE;
	
	if ( busSize == m_busSize )
		return;
	
	m_pInNode->setNumPins(busSize);
	
	if ( busSize > m_busSize )
	{
		m_pWires.resize(busSize);
		for ( unsigned i = m_busSize; i < unsigned(busSize); i++ )
		{
			Pin * pin = createPin( 16, 0, 180, outNodeID(i) )->pin();
			m_pWires[i] = new Wire( m_pInNode->pin(i), pin );
		}
	}
	else
	{
		for ( unsigned i = busSize; i < unsigned(m_busSize); i++ )
		{
			removeNode( outNodeID(i) );
			delete m_pWires[i];
		}
		m_pWires.resize(busSize);
	}
	m_busSize = busSize;
	
	// Position pins
	setSize( 0, -int(m_busSize+1)*8, 8, int(m_busSize+1)*16, true );
	for ( int i = 0; i < int(m_busSize); i++ )
		m_nodeMap[ outNodeID(i) ].y = 16*i - int(m_busSize+1)*8 + 24;
	m_nodeMap["n1"].y = -int(m_busSize+1)*8 + 8;
	
	updateAttachedPositioning();
}
Example #11
0
void RAM::initPins()
{
	int oldWordSize = m_dataIn.size();
	int oldAddressSize = m_address.size();
	
	int newWordSize = dataInt("wordSize");
	int newAddressSize = dataInt("addressSize");
	
	if ( newAddressSize == oldAddressSize &&
			newWordSize == oldWordSize )
		return;
	
	QStringList leftPins; // Pins on left of IC
	leftPins << "CS" << "OE" << "WE";
	for ( int i = 0; i < newAddressSize; ++i )
		leftPins << QString("A%1").arg( QString::number(i) );
	
	QStringList rightPins; // Pins on right of IC
	for ( unsigned i = newWordSize; i > 0; --i )
		rightPins << QString("DI%1").arg( QString::number(i-1) );
	for ( unsigned i = newWordSize; i > 0; --i )
		rightPins << QString("DO%1").arg( QString::number(i-1) );
	
	// Make pin lists of consistent sizes
	for ( unsigned i = leftPins.size(); i < rightPins.size(); ++i )
		leftPins.append("");
	for ( unsigned i = rightPins.size(); i < leftPins.size(); ++i )
		rightPins.prepend("");
	
	QStringList pins = leftPins + rightPins;
	
	initDIPSymbol( pins, 72 );
	initDIP(pins);
	
	ECNode *node;
	
	if (!m_pCS)
	{
		node =  ecNodeWithID("CS");
		m_pCS = createLogicIn(node);
		m_pCS->setCallback( this, (CallbackPtr)(&RAM::inStateChanged) );
	}
	
	if (!m_pOE)
	{
		node =  ecNodeWithID("OE");
		m_pOE = createLogicIn(node);
		m_pOE->setCallback( this, (CallbackPtr)(&RAM::inStateChanged) );
	}
	
	if (!m_pWE)
	{
		node =  ecNodeWithID("WE");
		m_pWE = createLogicIn(node);
		m_pWE->setCallback( this, (CallbackPtr)(&RAM::inStateChanged) );
	}
	
	if ( newWordSize > oldWordSize )
	{
		m_dataIn.resize(newWordSize);
		m_dataOut.resize(newWordSize);
		
		for ( int i = oldWordSize; i < newWordSize; ++i )
		{
			node = ecNodeWithID( QString("DI%1").arg( QString::number(i) ) );
			m_dataIn.insert( i, createLogicIn(node) );
			m_dataIn[i]->setCallback( this, (CallbackPtr)(&RAM::inStateChanged) ); 
			
			node = ecNodeWithID( QString("DO%1").arg( QString::number(i) ) );
			m_dataOut.insert( i, createLogicOut(node, false) );
		}
	}
	else if ( newWordSize < oldWordSize )
	{
		for ( int i = newWordSize; i < oldWordSize; ++i )
		{
			QString id = QString("DO%1").arg( QString::number(i) );
			removeDisplayText(id);
			removeElement( m_dataIn[i], false );
			removeNode(id);
			
			id = QString("DI%1").arg( QString::number(i) );
			removeDisplayText(id);
			removeElement( m_dataOut[i], false );
			removeNode(id);
		}
		
		m_dataIn.resize(newWordSize);
		m_dataOut.resize(newWordSize);
	}
	
	if ( newAddressSize > oldAddressSize )
	{
		m_address.resize(newAddressSize);
		
		for ( int i = oldAddressSize; i < newAddressSize; ++i )
		{
			node = ecNodeWithID( QString("A%1").arg( QString::number(i) ) );
			m_address.insert( i, createLogicIn(node) );
			m_address[i]->setCallback( this, (CallbackPtr)(&RAM::inStateChanged) );
		}
	}
	else if ( newAddressSize < oldAddressSize )
	{
		for ( int i = newAddressSize; i < oldAddressSize; ++i )
		{
			QString id = QString("A%1").arg( QString::number(i) );
			removeDisplayText(id);
			removeElement( m_address[i], false );
			removeNode(id);
		}
		
		m_address.resize(newAddressSize);
	}
}
Example #12
0
void MultiInputGate::dataChanged() {
	updateInputs(QMIN(maxGateInput, dataInt("numInput")));
}
int main(int argc, char ** argv) {

	MPI_Init(&argc, &argv);

	NcError error(NcError::silent_nonfatal);

try {

	// Input filename
	std::string strInputFile;

	// Output filename
	std::string strOutputFile;

	// Separate topography file
	std::string strTopographyFile;

	// List of variables to extract
	std::string strVariables;

	// Extract geopotential height
	bool fGeopotentialHeight;

	// Pressure levels to extract
	std::string strPressureLevels;

	// Height levels to extract
	std::string strHeightLevels;

	// Extract variables at the surface
	bool fExtractSurface;

	// Extract total energy
	bool fExtractTotalEnergy;

	// Parse the command line
	BeginCommandLine()
		CommandLineString(strInputFile, "in", "");
		CommandLineString(strOutputFile, "out", "");
		CommandLineString(strVariables, "var", "");
		CommandLineBool(fGeopotentialHeight, "output_z");
		CommandLineBool(fExtractTotalEnergy, "output_energy");
		CommandLineString(strPressureLevels, "p", "");
		CommandLineString(strHeightLevels, "z", "");
		CommandLineBool(fExtractSurface, "surf");

		ParseCommandLine(argc, argv);
	EndCommandLine(argv)

	AnnounceBanner();

	// Check command line arguments
	if (strInputFile == "") {
		_EXCEPTIONT("No input file specified");
	}
	if (strOutputFile == "") {
		_EXCEPTIONT("No output file specified");
	}
	if (strVariables == "") {
		_EXCEPTIONT("No variables specified");
	}

	// Parse variable string
	std::vector< std::string > vecVariableStrings;

	ParseVariableList(strVariables, vecVariableStrings);

	// Check variables
	if (vecVariableStrings.size() == 0) {
		_EXCEPTIONT("No variables specified");
	}

	// Parse pressure level string
	std::vector<double> vecPressureLevels;

	ParseLevelArray(strPressureLevels, vecPressureLevels);

	int nPressureLevels = (int)(vecPressureLevels.size());

	for (int k = 0; k < nPressureLevels; k++) {
		if (vecPressureLevels[k] <= 0.0) {
			_EXCEPTIONT("Non-positive pressure values not allowed");
		}
	}

	// Parse height level string
	std::vector<double> vecHeightLevels;

	ParseLevelArray(strHeightLevels, vecHeightLevels);

	int nHeightLevels = (int)(vecHeightLevels.size());

	// Check pressure levels
	if ((nPressureLevels == 0) &&
		(nHeightLevels == 0) &&
		(!fExtractSurface)
	) {
		_EXCEPTIONT("No pressure / height levels to process");
	}

	// Open input file
	AnnounceStartBlock("Loading input file");
	NcFile ncdf_in(strInputFile.c_str(), NcFile::ReadOnly);
	if (!ncdf_in.is_valid()) {
		_EXCEPTION1("Unable to open file \"%s\" for reading",
			strInputFile.c_str());
	}

	// Load time array
	Announce("Time");
	NcVar * varTime = ncdf_in.get_var("time");
	if (varTime == NULL) {
		_EXCEPTION1("File \"%s\" does not contain variable \"time\"",
			strInputFile.c_str());
	}
	int nTime = varTime->get_dim(0)->size();

	DataArray1D<double> dTime(nTime);
	varTime->set_cur((long)0);
	varTime->get(&(dTime[0]), nTime);

	// Load latitude array
	Announce("Latitude");
	NcVar * varLat = ncdf_in.get_var("lat");
	if (varLat == NULL) {
		_EXCEPTION1("File \"%s\" does not contain variable \"lat\"",
			strInputFile.c_str());
	}
	int nLat = varLat->get_dim(0)->size();

	DataArray1D<double> dLat(nLat);
	varLat->set_cur((long)0);
	varLat->get(&(dLat[0]), nLat);

	// Load longitude array
	Announce("Longitude");
	NcVar * varLon = ncdf_in.get_var("lon");
	if (varLon == NULL) {
		_EXCEPTION1("File \"%s\" does not contain variable \"lon\"",
			strInputFile.c_str());
	}
	int nLon = varLon->get_dim(0)->size();

	DataArray1D<double> dLon(nLon);
	varLon->set_cur((long)0);
	varLon->get(&(dLon[0]), nLon);

	// Load level array
	Announce("Level");
	NcVar * varLev = ncdf_in.get_var("lev");
	if (varLev == NULL) {
		_EXCEPTION1("File \"%s\" does not contain variable \"lev\"",
			strInputFile.c_str());
	}
	int nLev = varLev->get_dim(0)->size();

	DataArray1D<double> dLev(nLev);
	varLev->set_cur((long)0);
	varLev->get(&(dLev[0]), nLev);

	// Load level interface array
	Announce("Interface");
	NcVar * varILev = ncdf_in.get_var("ilev");
	int nILev = 0;
	DataArray1D<double> dILev;
	if (varILev == NULL) {
		Announce("Warning: Variable \"ilev\" not found");
	} else {
		nILev = varILev->get_dim(0)->size();
		if (nILev != nLev + 1) {
			_EXCEPTIONT("Variable \"ilev\" must have size lev+1");
		}
		dILev.Allocate(nILev);
		varILev->set_cur((long)0);
		varILev->get(&(dILev[0]), nILev);
	}

	// Load topography
	Announce("Topography");
	NcVar * varZs = ncdf_in.get_var("Zs");
	if (varZs == NULL) {
		_EXCEPTION1("File \"%s\" does not contain variable \"Zs\"",
			strInputFile.c_str());
	}

	DataArray2D<double> dZs(nLat, nLon);
	varZs->set_cur((long)0, (long)0);
	varZs->get(&(dZs[0][0]), nLat, nLon);

	AnnounceEndBlock("Done");

	// Open output file
	AnnounceStartBlock("Constructing output file");

	NcFile ncdf_out(strOutputFile.c_str(), NcFile::Replace);
	if (!ncdf_out.is_valid()) {
		_EXCEPTION1("Unable to open file \"%s\" for writing",
			strOutputFile.c_str());
	}

	CopyNcFileAttributes(&ncdf_in, &ncdf_out);

	// Output time array
	Announce("Time");
	NcDim * dimOutTime = ncdf_out.add_dim("time");
	NcVar * varOutTime = ncdf_out.add_var("time", ncDouble, dimOutTime);
	varOutTime->set_cur((long)0);
	varOutTime->put(&(dTime[0]), nTime);

	CopyNcVarAttributes(varTime, varOutTime);

	// Output pressure array
	NcDim * dimOutP = NULL;
	NcVar * varOutP = NULL;
	if (nPressureLevels > 0) {
		Announce("Pressure");
		dimOutP = ncdf_out.add_dim("p", nPressureLevels);
		varOutP = ncdf_out.add_var("p", ncDouble, dimOutP);
		varOutP->set_cur((long)0);
		varOutP->put(&(vecPressureLevels[0]), nPressureLevels);
	}

	// Output height array
	NcDim * dimOutZ = NULL;
	NcVar * varOutZ = NULL;
	if (nHeightLevels > 0) {
		Announce("Height");
		dimOutZ = ncdf_out.add_dim("z", nHeightLevels);
		varOutZ = ncdf_out.add_var("z", ncDouble, dimOutZ);
		varOutZ->set_cur((long)0);
		varOutZ->put(&(vecHeightLevels[0]), nHeightLevels);
	}

	// Output latitude and longitude array
	Announce("Latitude");
	NcDim * dimOutLat = ncdf_out.add_dim("lat", nLat);
	NcVar * varOutLat = ncdf_out.add_var("lat", ncDouble, dimOutLat);
	varOutLat->set_cur((long)0);
	varOutLat->put(&(dLat[0]), nLat);

	CopyNcVarAttributes(varLat, varOutLat);

	Announce("Longitude");
	NcDim * dimOutLon = ncdf_out.add_dim("lon", nLon);
	NcVar * varOutLon = ncdf_out.add_var("lon", ncDouble, dimOutLon);
	varOutLon->set_cur((long)0);
	varOutLon->put(&(dLon[0]), nLon);

	CopyNcVarAttributes(varLon, varOutLon);

	// Output topography
	Announce("Topography");
	NcVar * varOutZs = ncdf_out.add_var(
		"Zs", ncDouble, dimOutLat, dimOutLon);

	varOutZs->set_cur((long)0, (long)0);
	varOutZs->put(&(dZs[0][0]), nLat, nLon);

	AnnounceEndBlock("Done");

	// Done
	AnnounceEndBlock("Done");

	// Load all variables
	Announce("Loading variables");

	std::vector<NcVar *> vecNcVar;
	for (int v = 0; v < vecVariableStrings.size(); v++) {
		vecNcVar.push_back(ncdf_in.get_var(vecVariableStrings[v].c_str()));
		if (vecNcVar[v] == NULL) {
			_EXCEPTION1("Unable to load variable \"%s\" from file",
				vecVariableStrings[v].c_str());
		}
	}

	// Physical constants
	Announce("Initializing thermodynamic variables");

	NcAtt * attEarthRadius = ncdf_in.get_att("earth_radius");
	double dEarthRadius = attEarthRadius->as_double(0);

	NcAtt * attRd = ncdf_in.get_att("Rd");
	double dRd = attRd->as_double(0);

	NcAtt * attCp = ncdf_in.get_att("Cp");
	double dCp = attCp->as_double(0);

	double dGamma = dCp / (dCp - dRd);

	NcAtt * attP0 = ncdf_in.get_att("P0");
	double dP0 = attP0->as_double(0);

	double dPressureScaling = dP0 * std::pow(dRd / dP0, dGamma);

	NcAtt * attZtop = ncdf_in.get_att("Ztop");
	double dZtop = attZtop->as_double(0);

	// Input data
	DataArray3D<double> dataIn(nLev, nLat, nLon);
	DataArray3D<double> dataInt(nILev, nLat, nLon);

	// Output data
	DataArray2D<double> dataOut(nLat, nLon);

	// Pressure in column
	DataArray1D<double> dataColumnP(nLev);

	// Height in column
	DataArray1D<double> dataColumnZ(nLev);
	DataArray1D<double> dataColumnIZ(nILev);

	// Column weights
	DataArray1D<double> dW(nLev);
	DataArray1D<double> dIW(nILev);

	// Loop through all times, pressure levels and variables
	AnnounceStartBlock("Interpolating");

	// Add energy variable
	NcVar * varEnergy;
	if (fExtractTotalEnergy) {
		varEnergy = ncdf_out.add_var("TE", ncDouble, dimOutTime);
	}

	// Create output pressure variables
	std::vector<NcVar *> vecOutNcVarP;
	if (nPressureLevels > 0) {
		for (int v = 0; v < vecVariableStrings.size(); v++) {
			vecOutNcVarP.push_back(
				ncdf_out.add_var(
					vecVariableStrings[v].c_str(), ncDouble,
						dimOutTime, dimOutP, dimOutLat, dimOutLon));

			// Copy attributes
			CopyNcVarAttributes(vecNcVar[v], vecOutNcVarP[v]);
		}
	}

	// Create output height variables
	std::vector<NcVar *> vecOutNcVarZ;
	if (nHeightLevels > 0) {
		for (int v = 0; v < vecVariableStrings.size(); v++) {
			std::string strVarName = vecVariableStrings[v];
			if (nPressureLevels > 0) {
				strVarName += "z";
			}
			vecOutNcVarZ.push_back(
				ncdf_out.add_var(
					strVarName.c_str(), ncDouble,
						dimOutTime, dimOutZ, dimOutLat, dimOutLon));

			// Copy attributes
			CopyNcVarAttributes(vecNcVar[v], vecOutNcVarZ[v]);
		}
	}

	// Create output surface variable
	std::vector<NcVar *> vecOutNcVarS;
	if (fExtractSurface) {
		for (int v = 0; v < vecVariableStrings.size(); v++) {
			std::string strVarName = vecVariableStrings[v];
			strVarName += "S";

			vecOutNcVarS.push_back(
				ncdf_out.add_var(
					strVarName.c_str(), ncDouble,
						dimOutTime, dimOutLat, dimOutLon));

			// Copy attributes
			CopyNcVarAttributes(vecNcVar[v], vecOutNcVarS[v]);
		}
	}

	// Loop over all times
	for (int t = 0; t < nTime; t++) {

		char szAnnounce[256];
		sprintf(szAnnounce, "Time %i", t); 
		AnnounceStartBlock(szAnnounce);

		// Rho
		DataArray3D<double> dataRho(nLev, nLat, nLon);

		NcVar * varRho = ncdf_in.get_var("Rho");
		if (varRho == NULL) {
			_EXCEPTIONT("Unable to load variable \"Rho\" from file");
		}
		varRho->set_cur(t, 0, 0, 0);
		varRho->get(&(dataRho[0][0][0]), 1, nLev, nLat, nLon);

		// Pressure
		DataArray3D<double> dataP(nLev, nLat, nLon);

		if (nPressureLevels != 0) {
			NcVar * varP = ncdf_in.get_var("P");
			if (varP == NULL) {
				_EXCEPTIONT("Unable to load variable \"P\" from file");
			}
			varP->set_cur(t, 0, 0, 0);
			varP->get(&(dataP[0][0][0]), 1, nLev, nLat, nLon);
		}
/*
		// Populate pressure array
		if (nPressureLevels > 0) {

			// Calculate pointwise pressure
			for (int k = 0; k < nLev; k++) {
			for (int i = 0; i < nLat; i++) {
			for (int j = 0; j < nLon; j++) {
				dataP[k][i][j] = dPressureScaling
					* exp(log(dataRho[k][i][j] * dataP[k][i][j]) * dGamma);
			}
			}
			}
		}
*/
		// Height everywhere
		DataArray3D<double> dataZ(nLev, nLat, nLon);
		DataArray3D<double> dataIZ;
		if (nILev != 0) {
			dataIZ.Allocate(nILev, nLat, nLon);
		}

		// Populate height array
		if ((nHeightLevels > 0) || (fGeopotentialHeight)) {
			for (int k = 0; k < nLev; k++) {
			for (int i = 0; i < nLat; i++) {
			for (int j = 0; j < nLon; j++) {
				dataZ[k][i][j] = dZs[i][j] + dLev[k] * (dZtop - dZs[i][j]);
			}
			}
			}

			for (int k = 0; k < nILev; k++) {
			for (int i = 0; i < nLat; i++) {
			for (int j = 0; j < nLon; j++) {
				dataIZ[k][i][j] = dZs[i][j] + dILev[k] * (dZtop - dZs[i][j]);
			}
			}
			}
		}

		// Loop through all pressure levels and variables
		for (int v = 0; v < vecNcVar.size(); v++) {

			bool fOnInterfaces = false;

			// Load in the data array
			vecNcVar[v]->set_cur(t, 0, 0, 0);

			if (vecNcVar[v]->get_dim(1)->size() == nLev) {
				vecNcVar[v]->get(&(dataIn[0][0][0]), 1, nLev, nLat, nLon);

				Announce("%s (n)", vecVariableStrings[v].c_str());

			} else if (vecNcVar[v]->get_dim(1)->size() == nILev) {
				vecNcVar[v]->get(&(dataInt[0][0][0]), 1, nILev, nLat, nLon);
				fOnInterfaces = true;

				Announce("%s (i)", vecVariableStrings[v].c_str());
			} else {
				_EXCEPTION1("Variable \"%s\" has invalid level dimension",
					vecVariableStrings[v].c_str());
			}

			// At the physical surface
			if (fExtractSurface) {

				if (fOnInterfaces) {
					for (int i = 0; i < nLat; i++) {
					for (int j = 0; j < nLon; j++) {
						dataOut[i][j] = dataInt[0][i][j];
					}
					}

				} else {

					int kBegin = 0;
					int kEnd = 3;

					PolynomialInterp::LagrangianPolynomialCoeffs(
						3, dLev, dW, 0.0);

					// Loop thorugh all latlon indices
					for (int i = 0; i < nLat; i++) {
					for (int j = 0; j < nLon; j++) {

						// Interpolate in the vertical
						dataOut[i][j] = 0.0;
						for (int k = kBegin; k < kEnd; k++) {
							dataOut[i][j] += dW[k] * dataIn[k][i][j];
						}
					}
					}
				}

				// Write variable
				vecOutNcVarS[v]->set_cur(t, 0, 0);
				vecOutNcVarS[v]->put(&(dataOut[0][0]), 1, nLat, nLon);

			}

			// Loop through all pressure levels
			for (int p = 0; p < nPressureLevels; p++) {

				// Loop thorugh all latlon indices
				for (int i = 0; i < nLat; i++) {
				for (int j = 0; j < nLon; j++) {

					// Store column pressure
					for (int k = 0; k < nLev; k++) {
						dataColumnP[k] = dataP[k][i][j];
					}

					// Find weights
					int kBegin = 0;
					int kEnd = 0;

					// On a pressure surface
					InterpolationWeightsLinear(
						vecPressureLevels[p],
						dataColumnP,
						kBegin,
						kEnd,
						dW);

					// Interpolate in the vertical
					dataOut[i][j] = 0.0;
					for (int k = kBegin; k < kEnd; k++) {
						dataOut[i][j] += dW[k] * dataIn[k][i][j];
					}

				}
				}

				// Write variable
				vecOutNcVarP[v]->set_cur(t, p, 0, 0);
				vecOutNcVarP[v]->put(&(dataOut[0][0]), 1, 1, nLat, nLon);
			}

			// Loop through all height levels
			for (int z = 0; z < nHeightLevels; z++) {

				// Loop thorugh all latlon indices
				for (int i = 0; i < nLat; i++) {
				for (int j = 0; j < nLon; j++) {

					// Find weights
					int kBegin = 0;
					int kEnd = 0;

					// Interpolate from levels to z surfaces
					if (!fOnInterfaces) {
						for (int k = 0; k < nLev; k++) {
							dataColumnZ[k] = dataZ[k][i][j];
						}

						InterpolationWeightsLinear(
							vecHeightLevels[z],
							dataColumnZ,
							kBegin,
							kEnd,
							dW);

						dataOut[i][j] = 0.0;
						for (int k = kBegin; k < kEnd; k++) {
							dataOut[i][j] += dW[k] * dataIn[k][i][j];
						}

					// Interpolate from interfaces to z surfaces
					} else {
						for (int k = 0; k < nILev; k++) {
							dataColumnIZ[k] = dataIZ[k][i][j];
						}

						InterpolationWeightsLinear(
							vecHeightLevels[z],
							dataColumnIZ,
							kBegin,
							kEnd,
							dIW);

						dataOut[i][j] = 0.0;
						for (int k = kBegin; k < kEnd; k++) {
							dataOut[i][j] += dIW[k] * dataInt[k][i][j];
						}
					}
				}
				}

				// Write variable
				vecOutNcVarZ[v]->set_cur(t, z, 0, 0);
				vecOutNcVarZ[v]->put(&(dataOut[0][0]), 1, 1, nLat, nLon);
			}
		}

		// Output geopotential height
		if (fGeopotentialHeight) {

			Announce("Geopotential height");

			// Output variables
			NcVar * varOutZ;
			NcVar * varOutZs;

			if (nPressureLevels > 0) {
				varOutZ = ncdf_out.add_var(
					"PHIZ", ncDouble, dimOutTime, dimOutP, dimOutLat, dimOutLon);
			}
			if (fExtractSurface) {
				varOutZs = ncdf_out.add_var(
					"PHIZS", ncDouble, dimOutTime, dimOutLat, dimOutLon);
			}

			// Interpolate onto pressure levels
			for (int p = 0; p < nPressureLevels; p++) {

				// Loop thorugh all latlon indices
				for (int i = 0; i < nLat; i++) {
				for (int j = 0; j < nLon; j++) {

					int kBegin = 0;
					int kEnd = 0;

					for (int k = 0; k < nLev; k++) {
						dataColumnP[k] = dataP[k][i][j];
					}

					InterpolationWeightsLinear(
						vecPressureLevels[p],
						dataColumnP,
						kBegin,
						kEnd,
						dW);

					// Interpolate in the vertical
					dataOut[i][j] = 0.0;
					for (int k = kBegin; k < kEnd; k++) {
						dataOut[i][j] += dW[k] * dataZ[k][i][j];
					}
				}
				}

				// Write variable
				varOutZ->set_cur(t, p, 0, 0);
				varOutZ->put(&(dataOut[0][0]), 1, 1, nLat, nLon);

			}

			// Interpolate onto the physical surface
			if (fExtractSurface) {

				int kBegin = 0;
				int kEnd = 3;

				PolynomialInterp::LagrangianPolynomialCoeffs(
					3, dLev, dW, 0.0);

				// Loop thorugh all latlon indices
				for (int i = 0; i < nLat; i++) {
				for (int j = 0; j < nLon; j++) {

					// Interpolate in the vertical
					dataOut[i][j] = 0.0;
					for (int k = kBegin; k < kEnd; k++) {
						dataOut[i][j] += dW[k] * dataZ[k][i][j];
					}
				}
				}

				// Write variable
				varOutZs->set_cur(t, 0, 0);
				varOutZs->put(&(dataOut[0][0]), 1, nLat, nLon);

			}
		}

		// Extract total energy
		if (fExtractTotalEnergy) {
			Announce("Total Energy");

			// Zonal velocity
			DataArray3D<double> dataU(nLev, nLat, nLon);

			NcVar * varU = ncdf_in.get_var("U");
			varU->set_cur(t, 0, 0, 0);
			varU->get(&(dataU[0][0][0]), 1, nLev, nLat, nLon);

			// Meridional velocity
			DataArray3D<double> dataV(nLev, nLat, nLon);

			NcVar * varV = ncdf_in.get_var("V");
			varV->set_cur(t, 0, 0, 0);
			varV->get(&(dataV[0][0][0]), 1, nLev, nLat, nLon);

			// Vertical velocity
			DataArray3D<double> dataW(nLev, nLat, nLon);

			NcVar * varW = ncdf_in.get_var("W");
			varW->set_cur(t, 0, 0, 0);
			varW->get(&(dataW[0][0][0]), 1, nLev, nLat, nLon);

			// Calculate total energy
			double dTotalEnergy = 0.0;

			double dElementRefArea =
				dEarthRadius * dEarthRadius
				* M_PI / static_cast<double>(nLat)
				* 2.0 * M_PI / static_cast<double>(nLon);

			for (int k = 0; k < nLev; k++) {
			for (int i = 0; i < nLat; i++) {
			for (int j = 0; j < nLon; j++) {
				double dKineticEnergy =
					0.5 * dataRho[k][i][j] *
						( dataU[k][i][j] * dataU[k][i][j]
						+ dataV[k][i][j] * dataV[k][i][j]
						+ dataW[k][i][j] * dataW[k][i][j]);

				double dInternalEnergy =
					dataP[k][i][j] / (dGamma - 1.0);

				dTotalEnergy +=
					(dKineticEnergy + dInternalEnergy)
						* std::cos(M_PI * dLat[i] / 180.0) * dElementRefArea
						* (dZtop - dZs[i][j]) / static_cast<double>(nLev);
			}
			}
			}

			// Put total energy into file
			varEnergy->set_cur(t);
			varEnergy->put(&dTotalEnergy, 1);
		}

		AnnounceEndBlock("Done");
	}

	AnnounceEndBlock("Done");

} catch(Exception & e) {
	Announce(e.ToString().c_str());
}

	// Finalize MPI
	MPI_Finalize();
}