Example #1
0
//========================================================================
//========================================================================
//
//	NAME:	double bessel_2(int n, double arg)
//
//	DESC:	Calculates the Bessel function of the second kind (Yn).
//
//	INPUT:
//		int n:: Order of Bessel function
//		double arg: Bessel function argument
//	
//	OUTPUT:
//		Yn:: Bessel function of the second kind of order n
//		
//	NOTES:	1) The Bessel function of the second kind is defined as:
//			Yn(x) = (2.0*Jn(x)/pi)*(ln(x/2) + gamma_e) 
//				+ sum{m=0, m=inf}[(((-1)^(m-1))*(hs(m) + 
//					hs(m+n)) + x^(2*m))/(((2.0^(2*m+n))*m!*(m+n)!)
//				- sum{m=0, m=(n-1)}[((n-m-1)!*x^(2*m))/((2.0^(2*m-n))*m!)
//
//		2) Y-n = ((-1)^n)*Yn
//
//========================================================================
//========================================================================
double bessel_2(int n, double arg)
{

  // get a tolerance for the "infinite" sum
  double tol = 100.0*depsilon();

  int m, mmax;

  double Jn, Yn, sum1, sum1_prev, sum2;
  sum1 = sum1_prev = sum2 = 0.0;

  // Make sure that we calculate the positive order Bessel function
  int k = abs(n);

  // GET THE BESSEL FUNCTION OF THE FIRST KIND
  Jn = bessel_1(k, arg);


  // !!! my concern with this do loop is that if a certain term contributes 0 then the 
  // loop may inappropriately exit
  mmax = static_cast<int>(2.0*arg) + 1;
  m = 0;

  // GET TERM SUM 1
  do
  {
    sum1_prev = sum1;

    sum1 += pow((0.0-1.0), (m-1))*(h_s(m) + h_s(m+k))*pow(arg, (2*m))/(pow(2.0, (2*m+k))*dfactorial(m)*dfactorial(m+k));

    m++;

  } while((fabs(sum1 - sum1_prev) > tol) || (m < mmax));

  sum1 = pow(arg, k)*sum1/(1.0*PI);


  // GET TERM SUM 2
  for(m = 0; m <= (k-1); ++m)
  {
    sum2 = sum2 + dfactorial(k-m-1)*pow(arg, (2*m))/(pow(2.0, (2*m-k))*dfactorial(m));
  }
  
  sum2 = pow(arg, (0-k))*sum2/(1.0*PI);


  // NOW GET Yn
  Yn = (2.0*Jn/(1.0*PI))*(log(arg/2.0) + EULERC) + sum1 - sum2;


  // NOW WE WILL MAKE USE OF THE BESSEL FUNCTION RELATION FOR NEGATIVE n:
  // Y(n-1) = (-1)^n*Yn
  if(n < 0)
  {
    Yn = pow((0.0-1.0), k)*Yn;
  }

  return Yn;
}
Example #2
0
//========================================================================
//========================================================================
//
//	NAME:	complex<double> bessel_1_complex(int n, complex<double> arg)
//
//	DESC:	Calculates the Bessel function of the first kind (Jn) for
//		complex arguments.
//
//	INPUT:
//		int n:: Order of Bessel function
//		complex<double> arg: Bessel function argument
//	
//	OUTPUT:
//		Jn:: Bessel function of the first kind of order n
//		
//	NOTES:	1) The Bessel function of the first kind is defined as:
//			Jn(x) = ((x/2.0)^n)*sum{m=0, m=inf}[(((-x^2)/4.0)^m)/(m!*(n+m)!)
//
//		2) J-n = ((-1)^n)*Jn
//
//		3) The infinite series representing the Bessel function
//		converges for all arguments given that enough terms are taken:
//		k >> |arg| 
//
//========================================================================
//========================================================================
complex<double> bessel_1_complex(int n, complex<double> arg)
{

  complex<double> Jn(0.0, 0.0);
  complex<double> Jn_series(0.0, 0.0);
  complex<double> Jn_seriesm1(0.0, 0.0);

  double tolerance = 100.0*depsilon();

  // Make sure that we calculate the positive order Bessel function
  int m = abs(n);

  // !!! I don't know if this will be large enough
  int k_max_r, k_max_im; 
  k_max_r = static_cast<int>(real(arg));
  k_max_im = static_cast<int>(imag(arg));

/*
  int k_max = 10*imax(k_max_r, k_max_im);

  for(int k = 0; k <= k_max; k++)
  {
    Jn_series = Jn_series + pow((0.0 - arg*arg/4.0), k)/(dfactorial(k)*dfactorial(k+m));
  }
*/

  // !!! my concern with this do loop is that if a certain term contributes 0 then the 
  // loop may inappropriately exit
  int k_max2 = static_cast<int>(2.0*static_cast<double>(imax(k_max_r, k_max_im))) + 1;

  int k = 0;

  do
  {
    Jn_seriesm1 = Jn_series;

    Jn_series = Jn_series + pow((0.0 - arg*arg/4.0), k)/(dfactorial(k)*dfactorial(k+m));

    k = k + 1;

  } while ((sqrt(real(Jn_series*conj(Jn_series) - Jn_seriesm1*conj(Jn_seriesm1))) > tolerance)   || (k < k_max2));


  Jn = pow((arg/2.0), m)*Jn_series;


  // NOW WE WILL MAKE USE OF THE BESSEL FUNCTION RELATION FOR NEGATIVE n:
  // J(n-1) = (-1)^n*Jn
  if(n < 0)
  {
    Jn = pow((0.0 - 1.0), m)*Jn;
  }


  return Jn;

}
Example #3
0
//========================================================================
//========================================================================
//
//	NAME:	double bessel_1(int n, double arg)
//
//	DESC:	Calculates the Bessel function of the first kind (Jn) of order n.
//
//	INPUT:
//		int n:: Order of Bessel function
//		double arg: Bessel function argument
//	
//	OUTPUT:
//		Jn:: Bessel function of the first kind of order n
//		
//	NOTES:	1) The Bessel function of the first kind is defined as:
//			Jn(x) = ((x/2.0)^n)*sum{m=0, m=inf}[(((-x^2)/4.0)^m)/(m!*(n+m)!)
//
//		2) J-n = ((-1)^n)*Jn
//
//		3) The infinite series representing the Bessel function
//		converges for all arguments given that enough terms are taken:
//		k >> |arg| 
//
//========================================================================
//========================================================================
double bessel_1(int n, double arg)
{

  double tolerance = 100.0*depsilon();

  double Jn, Jn1;
  Jn = Jn1 = 0.0;

  // make sure we calculate the positive order Bessel function
  int m = abs(n);

  // !!! my concern with this do loop is that if a certain term contributes 0 then the 
  // loop may inappropriately exit, and I don't know if this will be large enough
  int k_max2 = int(2.0*arg + 1.0);

  int k = 0;

  do
  {
    Jn1 = Jn;

    Jn += pow(-arg*arg/4.0, k)/(dfactorial(k)*dfactorial(k+m));

    k++;
  } while ((fabs(Jn - Jn1) > tolerance) || (k < k_max2));

  Jn *= pow((arg/2.0), m);

  // NOW WE WILL MAKE USE OF THE BESSEL FUNCTION RELATION FOR NEGATIVE n
  // J(n-1) = (-1)^n*Jn
  if(n < 0)
  {
    Jn *= pow(-1.0, m);
  }


  return Jn;

}
Example #4
0
double factorial(int n)
{ 
	if(n>=20) return sqrt(TWOPI*(n+1.0))*exp(-(n+1.0))*pow(n+1.0, n)*
		(1.0+8.333333333333e-2/(n+1.0)
		 +3.472222222222e-3/(n+1.0)/(n+1.0)
		 -2.681327160494e-3/(n+1.0)/(n+1.0)/(n+1.0)
		 -2.294720936214e-4/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)
		 +7.840392217201e-4/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)
		 +6.972813758366e-5/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)
		 -5.921664373537e-4/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0)/(n+1.0) 
		 );
	
	return dfactorial( (double) n); 
}
Example #5
0
//========================================================================
//========================================================================
//
//	NAME:	complex<double> bessel_2_complex(int n, complex<double> arg)
//
//	DESC:	Calculates the Bessel function of the second kind (Yn) for
//		complex arguments.
//
//	INPUT:
//		int n:: Order of Bessel function
//		complex<double> arg: Bessel function argument
//	
//	OUTPUT:
//		complex<double> Yn:: Bessel function of the second kind of
//			order n
//		
//	NOTES:	1) The Bessel function of the second kind is defined as:
//			Yn(x) = (2.0*Jn(x)/pi)*(ln(x/2) + gamma_e) 
//				+ sum{m=0, m=inf}[(((-1)^(m-1))*(hs(m) + 
//					hs(m+n)) + x^(2*m))/(((2.0^(2*m+n))*m!*(m+n)!)
//				- sum{m=0, m=(n-1)}[((n-m-1)!*x^(2*m))/((2.0^(2*m-n))*m!)
//
//		2) Y-n = ((-1)^n)*Yn
//
//========================================================================
//========================================================================
complex<double> bessel_2_complex(int n, complex<double> arg)
{

  complex<double> Yn(0.0, 0.0);

  // get a tolerance for the "infinite" sum
  double tolerance = 100.0*depsilon();

 
  // make sure we calculate the positive order Bessel function
  int k = abs(n);


  // GET BESSEL FUNCTIONS OF THE FIRST KIND
  complex<double> Jn = bessel_1_complex(k, arg);


  // GET TERM SUM 1
  complex<double> sum1(0.0,0.0), sum11(0.0,0.0);


/*
  for(int i = 0; i <= 20; i++)
  {
    sum1 = sum1 + pow((0.0-1.0), (i-1))*(h_s(i) + h_s(i+k))*pow(arg, (2*i))/(pow(2.0, (2*i+k))*dfactorial(i)*dfactorial(i+k));
  }
*/

  // !!! my concern with this do loop is that if a certain term contributes 0 then the 
  // loop may inappropriately exit
  int mm_max = static_cast<int>(2.0*real(arg)) + 1;

  int mm = 0;

  do
  {
    sum11 = sum1;

    sum1 = sum1 + pow((0.0-1.0), (mm-1))*(h_s(mm) + h_s(mm+k))*pow(arg, (2*mm))/(pow(2.0, (2*mm+k))*dfactorial(mm)*dfactorial(mm+k));

    mm = mm + 1;

  } while((fabs(real(sqrt(sum1*conj(sum1) - sum11*conj(sum11)))) > tolerance) || (mm < mm_max));

  sum1 = pow(arg, k)*sum1/(1.0*PI);


  // GET TERM SUM 2
  complex<double> sum2(0.0,0.0);

  for(int m = 0; m <= (k-1); m++)
  {
    sum2 = sum2 + dfactorial((k-m-1))*pow(arg, (2*m))/(pow(2.0, (2*m-k))*dfactorial(m));
  }
  
  sum2 = pow(arg, (0-k))*sum2/(1.0*PI);


  // NOW GET Yn
  Yn = (2.0*Jn/(1.0*PI))*(log(arg/2.0) + EULERC) + sum1 - sum2;


  // NOW WE WILL MAKE USE OF THE BESSEL FUNCTION RELATION FOR NEGATIVE n:
  // Y(n-1) = (-1)^n*Yn
  if(n < 0)
  {
    Yn = pow((0.0-1.0), k)*Yn;
  }


  return Yn;

}
Example #6
0
//========================================================================
//========================================================================
//
//	NAME:	double dtwofac(int l)
//	DESC:	Calculates the double factorial (2l-1)!!=1*3*5*...*(2l-1) for
//		argument l, which can be defined as:
//
//			(2l-1)!!=(2l)!/((2^n)*l!)
//
//	NOTES: 	i. !!! there is a better way to define this with the gamma
//		function
//
//
//========================================================================
//========================================================================
double dtwofac(int n)
{
  return (  dfactorial(2*n)/(   pow(2.0, n)*dfactorial(n)  )  );
}
Example #7
0
//========================================================================
//========================================================================
//
//	NAME:	int ifactorial(int n)
//	DESC:	Calculates the factorial of n and returns the value as an 
//		integer
//
//	INPUT:
//		int n == integer
//
//	OUTPUT:
//		int factorial == n!
//
//	NOTES:	1) This will only works to a certain max n (max int)
//
//
//========================================================================
//========================================================================
int ifactorial(int n)
{
  return static_cast<int>(dfactorial(n));
}
Example #8
0
//==================================================================================================
// Factorials n! and Double factorial n!!
//==================================================================================================
double dfactorial(double dn)
{ if(dn<=1.0) return 1.0; return dn*dfactorial(dn-1.0); }