Example #1
0
/**
 * do_budget_space - reserve flash space for index and data growth.
 * @c: UBIFS file-system description object
 *
 * This function makes sure UBIFS has enough free LEBs for index growth and
 * data.
 *
 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
 * would take if it was consolidated and written to the flash. This guarantees
 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 * be able to commit dirty index. So this function basically adds amount of
 * budgeted index space to the size of the current index, multiplies this by 3,
 * and makes sure this does not exceed the amount of free LEBs.
 *
 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 *    be large, because UBIFS does not do any index consolidation as long as
 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 *    will contain a lot of dirt.
 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
 *
 * This function returns zero in case of success, and %-ENOSPC in case of
 * failure.
 */
static int do_budget_space(struct ubifs_info *c)
{
	long long outstanding, available;
	int lebs, rsvd_idx_lebs, min_idx_lebs;

	/* First budget index space */
	min_idx_lebs = ubifs_calc_min_idx_lebs(c);

	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
	if (min_idx_lebs > c->lst.idx_lebs)
		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
	else
		rsvd_idx_lebs = 0;

	/*
	 * The number of LEBs that are available to be used by the index is:
	 *
	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
	 *    @c->lst.taken_empty_lebs
	 *
	 * @c->lst.empty_lebs are available because they are empty.
	 * @c->freeable_cnt are available because they contain only free and
	 * dirty space, @c->idx_gc_cnt are available because they are index
	 * LEBs that have been garbage collected and are awaiting the commit
	 * before they can be used. And the in-the-gaps method will grab these
	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
	 * already been allocated for some purpose.
	 *
	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
	 * are taken until after the commit).
	 *
	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
	 * because of the way we serialize LEB allocations and budgeting. See a
	 * comment in 'ubifs_find_free_space()'.
	 */
	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
	       c->lst.taken_empty_lebs;
	if (unlikely(rsvd_idx_lebs > lebs)) {
		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
			 "rsvd_idx_lebs %d", min_idx_lebs, c->bi.min_idx_lebs,
			 rsvd_idx_lebs);
		return -ENOSPC;
	}

	available = ubifs_calc_available(c, min_idx_lebs);
	outstanding = c->bi.data_growth + c->bi.dd_growth;

	if (unlikely(available < outstanding)) {
		dbg_budg("out of data space: available %lld, outstanding %lld",
			 available, outstanding);
		return -ENOSPC;
	}

	if (available - outstanding <= c->rp_size && !can_use_rp(c))
		return -ENOSPC;

	c->bi.min_idx_lebs = min_idx_lebs;
	return 0;
}
Example #2
0
/**
 * do_budget_space - reserve flash space for index and data growth.
 * @c: UBIFS file-system description object
 *
 * This function makes sure UBIFS has enough free eraseblocks for index growth
 * and data.
 *
 * When budgeting index space, UBIFS reserves twice as more LEBs as the index
 * would take if it was consolidated and written to the flash. This guarantees
 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 * be able to commit dirty index. So this function basically adds amount of
 * budgeted index space to the size of the current index, multiplies this by 2,
 * and makes sure this does not exceed the amount of free eraseblocks.
 *
 * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 *    be large, because UBIFS does not do any index consolidation as long as
 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 *    will contain a lot of dirt.
 * o @c->min_idx_lebs is the the index presumably takes. IOW, the index may be
 *   consolidated to take up to @c->min_idx_lebs LEBs.
 *
 * This function returns zero in case of success, and %-ENOSPC in case of
 * failure.
 */
static int do_budget_space(struct ubifs_info *c)
{
	long long outstanding, available;
	int lebs, rsvd_idx_lebs, min_idx_lebs;

	/* First budget index space */
	min_idx_lebs = ubifs_calc_min_idx_lebs(c);

	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
	if (min_idx_lebs > c->lst.idx_lebs)
		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
	else
		rsvd_idx_lebs = 0;

	/*
	 * The number of LEBs that are available to be used by the index is:
	 *
	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
	 *    @c->lst.taken_empty_lebs
	 *
	 * @empty_lebs are available because they are empty. @freeable_cnt are
	 * available because they contain only free and dirty space and the
	 * index allocation always occurs after wbufs are synch'ed.
	 * @idx_gc_cnt are available because they are index LEBs that have been
	 * garbage collected (including trivial GC) and are awaiting the commit
	 * before they can be unmapped - note that the in-the-gaps method will
	 * grab these if it needs them. @taken_empty_lebs are empty_lebs that
	 * have already been allocated for some purpose (also includes those
	 * LEBs on the @idx_gc list).
	 *
	 * Note, @taken_empty_lebs may temporarily be higher by one because of
	 * the way we serialize LEB allocations and budgeting. See a comment in
	 * 'ubifs_find_free_space()'.
	 */
	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
	       c->lst.taken_empty_lebs;
	if (unlikely(rsvd_idx_lebs > lebs)) {
		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
			 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
			 rsvd_idx_lebs);
		return -ENOSPC;
	}

	available = ubifs_calc_available(c, min_idx_lebs);
	outstanding = c->budg_data_growth + c->budg_dd_growth;

	if (unlikely(available < outstanding)) {
		dbg_budg("out of data space: available %lld, outstanding %lld",
			 available, outstanding);
		return -ENOSPC;
	}

	if (available - outstanding <= c->rp_size && !can_use_rp(c))
		return -ENOSPC;

	c->min_idx_lebs = min_idx_lebs;
	return 0;
}
Example #3
0
/**
 * shrink_liability - write-back some dirty pages/inodes.
 * @c: UBIFS file-system description object
 * @nr_to_write: how many dirty pages to write-back
 *
 * This function shrinks UBIFS liability by means of writing back some amount
 * of dirty inodes and their pages. Returns the amount of pages which were
 * written back. The returned value does not include dirty inodes which were
 * synchronized.
 *
 * Note, this function synchronizes even VFS inodes which are locked
 * (@i_mutex) by the caller of the budgeting function, because write-back does
 * not touch @i_mutex.
 */
static int shrink_liability(struct ubifs_info *c, int nr_to_write)
{
	int nr_written;
	struct writeback_control wbc = {
		.sync_mode   = WB_SYNC_NONE,
		.range_end   = LLONG_MAX,
		.nr_to_write = nr_to_write,
	};

	generic_sync_sb_inodes(c->vfs_sb, &wbc);
	nr_written = nr_to_write - wbc.nr_to_write;

	if (!nr_written) {
		/*
		 * Re-try again but wait on pages/inodes which are being
		 * written-back concurrently (e.g., by pdflush).
		 */
		memset(&wbc, 0, sizeof(struct writeback_control));
		wbc.sync_mode   = WB_SYNC_ALL;
		wbc.range_end   = LLONG_MAX;
		wbc.nr_to_write = nr_to_write;
		generic_sync_sb_inodes(c->vfs_sb, &wbc);
		nr_written = nr_to_write - wbc.nr_to_write;
	}

	dbg_budg("%d pages were written back", nr_written);
	return nr_written;
}
Example #4
0
/**
 * make_free_space - make more free space on the file-system.
 * @c: UBIFS file-system description object
 *
 * This function is called when an operation cannot be budgeted because there
 * is supposedly no free space. But in most cases there is some free space:
 *   o budgeting is pessimistic, so it always budgets more than it is actually
 *     needed, so shrinking the liability is one way to make free space - the
 *     cached data will take less space then it was budgeted for;
 *   o GC may turn some dark space into free space (budgeting treats dark space
 *     as not available);
 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 *
 * So this function tries to do the above. Returns %-EAGAIN if some free space
 * was presumably made and the caller has to re-try budgeting the operation.
 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 * codes on failures.
 */
static int make_free_space(struct ubifs_info *c)
{
	int err, retries = 0;
	long long liab1, liab2;

	do {
		liab1 = get_liability(c);
		/*
		 * We probably have some dirty pages or inodes (liability), try
		 * to write them back.
		 */
		dbg_budg("liability %lld, run write-back", liab1);
		shrink_liability(c, NR_TO_WRITE);

		liab2 = get_liability(c);
		if (liab2 < liab1)
			return -EAGAIN;

		dbg_budg("new liability %lld (not shrunk)", liab2);

		/* Liability did not shrink again, try GC */
		dbg_budg("Run GC");
		err = run_gc(c);
		if (!err)
			return -EAGAIN;

		if (err != -EAGAIN && err != -ENOSPC)
			/* Some real error happened */
			return err;

		dbg_budg("Run commit (retries %d)", retries);
		err = ubifs_run_commit(c);
		if (err)
			return err;
	} while (retries++ < MAX_MKSPC_RETRIES);

	return -ENOSPC;
}
Example #5
0
/**
 * run_gc - run garbage collector.
 * @c: UBIFS file-system description object
 *
 * This function runs garbage collector to make some more free space. Returns
 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 * negative error code in case of failure.
 */
static int run_gc(struct ubifs_info *c)
{
	int err, lnum;

	/* Make some free space by garbage-collecting dirty space */
	down_read(&c->commit_sem);
	lnum = ubifs_garbage_collect(c, 1);
	up_read(&c->commit_sem);
	if (lnum < 0)
		return lnum;

	/* GC freed one LEB, return it to lprops */
	dbg_budg("GC freed LEB %d", lnum);
	err = ubifs_return_leb(c, lnum);
	if (err)
		return err;
	return 0;
}
Example #6
0
/**
 * ubifs_budget_space - ensure there is enough space to complete an operation.
 * @c: UBIFS file-system description object
 * @req: budget request
 *
 * This function allocates budget for an operation. It uses pessimistic
 * approximation of how much flash space the operation needs. The goal of this
 * function is to make sure UBIFS always has flash space to flush all dirty
 * pages, dirty inodes, and dirty znodes (liability). This function may force
 * commit, garbage-collection or write-back. Returns zero in case of success,
 * %-ENOSPC if there is no free space and other negative error codes in case of
 * failures.
 */
int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
{
	int err, idx_growth, data_growth, dd_growth, retried = 0;

	ubifs_assert(req->new_page <= 1);
	ubifs_assert(req->dirtied_page <= 1);
	ubifs_assert(req->new_dent <= 1);
	ubifs_assert(req->mod_dent <= 1);
	ubifs_assert(req->new_ino <= 1);
	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
	ubifs_assert(req->dirtied_ino <= 4);
	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
	ubifs_assert(!(req->new_ino_d & 7));
	ubifs_assert(!(req->dirtied_ino_d & 7));

	data_growth = calc_data_growth(c, req);
	dd_growth = calc_dd_growth(c, req);
	if (!data_growth && !dd_growth)
		return 0;
	idx_growth = calc_idx_growth(c, req);

again:
	spin_lock(&c->space_lock);
	ubifs_assert(c->bi.idx_growth >= 0);
	ubifs_assert(c->bi.data_growth >= 0);
	ubifs_assert(c->bi.dd_growth >= 0);

	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
		dbg_budg("no space");
		spin_unlock(&c->space_lock);
		return -ENOSPC;
	}

	c->bi.idx_growth += idx_growth;
	c->bi.data_growth += data_growth;
	c->bi.dd_growth += dd_growth;

	err = do_budget_space(c);
	if (likely(!err)) {
		req->idx_growth = idx_growth;
		req->data_growth = data_growth;
		req->dd_growth = dd_growth;
		spin_unlock(&c->space_lock);
		return 0;
	}

	/* Restore the old values */
	c->bi.idx_growth -= idx_growth;
	c->bi.data_growth -= data_growth;
	c->bi.dd_growth -= dd_growth;
	spin_unlock(&c->space_lock);

	if (req->fast) {
		dbg_budg("no space for fast budgeting");
		return err;
	}

	err = make_free_space(c);
	cond_resched();
	if (err == -EAGAIN) {
		dbg_budg("try again");
		goto again;
	} else if (err == -ENOSPC) {
		if (!retried) {
			retried = 1;
			dbg_budg("-ENOSPC, but anyway try once again");
			goto again;
		}
		dbg_budg("FS is full, -ENOSPC");
		c->bi.nospace = 1;
		if (can_use_rp(c) || c->rp_size == 0)
			c->bi.nospace_rp = 1;
		smp_wmb();
	} else
		ubifs_err(c, "cannot budget space, error %d", err);
	return err;
}
Example #7
0
/**
 * ubifs_budget_space - ensure there is enough space to complete an operation.
 * @c: UBIFS file-system description object
 * @req: budget request
 *
 * This function allocates budget for an operation. It uses pessimistic
 * approximation of how much flash space the operation needs. The goal of this
 * function is to make sure UBIFS always has flash space to flush all dirty
 * pages, dirty inodes, and dirty znodes (liability). This function may force
 * commit, garbage-collection or write-back. Returns zero in case of success,
 * %-ENOSPC if there is no free space and other negative error codes in case of
 * failures.
 */
int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
{
	int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
	int err, idx_growth, data_growth, dd_growth;
	struct retries_info ri;

	ubifs_assert(req->dirtied_ino <= 4);
	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);

	data_growth = calc_data_growth(c, req);
	dd_growth = calc_dd_growth(c, req);
	if (!data_growth && !dd_growth)
		return 0;
	idx_growth = calc_idx_growth(c, req);
	memset(&ri, 0, sizeof(struct retries_info));

again:
	spin_lock(&c->space_lock);
	ubifs_assert(c->budg_idx_growth >= 0);
	ubifs_assert(c->budg_data_growth >= 0);
	ubifs_assert(c->budg_dd_growth >= 0);

	if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
		dbg_budg("no space");
		spin_unlock(&c->space_lock);
		return -ENOSPC;
	}

	c->budg_idx_growth += idx_growth;
	c->budg_data_growth += data_growth;
	c->budg_dd_growth += dd_growth;

	err = do_budget_space(c);
	if (likely(!err)) {
		req->idx_growth = idx_growth;
		req->data_growth = data_growth;
		req->dd_growth = dd_growth;
		spin_unlock(&c->space_lock);
		return 0;
	}

	/* Restore the old values */
	c->budg_idx_growth -= idx_growth;
	c->budg_data_growth -= data_growth;
	c->budg_dd_growth -= dd_growth;
	spin_unlock(&c->space_lock);

	if (req->fast) {
		dbg_budg("no space for fast budgeting");
		return err;
	}

	err = make_free_space(c, &ri);
	if (err == -EAGAIN) {
		dbg_budg("try again");
		cond_resched();
		goto again;
	} else if (err == -ENOSPC) {
		dbg_budg("FS is full, -ENOSPC");
		c->nospace = 1;
		if (can_use_rp(c) || c->rp_size == 0)
			c->nospace_rp = 1;
		smp_wmb();
	} else
		ubifs_err("cannot budget space, error %d", err);
	return err;
}
Example #8
0
/**
 * make_free_space - make more free space on the file-system.
 * @c: UBIFS file-system description object
 * @ri: information about previous invocations of this function
 *
 * This function is called when an operation cannot be budgeted because there
 * is supposedly no free space. But in most cases there is some free space:
 *   o budgeting is pessimistic, so it always budgets more then it is actually
 *     needed, so shrinking the liability is one way to make free space - the
 *     cached data will take less space then it was budgeted for;
 *   o GC may turn some dark space into free space (budgeting treats dark space
 *     as not available);
 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 *
 * So this function tries to do the above. Returns %-EAGAIN if some free space
 * was presumably made and the caller has to re-try budgeting the operation.
 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 * codes on failures.
 */
static int make_free_space(struct ubifs_info *c, struct retries_info *ri)
{
	int err;

	/*
	 * If we have some dirty pages and inodes (liability), try to write
	 * them back unless this was tried too many times without effect
	 * already.
	 */
	if (ri->shrink_retries < MAX_SHRINK_RETRIES && !ri->try_gc) {
		long long liability;

		spin_lock(&c->space_lock);
		liability = c->budg_idx_growth + c->budg_data_growth +
			    c->budg_dd_growth;
		spin_unlock(&c->space_lock);

		if (ri->prev_liability >= liability) {
			/* Liability does not shrink, next time try GC then */
			ri->shrink_retries += 1;
			if (ri->gc_retries < MAX_GC_RETRIES)
				ri->try_gc = 1;
			dbg_budg("liability did not shrink: retries %d of %d",
				 ri->shrink_retries, MAX_SHRINK_RETRIES);
		}

		dbg_budg("force write-back (count %d)", ri->shrink_cnt);
		shrink_liability(c, NR_TO_WRITE + ri->shrink_cnt);

		ri->prev_liability = liability;
		ri->shrink_cnt += 1;
		return -EAGAIN;
	}

	/*
	 * Try to run garbage collector unless it was already tried too many
	 * times.
	 */
	if (ri->gc_retries < MAX_GC_RETRIES) {
		ri->gc_retries += 1;
		dbg_budg("run GC, retries %d of %d",
			 ri->gc_retries, MAX_GC_RETRIES);

		ri->try_gc = 0;
		err = run_gc(c);
		if (!err)
			return -EAGAIN;

		if (err == -EAGAIN) {
			dbg_budg("GC asked to commit");
			err = ubifs_run_commit(c);
			if (err)
				return err;
			return -EAGAIN;
		}

		if (err != -ENOSPC)
			return err;

		/*
		 * GC could not make any progress. If this is the first time,
		 * then it makes sense to try to commit, because it might make
		 * some dirty space.
		 */
		dbg_budg("GC returned -ENOSPC, retries %d",
			 ri->nospc_retries);
		if (ri->nospc_retries >= MAX_NOSPC_RETRIES)
			return err;
		ri->nospc_retries += 1;
	}

	/* Neither GC nor write-back helped, try to commit */
	if (ri->cmt_retries < MAX_CMT_RETRIES) {
		ri->cmt_retries += 1;
		dbg_budg("run commit, retries %d of %d",
			 ri->cmt_retries, MAX_CMT_RETRIES);
		err = ubifs_run_commit(c);
		if (err)
			return err;
		return -EAGAIN;
	}
	return -ENOSPC;
}