Example #1
0
/*
 * This is called each time a channel change occurs, to (potentially) enable
 * the radar code.
 */
int dfs_radar_enable(struct ieee80211com *ic,
    struct ath_dfs_radar_tab_info *radar_info, int no_cac)
{
    int                                 is_ext_ch=IEEE80211_IS_CHAN_11N_HT40(ic->ic_curchan);
    int                                 is_fastclk = 0;
    //u_int32_t                        rfilt;
    struct ath_dfs                 *dfs=(struct ath_dfs *)ic->ic_dfs;
    struct ieee80211_channel *chan=ic->ic_curchan, *ext_ch = NULL;
  
	if (dfs == NULL) {
		DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "%s: ic_dfs is NULL\n",
			__func__);
		return -EIO;
	}
	ic->ic_dfs_disable(ic, no_cac);

	/*
	 * Setting country code might change the DFS domain
	 * so initialize the DFS Radar filters
	 */
	dfs_init_radar_filters(ic, radar_info);
#if ATH_SUPPORT_DFS && ATH_SUPPORT_STA_DFS
	if ((ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS ||
                (ic->ic_opmode == IEEE80211_M_STA && ieee80211com_has_cap_ext(dfs->ic,IEEE80211_CEXT_STADFS)))) {
#else
	if ((ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS)) {
#endif
            	if (IEEE80211_IS_CHAN_DFS(chan)) {
			struct dfs_state *rs_pri=NULL, *rs_ext=NULL;
			u_int8_t index_pri, index_ext;
#ifdef ATH_ENABLE_AR
    dfs->dfs_proc_phyerr |= DFS_AR_EN;
#endif
    dfs->dfs_proc_phyerr |= DFS_RADAR_EN;
    //printk( "%s[%d]: ==== 0x%08x\n", __func__, __LINE__, dfs->dfs_proc_phyerr);


                   if (is_ext_ch) {
                       ext_ch = ieee80211_get_extchan(ic);
                   }
			dfs_reset_alldelaylines(dfs);

			rs_pri = dfs_getchanstate(dfs, &index_pri, 0);
			if (ext_ch) {
                            rs_ext = dfs_getchanstate(dfs, &index_ext, 1);
                   }
    			if (rs_pri != NULL && ((ext_ch==NULL)||(rs_ext != NULL))) {
				struct ath_dfs_phyerr_param pe;

				OS_MEMSET(&pe, '\0', sizeof(pe));

				if (index_pri != dfs->dfs_curchan_radindex)
					dfs_reset_alldelaylines(dfs);

				dfs->dfs_curchan_radindex = (int16_t) index_pri;
                                
                                if (rs_ext)
			            dfs->dfs_extchan_radindex = (int16_t) index_ext;

				ath_dfs_phyerr_param_copy(&pe,
				    &rs_pri->rs_param);
				DFS_DPRINTK(dfs, ATH_DEBUG_DFS3,
				    "%s: firpwr=%d, rssi=%d, height=%d, "
				    "prssi=%d, inband=%d, relpwr=%d, "
				    "relstep=%d, maxlen=%d\n",
				    __func__,
				    pe.pe_firpwr,
				    pe.pe_rrssi,
				    pe.pe_height,
				    pe.pe_prssi,
				    pe.pe_inband,
				    pe.pe_relpwr,
				    pe.pe_relstep,
				    pe.pe_maxlen
				    );

#if 0 //Not needed
				/* Disable strong signal fast antenna diversity */
				ath_hal_setcapability(ah, HAL_CAP_DIVERSITY,
						      HAL_CAP_STRONG_DIV, 1, NULL);
#endif
	                    ic->ic_dfs_enable(ic, &is_fastclk, &pe);
				DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "Enabled radar detection on channel %d\n",
					chan->ic_freq);

                                dfs->dur_multiplier =  is_fastclk ? DFS_FAST_CLOCK_MULTIPLIER : DFS_NO_FAST_CLOCK_MULTIPLIER;
                    	DFS_DPRINTK(dfs, ATH_DEBUG_DFS3,
			"%s: duration multiplier is %d\n", __func__, dfs->dur_multiplier);

			} else
				DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "%s: No more radar states left\n",
					__func__);
		} 
	} 
	return 0;
}

int
dfs_control(struct ieee80211com *ic, u_int id,
                void *indata, u_int32_t insize,
                void *outdata, u_int32_t *outsize)
{
	int error = 0;
	struct ath_dfs_phyerr_param peout;
	struct ath_dfs *dfs = (struct ath_dfs *)ic->ic_dfs;
	struct dfs_ioctl_params *dfsparams;
    u_int32_t val=0;
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
    struct dfsreq_nolinfo *nol;
    u_int32_t *data = NULL;
#endif /* ATH_DFS_RADAR_DETECTION_ONLY */
    int i;

	if (dfs == NULL) {
                DFS_DPRINTK(dfs, ATH_DEBUG_DFS1, "%s DFS is null\n", __func__);
                /* Enable/Disable DFS can be done prior to attach, So handle here */
	switch (id) {
        case DFS_DISABLE_DETECT:
                ic->ic_dfs_state.ignore_dfs = 1;
                DFS_PRINTK("%s enable detects, ignore_dfs %d\n", 
                    __func__,
		   ic->ic_dfs_state.ignore_dfs ? 1:0);
                break;
        case DFS_ENABLE_DETECT:
                ic->ic_dfs_state.ignore_dfs = 0;
                DFS_PRINTK("%s enable detects, ignore_dfs %d\n", 
                    __func__,
		    ic->ic_dfs_state.ignore_dfs ? 1:0);
                break;
        default:
            error = -EINVAL;
            break;
       }
		goto bad;
	}

      //printk("%s[%d] id =%d\n", __func__, __LINE__, id);
	switch (id) {
	case DFS_SET_THRESH:
		if (insize < sizeof(struct dfs_ioctl_params) || !indata) {
			DFS_DPRINTK(dfs, ATH_DEBUG_DFS1,
			    "%s: insize=%d, expected=%d bytes, indata=%p\n",
			    __func__, insize, sizeof(struct dfs_ioctl_params),
			    indata);
			error = -EINVAL;
			break;
		}
		dfsparams = (struct dfs_ioctl_params *) indata;
		if (!dfs_set_thresholds(ic, DFS_PARAM_FIRPWR, dfsparams->dfs_firpwr))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_RRSSI, dfsparams->dfs_rrssi))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_HEIGHT, dfsparams->dfs_height))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_PRSSI, dfsparams->dfs_prssi))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_INBAND, dfsparams->dfs_inband))
			error = -EINVAL;
		/* 5413 speicfic */
		if (!dfs_set_thresholds(ic, DFS_PARAM_RELPWR, dfsparams->dfs_relpwr))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_RELSTEP, dfsparams->dfs_relstep))
			error = -EINVAL;
		if (!dfs_set_thresholds(ic, DFS_PARAM_MAXLEN, dfsparams->dfs_maxlen))
			error = -EINVAL;
		break;
	case DFS_GET_THRESH:
		if (!outdata || !outsize || *outsize <sizeof(struct dfs_ioctl_params)) {
			error = -EINVAL;
			break;
		}
		*outsize = sizeof(struct dfs_ioctl_params);
		dfsparams = (struct dfs_ioctl_params *) outdata;

		/*
		 * Fetch the DFS thresholds using the internal representation.
		 */
		(void) dfs_get_thresholds(ic, &peout);

		/*
		 * Convert them to the dfs IOCTL representation.
		 */
		ath_dfs_dfsparam_to_ioctlparam(&peout, dfsparams);
                break;
	case DFS_RADARDETECTS:
		if (!outdata || !outsize || *outsize < sizeof(u_int32_t)) {
			error = -EINVAL;
			break;
		}
		*outsize = sizeof (u_int32_t);
		*((u_int32_t *)outdata) = dfs->ath_dfs_stats.num_radar_detects;
		break;
        case DFS_DISABLE_DETECT:
                dfs->dfs_proc_phyerr &= ~DFS_RADAR_EN;
                dfs->ic->ic_dfs_state.ignore_dfs = 1;
                DFS_PRINTK("%s enable detects, ignore_dfs %d\n", 
                    __func__,
		    dfs->ic->ic_dfs_state.ignore_dfs ? 1:0);
                break;
        case DFS_ENABLE_DETECT:
		dfs->dfs_proc_phyerr |= DFS_RADAR_EN;
                dfs->ic->ic_dfs_state.ignore_dfs = 0;
                DFS_PRINTK("%s enable detects, ignore_dfs %d\n", 
                    __func__,
		    dfs->ic->ic_dfs_state.ignore_dfs ? 1:0);
                break;
        case DFS_DISABLE_FFT:
                //UMACDFS: TODO: val = ath_hal_dfs_config_fft(sc->sc_ah, false);
                DFS_PRINTK("%s TODO disable FFT val=0x%x \n", __func__, val);
                break;
        case DFS_ENABLE_FFT:
                //UMACDFS TODO: val = ath_hal_dfs_config_fft(sc->sc_ah, true);
                DFS_PRINTK("%s TODO enable FFT val=0x%x \n", __func__, val);
                break;
        case DFS_SET_DEBUG_LEVEL:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
		dfs->dfs_debug_mask= *(u_int32_t *)indata;
		DFS_PRINTK("%s debug level now = 0x%x \n",
		    __func__,
		    dfs->dfs_debug_mask);
                if (dfs->dfs_debug_mask & ATH_DEBUG_DFS3) {
                    /* Enable debug Radar Event */
                    dfs->dfs_event_log_on = 1;
                } else {
                    dfs->dfs_event_log_on = 0;
                }
                break;
        case DFS_SET_FALSE_RSSI_THRES:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
		dfs->ath_dfs_false_rssi_thres= *(u_int32_t *)indata;
		DFS_PRINTK("%s false RSSI threshold now = 0x%x \n",
		    __func__,
		    dfs->ath_dfs_false_rssi_thres);
                break;
        case DFS_SET_PEAK_MAG:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
		dfs->ath_dfs_peak_mag= *(u_int32_t *)indata;
		DFS_PRINTK("%s peak_mag now = 0x%x \n",
		    __func__,
		    dfs->ath_dfs_peak_mag);
                break;
	case DFS_GET_CAC_VALID_TIME:
		if (!outdata || !outsize || *outsize < sizeof(u_int32_t)) {
			error = -EINVAL;
			break;
		}
		*outsize = sizeof (u_int32_t);
		*((u_int32_t *)outdata) = dfs->ic->ic_dfs_state.cac_valid_time;
		break;
        case DFS_SET_CAC_VALID_TIME:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
		dfs->ic->ic_dfs_state.cac_valid_time = *(u_int32_t *)indata;
		DFS_PRINTK("%s dfs timeout = %d \n",
		    __func__,
		    dfs->ic->ic_dfs_state.cac_valid_time);
                break;
        case DFS_IGNORE_CAC:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
             if (*(u_int32_t *)indata) {
                 dfs->ic->ic_dfs_state.ignore_cac= 1;
             } else {
                 dfs->ic->ic_dfs_state.ignore_cac= 0;
             }
		DFS_PRINTK("%s ignore cac = 0x%x \n",
		    __func__,
		    dfs->ic->ic_dfs_state.ignore_cac);
                break;
        case DFS_SET_NOL_TIMEOUT:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
             if (*(int *)indata) {
                 dfs->ath_dfs_nol_timeout= *(int *)indata;
             } else {
                 dfs->ath_dfs_nol_timeout= DFS_NOL_TIMEOUT_S;
             }
		DFS_PRINTK("%s nol timeout = %d sec \n",
		    __func__,
		    dfs->ath_dfs_nol_timeout);
                break;
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
    case DFS_MUTE_TIME:
        if (insize < sizeof(u_int32_t) || !indata) {
            error = -EINVAL;
            break;
        }
        data = (u_int32_t *) indata;
        dfs->ath_dfstesttime = *data;
        dfs->ath_dfstesttime *= (1000); //convert sec into ms
        break;
	case DFS_GET_USENOL:
		if (!outdata || !outsize || *outsize < sizeof(u_int32_t)) {
			error = -EINVAL;
			break;
		}
		*outsize = sizeof(u_int32_t);
		*((u_int32_t *)outdata) = dfs->dfs_rinfo.rn_use_nol;
                 printk("%s:#Phyerr=%d, #false detect=%d, #queued=%d\n", __func__,dfs->dfs_phyerr_count, dfs->dfs_phyerr_reject_count, dfs->dfs_phyerr_queued_count);
                 printk("%s:dfs_phyerr_freq_min=%d, dfs_phyerr_freq_max=%d\n", __func__,dfs->dfs_phyerr_freq_min, dfs->dfs_phyerr_freq_max);
                 printk("%s:Total radar events detected=%d, entries in the radar queue follows:\n",  __func__,dfs->dfs_event_log_count);
                 for (i = 0; (i < DFS_EVENT_LOG_SIZE) && (i < dfs->dfs_event_log_count); i++) {
                         //DFS_DPRINTK(sc, ATH_DEBUG_DFS,"ts=%llu diff_ts=%u rssi=%u dur=%u\n", dfs->radar_log[i].ts, dfs->radar_log[i].diff_ts, dfs->radar_log[i].rssi, dfs->radar_log[i].dur);
                         printk("ts=%llu diff_ts=%u rssi=%u dur=%u\n", dfs->radar_log[i].ts, dfs->radar_log[i].diff_ts, dfs->radar_log[i].rssi, dfs->radar_log[i].dur);
                 }
                 dfs->dfs_event_log_count     = 0;
                 dfs->dfs_phyerr_count        = 0;
                 dfs->dfs_phyerr_reject_count = 0;
                 dfs->dfs_phyerr_queued_count = 0;
                dfs->dfs_phyerr_freq_min     = 0x7fffffff;
                dfs->dfs_phyerr_freq_max     = 0;
		break;
	case DFS_SET_USENOL:
		if (insize < sizeof(u_int32_t) || !indata) {
			error = -EINVAL;
			break;
		}
		dfs->dfs_rinfo.rn_use_nol = *(u_int32_t *)indata;
		/* iwpriv markdfs in linux can do the same thing... */
		break;
	case DFS_GET_NOL:
		if (!outdata || !outsize || *outsize < sizeof(struct dfsreq_nolinfo)) {
			error = -EINVAL;
			break;
		}
		*outsize = sizeof(struct dfsreq_nolinfo);
		nol = (struct dfsreq_nolinfo *)outdata;
		dfs_get_nol(dfs, (struct dfsreq_nolelem *)nol->dfs_nol, &nol->ic_nchans);
             dfs_print_nol(dfs);
		break;
	case DFS_SET_NOL:
		if (insize < sizeof(struct dfsreq_nolinfo) || !indata) {
                        error = -EINVAL;
                        break;
                }
                nol = (struct dfsreq_nolinfo *) indata;
		dfs_set_nol(dfs, (struct dfsreq_nolelem *)nol->dfs_nol, nol->ic_nchans);
		break;

    case DFS_SHOW_NOL:
        dfs_print_nol(dfs);
        break;
#if ATH_SUPPORT_DFS && ATH_SUPPORT_STA_DFS
    case DFS_SHOW_NOLHISTORY:
        dfs_print_nolhistory(ic,dfs);
        break;
#endif
    case DFS_BANGRADAR:
 #if 0 //MERGE_TBD       
        if(sc->sc_nostabeacons)
        {
            printk("No radar detection Enabled \n");
            break;
        }
#endif        
        dfs->dfs_bangradar = 1;     
        dfs->ath_radar_tasksched = 1;
        OS_SET_TIMER(&dfs->ath_dfs_task_timer, 0);
        break;
#endif /* ATH_DFS_RADAR_DETECTION_ONLY */
	default:
		error = -EINVAL;
	}
bad:
	return error;
}
Example #2
0
File: dfs.c Project: jorneytu/wlan
int
dfs_attach(struct ath_softc *sc)
{
	int i, n;
	struct ath_dfs *dfs = sc->sc_dfs;
#define	N(a)	(sizeof(a)/sizeof(a[0]))

	if (dfs != NULL) {
		DFS_DPRINTK(sc, ATH_DEBUG_DFS, "%s: sc_dfs was not NULL\n",
			__func__);
		return 1;
	}
	dfs = (struct ath_dfs *)OS_MALLOC(sc->sc_osdev, sizeof(struct ath_dfs), GFP_KERNEL);
	if (dfs == NULL) {
		DFS_DPRINTK(sc, ATH_DEBUG_DFS,
			"%s: ath_dfs allocation failed\n", __func__);
		return 1;
	}

	OS_MEMZERO(dfs, sizeof (struct ath_dfs));
        sc->sc_dfs = dfs;
        dfs->dfs_nol=NULL;
        dfs_clear_stats(sc);

        /* Get capability information - can extension channel radar be detected and should we use combined radar RSSI or not.*/
        if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_COMBINED_RADAR_RSSI, 0, 0) 
                                   == HAL_OK) {
                sc->sc_dfs->sc_dfs_combined_rssi_ok = 1;
        } else {
                sc->sc_dfs->sc_dfs_combined_rssi_ok = 0;
        }
        if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_EXT_CHAN_DFS, 0, 0) 
                                    == HAL_OK) {
            sc->sc_dfs->sc_dfs_ext_chan_ok = 1;
        } else {
            sc->sc_dfs->sc_dfs_ext_chan_ok = 0;
        }

        if (ath_hal_hasenhanceddfssupport(sc->sc_ah)) {
            sc->sc_dfs->sc_dfs_use_enhancement = 1;
            DFS_DPRINTK(sc, ATH_DEBUG_DFS, "%s: use DFS enhancements\n", __func__);
        } else {
            sc->sc_dfs->sc_dfs_use_enhancement = 0;
        }
sc->sc_dfs->sc_dfs_cac_time = ATH_DFS_WAIT_MS;
        sc->sc_dfs->sc_dfstesttime = ATH_DFS_TEST_RETURN_PERIOD_MS;
	ATH_DFSQ_LOCK_INIT(dfs);
	STAILQ_INIT(&dfs->dfs_radarq);
	ATH_ARQ_LOCK_INIT(dfs);
	STAILQ_INIT(&dfs->dfs_arq);
	STAILQ_INIT(&(dfs->dfs_eventq));
	ATH_DFSEVENTQ_LOCK_INIT(dfs);
	dfs->events = (struct dfs_event *)OS_MALLOC(sc->sc_osdev,
                       sizeof(struct dfs_event)*DFS_MAX_EVENTS,
                       GFP_KERNEL);
	if (dfs->events == NULL) {
		OS_FREE(dfs);
                sc->sc_dfs = NULL;
		DFS_DPRINTK(sc, ATH_DEBUG_DFS,
			"%s: events allocation failed\n", __func__);
		return 1;
	}
	for (i=0; i<DFS_MAX_EVENTS; i++) {
		STAILQ_INSERT_TAIL(&(dfs->dfs_eventq), &dfs->events[i], re_list);
	}

        dfs->pulses = (struct dfs_pulseline *)OS_MALLOC(sc->sc_osdev, sizeof(struct dfs_pulseline), GFP_KERNEL);

        if (dfs->pulses == NULL) {
                OS_FREE(dfs->events);   
                dfs->events = NULL;
                OS_FREE(dfs);
                sc->sc_dfs = NULL;
                DFS_DPRINTK(sc, ATH_DEBUG_DFS,
                        "%s: pulse buffer allocation failed\n", __func__);
                return 1;
        }

        dfs->pulses->pl_lastelem = DFS_MAX_PULSE_BUFFER_MASK;
#ifdef ATH_ENABLE_AR
	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PHYDIAG,
				  HAL_CAP_AR, NULL) == HAL_OK) {
		dfs_reset_ar(sc);
		dfs_reset_arq(sc);
		dfs->dfs_proc_phyerr |= DFS_AR_EN;
	}
#endif
	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PHYDIAG,
				  HAL_CAP_RADAR, NULL) == HAL_OK) {
		u_int32_t val;
		/* 
		 * If we have fast diversity capability, read off
		 * Strong Signal fast diversity count set in the ini
		 * file, and store so we can restore the value when
		 * radar is disabled
		 */
		if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_DIVERSITY, HAL_CAP_STRONG_DIV,
					  &val) == HAL_OK) {
			dfs->dfs_rinfo.rn_fastdivGCval = val;
		}
		dfs->dfs_proc_phyerr |= DFS_RADAR_EN;

                /* Allocate memory for radar filters */
		for (n=0; n<DFS_MAX_RADAR_TYPES; n++) {
			dfs->dfs_radarf[n] = (struct dfs_filtertype *)OS_MALLOC(sc->sc_osdev, sizeof(struct dfs_filtertype),GFP_KERNEL);
			if (dfs->dfs_radarf[n] == NULL) {
				DFS_DPRINTK(sc,ATH_DEBUG_DFS,
					"%s: cannot allocate memory for radar filter types\n",
					__func__);
				goto bad1;
			}
			OS_MEMZERO(dfs->dfs_radarf[n], sizeof(struct dfs_filtertype));  
		}
                /* Allocate memory for radar table */
		dfs->dfs_radartable = (int8_t **)OS_MALLOC(sc->sc_osdev, 256*sizeof(int8_t *), GFP_KERNEL);
		if (dfs->dfs_radartable == NULL) {
			DFS_DPRINTK(sc, ATH_DEBUG_DFS, "%s: cannot allocate memory for radar table\n",
				__func__);
			goto bad1;
		}
		for (n=0; n<256; n++) {
			dfs->dfs_radartable[n] = OS_MALLOC(sc->sc_osdev, DFS_MAX_RADAR_OVERLAP*sizeof(int8_t),
							 GFP_KERNEL);
			if (dfs->dfs_radartable[n] == NULL) {
				DFS_DPRINTK(sc, ATH_DEBUG_DFS,
					"%s: cannot allocate memory for radar table entry\n",
					__func__);
				goto bad2;
			}
		}
		if (usenol != 1) {
			DFS_DPRINTK(sc, ATH_DEBUG_DFS, " %s: Disabling Channel NOL\n", __func__);
                }
		dfs->dfs_rinfo.rn_use_nol = usenol;

                /* Init the cached extension channel busy for false alarm reduction */
	        dfs->dfs_rinfo.ext_chan_busy_ts = ath_hal_gettsf64(sc->sc_ah);
                dfs->dfs_rinfo.dfs_ext_chan_busy = 0;
                /* Init the Bin5 chirping related data */
                dfs->dfs_rinfo.dfs_bin5_chirp_ts = dfs->dfs_rinfo.ext_chan_busy_ts;
                dfs->dfs_rinfo.dfs_last_bin5_dur = MAX_BIN5_DUR;

                dfs->dfs_b5radars = NULL;
                if ( dfs_init_radar_filters( sc ) ) {
			DFS_DPRINTK(sc, ATH_DEBUG_DFS, 
                            " %s: Radar Filter Intialization Failed \n", 
                            __func__);
                    return 1;
                }
	}
	return 0;
bad2:
	OS_FREE(dfs->dfs_radartable);
	dfs->dfs_radartable = NULL;
bad1:	
        for (n=0; n<DFS_MAX_RADAR_TYPES; n++) {
		if (dfs->dfs_radarf[n] != NULL) {
			OS_FREE(dfs->dfs_radarf[n]);
			dfs->dfs_radarf[n] = NULL;
		}
	}
        if (dfs->pulses) {
		OS_FREE(dfs->pulses);
		dfs->pulses = NULL;
	}
	if (dfs->events) {
		OS_FREE(dfs->events);
		dfs->events = NULL;
	}

	if (sc->sc_dfs) {
		OS_FREE(sc->sc_dfs);
		sc->sc_dfs = NULL;
	}
	return 1;
#undef N
}
Example #3
0
int
dfs_attach(struct ieee80211com *ic)
{
    int i, n;
    struct ath_dfs *dfs = (struct ath_dfs *)ic->ic_dfs;
    struct ath_dfs_radar_tab_info radar_info;
#define	N(a)	(sizeof(a)/sizeof(a[0]))

    if (dfs != NULL) {
        DFS_DPRINTK(dfs, ATH_DEBUG_DFS1,
          "%s: ic_dfs was not NULL\n",
          __func__);
        return 1;
    }
    if (ic->ic_dfs_state.ignore_dfs) {
        DFS_DPRINTK(dfs, ATH_DEBUG_DFS1,
          "%s: ignoring dfs\n",
          __func__);
        return 0;
    }
    dfs = (struct ath_dfs *)OS_MALLOC(ic->ic_osdev, sizeof(struct ath_dfs), GFP_ATOMIC);
    if (dfs == NULL) {
        DFS_DPRINTK(dfs, ATH_DEBUG_DFS1,
          "%s: ath_dfs allocation failed\n", __func__);
        return 1;
    }
    OS_MEMZERO(dfs, sizeof (struct ath_dfs));
    ic->ic_dfs = (void *)dfs;
    dfs->ic = ic;
    ic->ic_dfs_debug = dfs_get_debug_info;
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
    dfs->dfs_nol = NULL;
#endif

    /*
     * Zero out radar_info.  It's possible that the attach function won't
     * fetch an initial regulatory configuration; you really do want to
     * ensure that the contents indicates there aren't any filters.
     */
    OS_MEMZERO(&radar_info, sizeof(radar_info));
    ic->ic_dfs_attach(ic, &dfs->dfs_caps, &radar_info);
    dfs_clear_stats(ic);
    dfs->dfs_event_log_on = 0;
    OS_INIT_TIMER(ic->ic_osdev, &(dfs->ath_dfs_task_timer), dfs_task, (void *) (ic));
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
    OS_INIT_TIMER(ic->ic_osdev, &(dfs->ath_dfstesttimer), dfs_testtimer_task,
        (void *) ic);
    dfs->ath_dfs_cac_time = ATH_DFS_WAIT_MS;
    dfs->ath_dfstesttime = ATH_DFS_TEST_RETURN_PERIOD_MS;
#endif
    ATH_DFSQ_LOCK_INIT(dfs);
    STAILQ_INIT(&dfs->dfs_radarq);
    ATH_ARQ_LOCK_INIT(dfs);
    STAILQ_INIT(&dfs->dfs_arq);
    STAILQ_INIT(&(dfs->dfs_eventq));
    ATH_DFSEVENTQ_LOCK_INIT(dfs);

    dfs->events = (struct dfs_event *)OS_MALLOC(ic->ic_osdev,
                   sizeof(struct dfs_event)*DFS_MAX_EVENTS,
                   GFP_ATOMIC);
    if (dfs->events == NULL) {
        OS_FREE(dfs);
        ic->ic_dfs = NULL;
        DFS_PRINTK("%s: events allocation failed\n", __func__);
        return 1;
    }
    for (i = 0; i < DFS_MAX_EVENTS; i++) {
        STAILQ_INSERT_TAIL(&(dfs->dfs_eventq), &dfs->events[i], re_list);
    }
    
    dfs->pulses = (struct dfs_pulseline *)OS_MALLOC(ic->ic_osdev, sizeof(struct dfs_pulseline), GFP_ATOMIC);
    if (dfs->pulses == NULL) {
            OS_FREE(dfs->events);   
            dfs->events = NULL;
            OS_FREE(dfs);
            ic->ic_dfs = NULL;
            DFS_PRINTK("%s: pulse buffer allocation failed\n", __func__);
            return 1;
    }

    dfs->pulses->pl_lastelem = DFS_MAX_PULSE_BUFFER_MASK;

            /* Allocate memory for radar filters */
    for (n=0; n<DFS_MAX_RADAR_TYPES; n++) {
    	dfs->dfs_radarf[n] = (struct dfs_filtertype *)OS_MALLOC(ic->ic_osdev, sizeof(struct dfs_filtertype),GFP_ATOMIC);
    	if (dfs->dfs_radarf[n] == NULL) {
    		DFS_PRINTK("%s: cannot allocate memory for radar filter types\n",
    			__func__);
    		goto bad1;
    	}
    	OS_MEMZERO(dfs->dfs_radarf[n], sizeof(struct dfs_filtertype));  
    }
            /* Allocate memory for radar table */
    dfs->dfs_radartable = (int8_t **)OS_MALLOC(ic->ic_osdev, 256*sizeof(int8_t *), GFP_ATOMIC);
    if (dfs->dfs_radartable == NULL) {
    	DFS_PRINTK("%s: cannot allocate memory for radar table\n",
    		__func__);
    	goto bad1;
    }
    for (n=0; n<256; n++) {
    	dfs->dfs_radartable[n] = OS_MALLOC(ic->ic_osdev, DFS_MAX_RADAR_OVERLAP*sizeof(int8_t),
    					 GFP_ATOMIC);
    	if (dfs->dfs_radartable[n] == NULL) {
    		DFS_PRINTK("%s: cannot allocate memory for radar table entry\n",
    			__func__);
    		goto bad2;
    	}
    }

    if (usenol == 0)
        DFS_PRINTK("%s: NOL disabled\n", __func__);
    else if (usenol == 2)
        DFS_PRINTK("%s: NOL disabled; no CSA\n", __func__);

    dfs->dfs_rinfo.rn_use_nol = usenol;

    /* Init the cached extension channel busy for false alarm reduction */
    dfs->dfs_rinfo.ext_chan_busy_ts = ic->ic_get_TSF64(ic);
    dfs->dfs_rinfo.dfs_ext_chan_busy = 0;
    /* Init the Bin5 chirping related data */
    dfs->dfs_rinfo.dfs_bin5_chirp_ts = dfs->dfs_rinfo.ext_chan_busy_ts;
    dfs->dfs_rinfo.dfs_last_bin5_dur = MAX_BIN5_DUR;
    dfs->dfs_b5radars = NULL;

    /*
     * If dfs_init_radar_filters() fails, we can abort here and
     * reconfigure when the first valid channel + radar config
     * is available.
     */
    if ( dfs_init_radar_filters( ic,  &radar_info) ) {
        DFS_PRINTK(" %s: Radar Filter Intialization Failed \n", 
                    __func__);
            return 1;
    }

    dfs->ath_dfs_false_rssi_thres = RSSI_POSSIBLY_FALSE;
    dfs->ath_dfs_peak_mag = SEARCH_FFT_REPORT_PEAK_MAG_THRSH;
    dfs->dfs_phyerr_freq_min     = 0x7fffffff;
    dfs->dfs_phyerr_freq_max     = 0;
    dfs->dfs_phyerr_queued_count = 0;
    dfs->dfs_phyerr_w53_counter  = 0;
    dfs->dfs_pri_multiplier      = 2;

    dfs->ath_dfs_nol_timeout = DFS_NOL_TIMEOUT_S;

    return 0;

bad2:
    OS_FREE(dfs->dfs_radartable);
    dfs->dfs_radartable = NULL;
bad1:
    for (n=0; n<DFS_MAX_RADAR_TYPES; n++) {
        if (dfs->dfs_radarf[n] != NULL) {
        	OS_FREE(dfs->dfs_radarf[n]);
        	dfs->dfs_radarf[n] = NULL;
        }
    }
    if (dfs->pulses) {
        OS_FREE(dfs->pulses);
        dfs->pulses = NULL;
    }
    if (dfs->events) {
        OS_FREE(dfs->events);
        dfs->events = NULL;
    }

    if (ic->ic_dfs) {
        OS_FREE(ic->ic_dfs);
        ic->ic_dfs = NULL;
    }
    return 1;
#undef N
}
Example #4
0
/*
 * This is called each time a channel change occurs, to (potentially) enable
 * the radar code.
 */
int dfs_radar_enable(struct ieee80211com *ic,
    struct ath_dfs_radar_tab_info *radar_info)
{
    int                                 is_ext_ch;
    int                                 is_fastclk = 0;
    int                                 radar_filters_init_status = 0;
    //u_int32_t                        rfilt;
    struct ath_dfs                      *dfs;
    struct dfs_state *rs_pri, *rs_ext;
    struct ieee80211_channel *chan=ic->ic_curchan, *ext_ch = NULL;
    is_ext_ch=IEEE80211_IS_CHAN_11N_HT40(ic->ic_curchan);
    dfs=(struct ath_dfs *)ic->ic_dfs;
    rs_pri = NULL;
    rs_ext = NULL;
#if 0
    int i;
#endif
   if (dfs == NULL) {
                DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "%s: ic_dfs is NULL\n",
         __func__);

                return -EIO;
   }
           ic->ic_dfs_disable(ic);

   /*
    * Setting country code might change the DFS domain
    * so initialize the DFS Radar filters
    */
   radar_filters_init_status = dfs_init_radar_filters(ic, radar_info);

   /*
    * dfs_init_radar_filters() returns 1 on failure and
    * 0 on success.
    */
   if ( DFS_STATUS_FAIL == radar_filters_init_status ) {
      VOS_TRACE(VOS_MODULE_ID_SAP, VOS_TRACE_LEVEL_ERROR,
                      "%s[%d]: DFS Radar Filters Initialization Failed",
                       __func__,  __LINE__);
      return -EIO;
   }

   if ((ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS)) {

                if (IEEE80211_IS_CHAN_DFS(chan)) {

         u_int8_t index_pri, index_ext;
#ifdef ATH_ENABLE_AR
    dfs->dfs_proc_phyerr |= DFS_AR_EN;
#endif
    dfs->dfs_proc_phyerr |= DFS_RADAR_EN;



                   if (is_ext_ch) {
                       ext_ch = ieee80211_get_extchan(ic);
                   }
         dfs_reset_alldelaylines(dfs);

         rs_pri = dfs_getchanstate(dfs, &index_pri, 0);
         if (ext_ch) {
                            rs_ext = dfs_getchanstate(dfs, &index_ext, 1);
                   }
         if (rs_pri != NULL && ((ext_ch==NULL)||(rs_ext != NULL))) {
             struct ath_dfs_phyerr_param pe;

             OS_MEMSET(&pe, '\0', sizeof(pe));

             if (index_pri != dfs->dfs_curchan_radindex)
                 dfs_reset_alldelaylines(dfs);

             dfs->dfs_curchan_radindex = (int16_t) index_pri;
             dfs->dfs_pri_multiplier_ini = radar_info->dfs_pri_multiplier;

             if (rs_ext)
                 dfs->dfs_extchan_radindex = (int16_t) index_ext;

             ath_dfs_phyerr_param_copy(&pe,
                     &rs_pri->rs_param);
             DFS_DPRINTK(dfs, ATH_DEBUG_DFS3,
                     "%s: firpwr=%d, rssi=%d, height=%d, "
                     "prssi=%d, inband=%d, relpwr=%d, "
                     "relstep=%d, maxlen=%d\n",
                     __func__,
                     pe.pe_firpwr,
                     pe.pe_rrssi,
                     pe.pe_height,
                     pe.pe_prssi,
                     pe.pe_inband,
                     pe.pe_relpwr,
                     pe.pe_relstep,
                     pe.pe_maxlen
                     );

             ic->ic_dfs_enable(ic, &is_fastclk, &pe);
             DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "Enabled radar detection on channel %d\n",
                     chan->ic_freq);
             dfs->dur_multiplier =
                 is_fastclk ? DFS_FAST_CLOCK_MULTIPLIER : DFS_NO_FAST_CLOCK_MULTIPLIER;
             DFS_DPRINTK(dfs, ATH_DEBUG_DFS3,
                     "%s: duration multiplier is %d\n", __func__, dfs->dur_multiplier);
         } else
             DFS_DPRINTK(dfs, ATH_DEBUG_DFS, "%s: No more radar states left\n",
                     __func__);
      }
   }

   return DFS_STATUS_SUCCESS;
}