decNumber *decNumberAGM(decNumber *res, const decNumber *x, const decNumber *y) { int n; decNumber a, g, t, u; if (decNumberIsNegative(x) || decNumberIsNegative(y)) goto nan; if (decNumberIsSpecial(x) || decNumberIsSpecial(y)) { if (decNumberIsNaN(x) || decNumberIsNaN(y)) goto nan; if (dn_eq0(x) || dn_eq0(y)) goto nan; return set_inf(res); } decNumberCopy(&a, x); decNumberCopy(&g, y); for (n=0; n<1000; n++) { if (relative_error(&a, &g, &const_1e_32)) return decNumberCopy(res, &a); dn_add(&t, &a, &g); dn_div2(&u, &t); dn_multiply(&t, &a, &g); if (dn_eq0(&t)) return decNumberZero(res); dn_sqrt(&g, &t); decNumberCopy(&a, &u); } nan: return set_NaN(res); }
int DecimalDecNumber::comparedTo(const DecimalDecNumber &rhs) const { if (decNumberIsNaN(&m_value) || decNumberIsNaN(&rhs.m_value)) { throw("Performing comparison on uninitialised decimal [Nan]"); } // TODO: the commented out lines below do a strict comparison between two numbers. // However, the unit tests assert that comparison should be done within a tolerance //decNumberCompare(&result, &m_value, &rhs.m_value, &contextComparison); //return decNumberToInt32(&result, &m_context); decContext contextComparison; decContextDefault(&contextComparison, DEC_INIT_BASE); // initialize contextComparison.traps=0; // no traps, thank you contextComparison.digits=DECNUMCOMPARISONDIGITS; // set precision decNumber tmp(m_value); decNumberSubtract(&tmp, &m_value, &rhs.m_value, &m_context); decNumber result; decNumberCompare(&result, &tmp, &comparisonThreshold.m_value, &contextComparison); if (decNumberToInt32(&result, &m_context) >= 1) { return 1; } decNumberCompare(&result, &tmp, &comparisonThresholdNegative.m_value, &contextComparison); if (decNumberToInt32(&result, &m_context) <= -1) { return -1; } return 0; }
const DecimalDecNumber &DecimalDecNumber::operator *=(const DecimalDecNumber &rhs) { if (decNumberIsNaN(&m_value) || decNumberIsNaN(&rhs.m_value)) { // FTHROW(InvalidStateException, "Performing arithmetic on uninitialised decimal [Nan]"); throw("Performing arithmetic on uninitialised decimal [Nan]"); } decNumberMultiply(&m_value, &m_value, &rhs.m_value, &m_context); return *this; }
CMPtype DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { decNumber arg1, arg2; IEEE_TYPE a, b; HOST_TO_IEEE (arg_a, &a); HOST_TO_IEEE (arg_b, &b); TO_INTERNAL (&a, &arg1); TO_INTERNAL (&b, &arg2); return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2)); }
static __ROUND_RETURN_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { DEC_TYPE result; decContext context; decNumber dn_result; decNumber dn_x; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x) || decNumberIsInfinite (&dn_x) || x > __MAX_VALUE || x < __MIN_VALUE) { DFP_EXCEPT (FE_INVALID); return (__ROUND_RETURN_TYPE) x; } decContextDefault (&context, DEFAULT_CONTEXT); context.round = __ROUND_MODE; decNumberToIntegralValue (&dn_result,&dn_x,&context); FUNC_CONVERT_FROM_DN(&dn_result, &result, &context); /* Use _Decimal* to __ROUND_RETURN_TYPE casting. */ return (__ROUND_RETURN_TYPE)result; /* return (__ROUND_RETURN_TYPE)decNumberToInteger (&dn_result); */ }
int PREFIXED_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y) { decNumber dn_x, dn_y, result; decContext context; decContextDefault(&context, DEFAULT_CONTEXT); FUNC_CONVERT_TO_DN(&x, &dn_x); FUNC_CONVERT_TO_DN(&y, &dn_y); if(decNumberIsNaN(&dn_x) || decNumberIsNaN(&dn_y)) return -1; decNumberCompare(&result, &dn_x, &dn_y, &context); return !decNumberIsNegative(&result) && !decNumberIsZero(&result); }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; decNumber dn_two; DEC_TYPE two = DFP_CONSTANT(2.0); FUNC_CONVERT_TO_DN (&two, &dn_two); FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x)) return x+x; if (decNumberIsInfinite (&dn_x) ) return decNumberIsNegative (&dn_x) ? DFP_CONSTANT(0.0) : x; decContextDefault (&context, DEFAULT_CONTEXT); /* decNumberPow (&dn_result, &dn_two, &dn_x, &context); */ decNumberPower (&dn_result, &dn_two, &dn_x, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); if(context.status & DEC_Overflow) DFP_EXCEPT (FE_OVERFLOW); return result; }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; decNumber dn_one; decNumber dn_exponent; DEC_TYPE one = DFP_CONSTANT(1.0); FUNC_CONVERT_TO_DN(&x, &dn_x); FUNC_CONVERT_TO_DN(&one, &dn_one); if (decNumberIsNaN (&dn_x)) return x+x; if (decNumberIsInfinite (&dn_x)) return decNumberIsNegative (&dn_x) ? DFP_CONSTANT(-1.0) : x; decContextDefault(&context, DEFAULT_CONTEXT); decNumberExp(&dn_exponent, &dn_x, &context); decNumberSubtract(&dn_result, &dn_exponent, &dn_one, &context); FUNC_CONVERT_FROM_DN(&dn_result, &result, &context); if (context.status & DEC_Overflow) DFP_EXCEPT (FE_OVERFLOW); return result; }
int __fpclassifyd64 (_Decimal64 x) { decNumber dn_x; decContext context; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x)) return FP_NAN; else if (decNumberIsInfinite (&dn_x)) return FP_INFINITE; else if (decNumberIsZero (&dn_x)) return FP_ZERO; /* Since DFP value are not normalized, checking the exponent for normal/subnormal is not suffice. For instance, the value 10e-96 will result in a expoenent below the minimum, however it is still a FP_NORMAL number due implicit normalization. TO avoid such traps the check relies on runtime comparisons. */ decContextDefault (&context, DEC_INIT_DECIMAL64); if (decNumberIsSubnormal (&dn_x, &context)) return FP_SUBNORMAL; return FP_NORMAL; }
static void decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context) { memset (r, 0, sizeof (REAL_VALUE_TYPE)); r->cl = rvc_normal; if (decNumberIsZero (dn)) r->cl = rvc_zero; if (decNumberIsNaN (dn)) r->cl = rvc_nan; if (decNumberIsInfinite (dn)) r->cl = rvc_inf; if (context->status & DEC_Overflow) r->cl = rvc_inf; if (decNumberIsNegative (dn)) r->sign = 1; r->decimal = 1; if (r->cl != rvc_normal) return; decContextDefault (context, DEC_INIT_DECIMAL128); context->traps = 0; decimal128FromNumber ((decimal128 *) r->sig, dn, context); }
_RETURN_TYPE INTERNAL_FUNCTION_NAME (DEC_TYPE x) { DEC_TYPE result; decContext context; decNumber dn_result; decNumber dn_x; decNumber dn_absx; decNumber dn_logx; decNumber dn_one; decNumber dn_cmp; enum rounding round; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsZero (&dn_x)) { DFP_EXCEPT (FE_INVALID); DFP_ERRNO (EDOM); return _FBLOG0; } if (decNumberIsInfinite (&dn_x)) { DFP_EXCEPT (FE_INVALID); DFP_ERRNO (EDOM); return decNumberIsNegative (&dn_x) ? _MIN_VALUE : _MAX_VALUE; } if (decNumberIsNaN (&dn_x)) { DFP_EXCEPT (FE_INVALID); DFP_ERRNO (EDOM); return _FBLOGNAN; } decContextDefault (&context, DEFAULT_CONTEXT); decNumberAbs (&dn_absx, &dn_x, &context); /* For DFP, we use radix 10 instead of whatever FLT_RADIX happens to be */ decNumberLog10 (&dn_logx, &dn_absx, &context); /* Capture the case where truncation will return the wrong result, by rounding up if -1.0 < x < 1.0 */ round = DEC_ROUND_DOWN; decNumberFromInt32 (&dn_one, 1); decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context); if (-decNumberIsNegative(&dn_cmp)) { decNumberFromInt32 (&dn_one, -1); decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context); if (!decNumberIsNegative(&dn_cmp) && !decNumberIsZero(&dn_cmp)) round = DEC_ROUND_UP; } context.round = round; decNumberToIntegralValue (&dn_result, &dn_logx, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); /* Use _Decimal* to int casting. */ return (_RETURN_TYPE) result; }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; FUNC_CONVERT_TO_DN(&x, &dn_x); if (decNumberIsNaN (&dn_x)) return x+x; if (decNumberIsZero (&dn_x)) /* If x == 0: Pole Error */ { DFP_EXCEPT (FE_DIVBYZERO); return -DFP_HUGE_VAL; } if (decNumberIsNegative (&dn_x)) /* If x < 0,: Domain Error */ { DFP_EXCEPT (FE_INVALID); return DFP_NAN; } if (decNumberIsInfinite (&dn_x)) return x; decContextDefault (&context, DEFAULT_CONTEXT); decNumberLn(&dn_result, &dn_x, &context); FUNC_CONVERT_FROM_DN(&dn_result, &result, &context); return result; }
DEC_TYPE INTERNAL_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result, one; decNumber dn_x, dn_one; one = DFP_CONSTANT(1.0); FUNC_CONVERT_TO_DN (&one, &dn_one); FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x) || decNumberIsZero (&dn_x) || decNumberIsInfinite (&dn_x)) { return x + x; } decContextDefault (&context, DEFAULT_CONTEXT); /* using trig identity: acosh(x) = log(x+sqrt(x*x-1)) */ decNumberMultiply (&dn_result, &dn_x, &dn_x, &context); decNumberAdd (&dn_result, &dn_result, &dn_one, &context); decNumberSquareRoot (&dn_result, &dn_result, &context); decNumberAdd (&dn_result, &dn_result, &dn_x, &context); decNumberLn (&dn_result, &dn_result, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); return result; }
_Decimal128 __quantumd128 (_Decimal128 x) { decNumber dn_x; decNumber dn_result; decContext context; _Decimal128 result; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x) || decNumberIsZero (&dn_x)) return x; if (decNumberIsInfinite (&dn_x)) return DEC_INFINITY; /* The quantum of a finite number is defined as 1 x 10^exponent, so first get input absolute value and then sets its coefficient to 1. */ decContextDefault (&context, DEFAULT_CONTEXT); decNumberAbs (&dn_result, &dn_x, &context); dn_result.digits = 1; dn_result.lsu[0] = 1; FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); return result; }
int INTERNAL_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y) { decNumber dn_x; decNumber dn_y; decNumber dn_result; decContext context; FUNC_CONVERT_TO_DN(&x, &dn_x); FUNC_CONVERT_TO_DN(&y, &dn_y); if(decNumberIsNaN(&dn_x) || decNumberIsNaN(&dn_y)) return 0; decNumberCompare (&dn_result, &dn_x, &dn_y, &context); return (-decNumberIsNegative (&dn_result)) || (!decNumberIsNegative (&dn_result) && !decNumberIsZero (&dn_result)); }
DecimalDecNumber DecimalDecNumber::operator +() const { if (decNumberIsNaN(&m_value)) { throw("Performing arithmetic on uninitialised decimal [Nan]"); } return DecimalDecNumber(*this); }
const DecimalDecNumber &DecimalDecNumber::operator --() { if (decNumberIsNaN(&m_value)) { throw("Performing arithmetic on uninitialised decimal [Nan]"); } decNumberSubtract(&m_value, &m_value, &ONE.m_value, &m_context); return *this; }
DecimalDecNumber DecimalDecNumber::operator -() const { if (decNumberIsNaN(&m_value)) { throw("Performing arithmetic on uninitialised decimal [Nan]"); } DecimalDecNumber temp(*this); decNumberCopyNegate(&temp.m_value, &m_value); return temp; }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result, one, temp; decNumber dn_x, dn_temp, dn_one; /* int comp;*/ one=DFP_CONSTANT(1.0); FUNC_CONVERT_TO_DN (&one, &dn_one); FUNC_CONVERT_TO_DN (&x, &dn_x); /* Handle NaN and early exit for x==0 */ if (decNumberIsNaN (&dn_x) || decNumberIsZero (&dn_x)) return x + x; decContextDefault (&context, DEFAULT_CONTEXT); decNumberAbs (&dn_temp, &dn_x, &context); FUNC_CONVERT_FROM_DN (&dn_temp, &temp, &context); if(temp==one) { /* |x| == 1 -> Pole Error */ DFP_EXCEPT (FE_DIVBYZERO); return decNumberIsNegative(&dn_x) ? -DFP_HUGE_VAL:DFP_HUGE_VAL; } else if (temp>one) { /* |x| > 1 -> Domain Error (this handles +-Inf too) */ DFP_EXCEPT (FE_INVALID); return DFP_NAN; } // comp = decCompare (&dn_temp, &dn_one); // switch (comp) // { // case 0: /* |x| == 1 -> Pole Error */ // DFP_EXCEPT (FE_DIVBYZERO); // return decNumberIsNegative(&dn_x) ? -DFP_HUGE_VAL:DFP_HUGE_VAL; // case 1: /* |x| > 1 -> Domain Error (this handles +-Inf too) */ // DFP_EXCEPT (FE_INVALID); // return DFP_NAN; // } /* Using trig identity: atanh(x) = 1/2 * log((1+x)/(1-x)) */ decNumberAdd (&dn_result, &dn_one, &dn_x, &context); decNumberSubtract (&dn_temp, &dn_one, &dn_x, &context); decNumberDivide (&dn_result, &dn_result, &dn_temp, &context); decNumberLn (&dn_result, &dn_result, &context); decNumberAdd (&dn_temp, &dn_one, &dn_one, &context); /* 2 */ decNumberDivide (&dn_result, &dn_result, &dn_temp, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); return result; }
DEC_TYPE INTERNAL_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; decNumber dn_tmp; decNumber dn_log10; decNumber dn_one; decNumber dn_cmp; enum rounding round; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x)) return x+x; if (decNumberIsInfinite (&dn_x)) /* +-Inf: Inf */ return DEC_INFINITY; if (decNumberIsZero (&dn_x)) /* Pole Error if x==0 */ { DFP_ERRNO (ERANGE); DFP_EXCEPT (FE_DIVBYZERO); return -DFP_HUGE_VAL; } if (decNumberIsInfinite (&dn_x) && decNumberIsNegative (&dn_x)) return -x; decContextDefault (&context, DEFAULT_CONTEXT); decNumberAbs (&dn_tmp, &dn_x, &context); /* For DFP, we use radix 10 instead of whatever FLT_RADIX happens to be */ decNumberLog10 (&dn_log10, &dn_tmp, &context); /* Capture the case where truncation will return the wrong result, by rounding up if -1.0 < x < 1.0 */ round = DEC_ROUND_DOWN; decNumberFromInt32 (&dn_one, 1); decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context); if (-decNumberIsNegative(&dn_cmp)) { decNumberFromInt32 (&dn_one, -1); decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context); if (!decNumberIsNegative(&dn_cmp) && !decNumberIsZero(&dn_cmp)) round = DEC_ROUND_UP; } context.round = round; decNumberToIntegralValue (&dn_result, &dn_log10, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); return result; }
// 60 bytes decNumber *decNumberSign(decNumber *r, const decNumber *x) { const decNumber *z; if (decNumberIsNaN(x)) z = x; else if (dn_eq0(x)) z = &const_0; else if (decNumberIsNegative(x)) z = &const__1; else z = &const_1; return decNumberCopy(r, z); }
const DecimalDecNumber &DecimalDecNumber::operator /=(const DecimalDecNumber &rhs) { if (decNumberIsNaN(&m_value) || decNumberIsNaN(&rhs.m_value)) { // FTHROW(InvalidStateException, "Performing arithmetic on uninitialised decimal [Nan]"); throw("Performing arithmetic on uninitialised decimal [Nan]"); } if (decNumberIsZero(&rhs.m_value)) { // FTHROW(LogicError, "Division by zero"); throw("Division by zero"); } if (decNumberIsInfinite(&m_value) || decNumberIsInfinite(&rhs.m_value)) { throw("Cannot divide infinity by infinity"); } decNumberDivide(&m_value, &m_value, &rhs.m_value, &m_context); return *this; }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; decNumber dn_y; decNumber dn_diff; DEC_TYPE temp_diff; DEC_TYPE temp_result; FUNC_CONVERT_TO_DN (&x, &dn_x); FUNC_CONVERT_TO_DN (&y, &dn_y); if(decNumberIsNaN (&dn_x) || decNumberIsNaN (&dn_y)) return x; decContextDefault (&context, DEFAULT_CONTEXT); decNumberSubtract (&dn_diff, &dn_x, &dn_y, &context); decNumberSubtract (&dn_result, &dn_x, &dn_x, &context); FUNC_CONVERT_FROM_DN (&dn_diff, &temp_diff, &context); FUNC_CONVERT_FROM_DN (&dn_result, &temp_result, &context); if(temp_diff>temp_result) decNumberAdd (&dn_result,&dn_result,&dn_diff,&context); /* if(decCompare (&dn_diff,&dn_result) == 1) decNumberAdd (&dn_result,&dn_result,&dn_diff,&context); */ FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); if (context.status & DEC_Overflow) DFP_EXCEPT (FE_OVERFLOW); return result; }
std::string DecimalDecNumber::toStringAllowScientific(uint32 decimalPlaces) const { if (!isZero() && !isInfinity() && !decNumberIsNaN(&m_value)) { static const int BUFFER_SIZE = 256; char buffer[BUFFER_SIZE]; { DecimalDecNumber rounded(*this); rounded.round(decimalPlaces, RoundingMode::ROUND_TO_ZERO); decNumberToString(&rounded.m_value, buffer); } char * e = buffer + strlen(buffer); char * f = std::find(buffer, e, '+'); if (f != e) return buffer; } return toString(decimalPlaces); }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; decNumber dn_sum; decNumber dn_one; DEC_TYPE one = DFP_CONSTANT(1.0); FUNC_CONVERT_TO_DN (&x, &dn_x); FUNC_CONVERT_TO_DN (&one, &dn_one); /* For NaN, 0, or +Inf, just return x */ if (decNumberIsNaN (&dn_x) || decNumberIsZero (&dn_x) || (decNumberIsInfinite (&dn_x) && !decNumberIsNegative (&dn_x))) return x+x; decContextDefault(&context, DEFAULT_CONTEXT); decNumberAdd(&dn_sum, &dn_x, &dn_one, &context); if (decNumberIsZero(&dn_sum)) /* Pole Error if x was -1 */ { DFP_EXCEPT (FE_DIVBYZERO); return -DFP_HUGE_VAL; } if (decNumberIsNegative(&dn_sum)) /* Domain Error if x < -1 */ { DFP_EXCEPT (FE_INVALID); return DFP_NAN; } decNumberLn(&dn_result, &dn_sum, &context); FUNC_CONVERT_FROM_DN(&dn_result, &result, &context); return result; }
DEC_TYPE INTERNAL_FUNCTION_NAME (DEC_TYPE x) { decContext context; decNumber dn_result; DEC_TYPE result; decNumber dn_x; FUNC_CONVERT_TO_DN (&x, &dn_x); if (decNumberIsNaN (&dn_x) || decNumberIsInfinite (&dn_x) || decNumberIsZero (&dn_x)) return x+x; decContextDefault (&context, DEFAULT_CONTEXT); context.round = __ROUND_MODE; decNumberToIntegralValue (&dn_result, &dn_x, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); if (context.status & DEC_Overflow) DFP_EXCEPT (FE_OVERFLOW); return result; }
bool DecimalDecNumber::isValid() const { return !decNumberIsNaN(&m_value) && !decNumberIsInfinite(&m_value); }
static DEC_TYPE IEEE_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y) { decContext context; decNumber dn_result; DEC_TYPE result; DEC_TYPE absx; decNumber dn_x; decNumber dn_absx; decNumber dn_y; decNumber dn_one; decNumber dn_two; decNumber dn_temp; decNumber dn_temp2; decNumber dn_temp3; int y_is_int; int y_is_oddint=0; int abs_x_vs_1; DEC_TYPE one = DFP_CONSTANT(1.0); DEC_TYPE two = DFP_CONSTANT(2.0); FUNC_CONVERT_TO_DN (&x, &dn_x); FUNC_CONVERT_TO_DN (&y, &dn_y); FUNC_CONVERT_TO_DN (&one, &dn_one); decContextDefault (&context, DEFAULT_CONTEXT); if (decNumberIsZero (&dn_y)) return one; if (decNumberIsNaN (&dn_x)) return x+x; decNumberAbs (&dn_absx, &dn_x, &context); FUNC_CONVERT_FROM_DN (&dn_absx, &absx, &context); if(absx<one) abs_x_vs_1 = -1; else if (absx==one) abs_x_vs_1 = 0; else abs_x_vs_1 = 1; /* abs_x_vs_1 = decCompare(&dn_absx, &dn_one); */ if(abs_x_vs_1 == 0 && !decNumberIsNegative (&dn_x)) /* If x == +1 */ return one; if (decNumberIsNaN (&dn_y)) return y+y; /* Detect if y is odd/an integer */ decNumberToIntegralValue (&dn_temp, &dn_y, &context); decNumberSubtract (&dn_temp2, &dn_temp, &dn_y, &context); y_is_int = decNumberIsZero (&dn_temp2); if (y_is_int) { FUNC_CONVERT_TO_DN (&two, &dn_two); decNumberDivide (&dn_temp, &dn_y, &dn_two, &context); decNumberToIntegralValue (&dn_temp2, &dn_temp, &context); decNumberSubtract (&dn_temp3, &dn_temp2, &dn_temp, &context); y_is_oddint = !decNumberIsZero (&dn_temp3); } /* Handle all special cases for which x = +-0 */ if (decNumberIsZero (&dn_x)) { if(decNumberIsNegative (&dn_y)) { if (decNumberIsInfinite (&dn_y)) /* +-0^-Inf = +Inf */ return -y; /* Pole Error for x = +-0, y < 0 */ DFP_EXCEPT (FE_DIVBYZERO); return decNumberIsNegative(&dn_x) && y_is_oddint ? -DFP_HUGE_VAL : DFP_HUGE_VAL; } return decNumberIsNegative(&dn_x) && y_is_oddint ? -DFP_CONSTANT(0.0) : DFP_CONSTANT(0.0); } /* Handle remaining special cases for x = +-Inf or y = +-Inf */ if (decNumberIsInfinite (&dn_x) || decNumberIsInfinite (&dn_y)) { if (abs_x_vs_1 == 0) /* If (-1)^(+-Inf) */ return one; if (abs_x_vs_1 < 0) /* x^(+-Inf), where 0<x<1 */ return decNumberIsNegative (&dn_y) ? DFP_HUGE_VAL : DFP_CONSTANT(0.0); if (decNumberIsNegative (&dn_y)) result = DFP_CONSTANT(0.0); else result = (DEC_TYPE)DEC_INFINITY; if (y_is_oddint && decNumberIsNegative(&dn_x)) result = -result; return result; } /* Domain Error: x < 0 && y is a finite non-int */ if (decNumberIsNegative (&dn_x) && !y_is_int) { DFP_EXCEPT (FE_INVALID); return DFP_NAN; } decNumberPower (&dn_result, &dn_x, &dn_y, &context); FUNC_CONVERT_FROM_DN (&dn_result, &result, &context); if (context.status & DEC_Overflow) DFP_EXCEPT (FE_OVERFLOW); if (context.status & DEC_Underflow) DFP_EXCEPT (FE_UNDERFLOW); return result; }
// Lalit: toString should "truncate" values rather than round std::string DecimalDecNumber::toString(uint32 decimalPlaces) const { // Remove these statics if we ever get a short string optimisation in place (gcc 4.1) static const std::string zero = "0.0"; static const std::string posinf = "+INF"; static const std::string neginf = "-INF"; static const std::string nan = "NaN"; if (isZero()) return zero; else if (isInfinity()) { return isNegative() ? neginf : posinf; } else if (decNumberIsNaN(&m_value)) { // TODO: is it possible to have positive/negative nans? return nan; } static const int BUFFER_SIZE = 256; char buffer[BUFFER_SIZE]; { DecimalDecNumber rounded(*this); rounded.round(decimalPlaces, RoundingMode::ROUND_TO_ZERO); decNumberToString(&rounded.m_value, buffer); } // printf("after round: %s\n", buffer); char * b = buffer; char * e = buffer + strlen(buffer); unpackScientificFormat(b, e, BUFFER_SIZE, decimalPlaces); if ((e-b) == 3 && strcmp(buffer, "NaN") == 0) { return buffer; } else if (std::find(b, e, '.') == e) { strcpy(e, ".0"); return buffer; } { // This code makes the unit tests pass (which were based on the old Decimal implementation) // Ensure that there are no trailing zeros, except when the value is an integer, in which case there should be one trailing zero. char * lastNonZeroDigitAfterDecimal = e - 1; while (*lastNonZeroDigitAfterDecimal == '0') { --lastNonZeroDigitAfterDecimal; } if (*lastNonZeroDigitAfterDecimal == '.') { *(++lastNonZeroDigitAfterDecimal) = '0'; } *(lastNonZeroDigitAfterDecimal + 1) = 0; } // printf("last return\n"); return buffer; }