/// <summary>
/// detect facial features using the given image and face coordinates
/// </summary>
/// <param name="img">image object containing the face</param>
/// <param name="face_tx">The top left x coordinate of the detected face within the image object</param>
/// <param name="face_ty">The top left y coordinate of the detected face within the image object</param>
/// <param name="face_bx">The bottom right x coordinate of the detected face within the image object</param>
/// <param name="face_by">The bottom right y coordinate of the detected face within the image object</param>
void classHumunculus::analyseFace(classimage *img, int face_tx, int face_ty, int face_bx, int face_by)
{
  int x,y,c,xx,yy,w,h;
  int lateral_symetry,lefteye_x,righteye_x,lefteye_y,righteye_y,mouth_y,mouth_width;

  //dimensions of the face within the original image
  w = face_bx - face_tx;
  h = face_by - face_ty;

  //dump the face region into a separate image of fixed dimensions
  for (x=0;x<FACE_IMAGE_SIZE;x++)
  {
	xx = face_tx + ((x * w)/ FACE_IMAGE_SIZE);
    for (y=0;y<FACE_IMAGE_SIZE;y++)
	{
	  yy = face_ty + ((y * h) / FACE_IMAGE_SIZE);
	  for (c=0;c<3;c++)
	    face->image[x][y][c] = img->image[xx][yy][c];
	}
  }
  //face->updateIntegralImage();

  //detect the positions of features within the face image
  detectFeatures(lateral_symetry, lefteye_x, righteye_x, lefteye_y, righteye_y, mouth_y, mouth_width);
  detectKeypoints(lateral_symetry, lefteye_x, righteye_x, lefteye_y, righteye_y, mouth_y, mouth_width);

}
Example #2
0
InitResult KltHomographyInit::addFirstFrame(FramePtr frame_ref)
{
  reset();
  detectFeatures(frame_ref, px_ref_, f_ref_);
  if(px_ref_.size() < 100)
  {
    SVO_WARN_STREAM_THROTTLE(2.0, "First image has less than 100 features. Retry in more textured environment.");
    return FAILURE;
  }
  frame_ref_ = frame_ref;
  px_cur_.insert(px_cur_.begin(), px_ref_.begin(), px_ref_.end());
  return SUCCESS;
}
Example #3
0
InitResult KltHomographyInit::addFirstFrame(FramePtr frame_ref, Matrix3d orient, Vector3d pos)
{
  reset();
  detectFeatures(frame_ref, px_ref_, f_ref_);
  if(px_ref_.size() < 100)
  {
    SVO_WARN_STREAM_THROTTLE(2.0, "First image has less than 100 features. Retry in more textured environment.");
    return FAILURE;
  }
  frame_ref_ = frame_ref;
  px_cur_.insert(px_cur_.begin(), px_ref_.begin(), px_ref_.end());
  T_first_frame_real_scale = SE3(orient, pos);
  frame_ref_->T_f_w_ =  T_first_frame_real_scale;
  return SUCCESS;
}
Example #4
0
	//  确保添加的第一帧检测到的特征点数大于100
	InitResult Initialization::addFirstFrame(FramePtr frame_ref)
	{
		reset();
		detectFeatures(frame_ref, px_ref_, f_ref_);
		if (px_ref_.size() < 100)
		{
			std::cerr << "First image has less than 100 features. Retry in more textured environment." << std::endl;
			return FAILURE;
		}
		int detect_features_num = px_ref_.size();
		// 将这一帧图像做为参考帧
		frame_ref_ = frame_ref;
		// 先设置当前帧的特征与参考帧的特征一致
		px_cur_.insert(px_cur_.begin(), px_ref_.begin(), px_ref_.end());
		return SUCCESS;
	}
	void DetailedFaceDetector::processFrame()
	{
		cv::Mat frame = getMostRecentFrame();

		if(frame.empty()) return;

		detectFaces(frame);

		//only detect features if the FaceDetector has updates!
		if(hasUpdates)
		{
			//only detect other features if the face detector had updates
			if(detectWhat > 0)
				detectFeatures(frame);

			//since this object disables autoNotify, do it manually now!
			//this is to avoid double updates to the controllers and 
			//only update when necessary 
			notifyControllers();
		}
	}