Example #1
0
dtuple_t*
row_rec_to_index_entry(
/*===================*/
				/* out, own: index entry built; see the
				NOTE below! */
	ulint		type,	/* in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
				the former copies also the data fields to
				heap as the latter only places pointers to
				data fields on the index page */
	dict_index_t*	index,	/* in: index */
	rec_t*		rec,	/* in: record in the index;
				NOTE: in the case ROW_COPY_POINTERS
				the data fields in the row will point
				directly into this record, therefore,
				the buffer page of this record must be
				at least s-latched and the latch held
				as long as the dtuple is used! */
	mem_heap_t*	heap)	/* in: memory heap from which the memory
				needed is allocated */
{
	dtuple_t*	entry;
	dfield_t*	dfield;
	ulint		i;
	byte*		field;
	ulint		len;
	ulint		rec_len;
	byte*		buf;
	
	ut_ad(rec && heap && index);
	
	if (type == ROW_COPY_DATA) {
		/* Take a copy of rec to heap */
		buf = mem_heap_alloc(heap, rec_get_size(rec));
		rec = rec_copy(buf, rec);
	}

	rec_len = rec_get_n_fields(rec);
	
	entry = dtuple_create(heap, rec_len);

	dtuple_set_n_fields_cmp(entry,
				dict_index_get_n_unique_in_tree(index));
	ut_ad(rec_len == dict_index_get_n_fields(index));

	dict_index_copy_types(entry, index, rec_len);

	dtuple_set_info_bits(entry, rec_get_info_bits(rec));

	for (i = 0; i < rec_len; i++) {

		dfield = dtuple_get_nth_field(entry, i);
		field = rec_get_nth_field(rec, i, &len);

		dfield_set_data(dfield, field, len);
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}
Example #2
0
dtuple_t*
row_build_index_entry(
/*==================*/
				/* out: index entry which should be inserted */
	dtuple_t*	row, 	/* in: row which should be inserted to the
				table */
	dict_index_t*	index, 	/* in: index on the table */
	mem_heap_t*	heap)	/* in: memory heap from which the memory for
				the index entry is allocated */
{
	dtuple_t*	entry;
	ulint		entry_len;
	dict_field_t*	ind_field;
	dfield_t*	dfield;
	dfield_t*	dfield2;
	dict_col_t*	col;
	ulint		i;

	ut_ad(row && index && heap);
	ut_ad(dtuple_check_typed(row));
	
	entry_len = dict_index_get_n_fields(index);
	entry = dtuple_create(heap, entry_len);

	if (index->type & DICT_UNIVERSAL) {
		dtuple_set_n_fields_cmp(entry, entry_len);
	} else {
		dtuple_set_n_fields_cmp(entry,
				dict_index_get_n_unique_in_tree(index));
	}

	for (i = 0; i < entry_len; i++) {
		ind_field = dict_index_get_nth_field(index, i);
		col = ind_field->col;

		dfield = dtuple_get_nth_field(entry, i);

		dfield2 = dtuple_get_nth_field(row, dict_col_get_no(col));

		dfield_copy(dfield, dfield2);

		/* If a column prefix index, take only the prefix */
		if (ind_field->prefix_len > 0
		    && dfield_get_len(dfield2) != UNIV_SQL_NULL
		    && dfield_get_len(dfield2) > ind_field->prefix_len) {
			
			dfield_set_len(dfield, ind_field->prefix_len);
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}			
Example #3
0
/*******************************************************************//**
Converts an index record to a typed data tuple.
@return index entry built; does not set info_bits, and the data fields
in the entry will point directly to rec */
UNIV_INTERN
dtuple_t*
row_rec_to_index_entry_low(
/*=======================*/
	const rec_t*		rec,	/*!< in: record in the index */
	const dict_index_t*	index,	/*!< in: index */
	const ulint*		offsets,/*!< in: rec_get_offsets(rec, index) */
	ulint*			n_ext,	/*!< out: number of externally
					stored columns */
	mem_heap_t*		heap)	/*!< in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*	entry;
	dfield_t*	dfield;
	ulint		i;
	const byte*	field;
	ulint		len;
	ulint		rec_len;

	ut_ad(rec && heap && index);
	/* Because this function may be invoked by row0merge.c
	on a record whose header is in different format, the check
	rec_offs_validate(rec, index, offsets) must be avoided here. */
	ut_ad(n_ext);
	*n_ext = 0;

	rec_len = rec_offs_n_fields(offsets);

	entry = dtuple_create(heap, rec_len);

	dtuple_set_n_fields_cmp(entry,
				dict_index_get_n_unique_in_tree(index));
	ut_ad(rec_len == dict_index_get_n_fields(index));

	dict_index_copy_types(entry, index, rec_len);

	for (i = 0; i < rec_len; i++) {

		dfield = dtuple_get_nth_field(entry, i);
		field = rec_get_nth_field(rec, offsets, i, &len);

		dfield_set_data(dfield, field, len);

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);
			(*n_ext)++;
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}
Example #4
0
/********************************************************//**
Opens a buffer for mlog, writes the initial log record and,
if needed, the field lengths of an index.
@return	buffer, NULL if log mode MTR_LOG_NONE */
UNIV_INTERN
byte*
mlog_open_and_write_index(
/*======================*/
	mtr_t*		mtr,	/*!< in: mtr */
	const byte*	rec,	/*!< in: index record or page */
	dict_index_t*	index,	/*!< in: record descriptor */
	byte		type,	/*!< in: log item type */
	ulint		size)	/*!< in: requested buffer size in bytes
				(if 0, calls mlog_close() and returns NULL) */
{
	byte*		log_ptr;
	const byte*	log_start;
	const byte*	log_end;

	ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));

	if (!page_rec_is_comp(rec)) {
		log_start = log_ptr = mlog_open(mtr, 11 + size);
		if (!log_ptr) {
			return(NULL); /* logging is disabled */
		}
		log_ptr = mlog_write_initial_log_record_fast(rec, type,
							     log_ptr, mtr);
		log_end = log_ptr + 11 + size;
	} else {
		ulint	i;
		ulint	n	= dict_index_get_n_fields(index);
		/* total size needed */
		ulint	total	= 11 + size + (n + 2) * 2;
		ulint	alloc	= total;
		/* allocate at most DYN_ARRAY_DATA_SIZE at a time */
		if (alloc > DYN_ARRAY_DATA_SIZE) {
			alloc = DYN_ARRAY_DATA_SIZE;
		}
		log_start = log_ptr = mlog_open(mtr, alloc);
		if (!log_ptr) {
			return(NULL); /* logging is disabled */
		}
		log_end = log_ptr + alloc;
		log_ptr = mlog_write_initial_log_record_fast(rec, type,
							     log_ptr, mtr);
		mach_write_to_2(log_ptr, n);
		log_ptr += 2;
		mach_write_to_2(log_ptr,
				dict_index_get_n_unique_in_tree(index));
		log_ptr += 2;
		for (i = 0; i < n; i++) {
			dict_field_t*		field;
			const dict_col_t*	col;
			ulint			len;

			field = dict_index_get_nth_field(index, i);
			col = dict_field_get_col(field);
			len = field->fixed_len;
			ut_ad(len < 0x7fff);
			if (len == 0
			    && (col->len > 255 || col->mtype == DATA_BLOB)) {
				/* variable-length field
				with maximum length > 255 */
				len = 0x7fff;
			}
			if (col->prtype & DATA_NOT_NULL) {
				len |= 0x8000;
			}
			if (log_ptr + 2 > log_end) {
				mlog_close(mtr, log_ptr);
				ut_a(total > (ulint) (log_ptr - log_start));
				total -= log_ptr - log_start;
				alloc = total;
				if (alloc > DYN_ARRAY_DATA_SIZE) {
					alloc = DYN_ARRAY_DATA_SIZE;
				}
				log_start = log_ptr = mlog_open(mtr, alloc);
				if (!log_ptr) {
					return(NULL); /* logging is disabled */
				}
				log_end = log_ptr + alloc;
			}
			mach_write_to_2(log_ptr, len);
			log_ptr += 2;
		}
	}
	if (size == 0) {
		mlog_close(mtr, log_ptr);
		log_ptr = NULL;
	} else if (log_ptr + size > log_end) {
		mlog_close(mtr, log_ptr);
		log_ptr = mlog_open(mtr, size);
	}
	return(log_ptr);
}
Example #5
0
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
				/* out, own: created big record vector,
				NULL if we are not able to shorten
				the entry enough, i.e., if there are
				too many short fields in entry */
	dict_index_t*	index,	/* in: index */
	dtuple_t*	entry,	/* in: index entry */
	ulint*		ext_vec,/* in: array of externally stored fields,
				or NULL: if a field already is externally
				stored, then we cannot move it to the vector
				this function returns */
	ulint		n_ext_vec)/* in: number of elements is ext_vec */
{
	mem_heap_t*	heap;
	big_rec_t*	vector;
	dfield_t*	dfield;
	ulint		size;
	ulint		n_fields;
	ulint		longest;
	ulint		longest_i		= ULINT_MAX;
	ibool		is_externally_stored;
	ulint		i;
	ulint		j;
	
	ut_a(dtuple_check_typed_no_assert(entry));

	size = rec_get_converted_size(index, entry);

	if (UNIV_UNLIKELY(size > 1000000000)) {
		fprintf(stderr,
"InnoDB: Warning: tuple size very big: %lu\n", (ulong) size);
		fputs("InnoDB: Tuple contents: ", stderr);
		dtuple_print(stderr, entry);
		putc('\n', stderr);
	}

	heap = mem_heap_create(size + dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t) + 1000);

	vector = mem_heap_alloc(heap, sizeof(big_rec_t));

	vector->heap = heap;
	vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t));

	/* Decide which fields to shorten: the algorithm is to look for
	the longest field whose type is DATA_BLOB */

	n_fields = 0;

	while (rec_get_converted_size(index, entry)
			>= ut_min(page_get_free_space_of_empty(
					index->table->comp) / 2,
					REC_MAX_DATA_SIZE)) {

		longest = 0;
		for (i = dict_index_get_n_unique_in_tree(index);
				i < dtuple_get_n_fields(entry); i++) {

			/* Skip over fields which already are externally
			stored */

			is_externally_stored = FALSE;

			if (ext_vec) {
				for (j = 0; j < n_ext_vec; j++) {
					if (ext_vec[j] == i) {
						is_externally_stored = TRUE;
					}
				}
			}
				
			if (!is_externally_stored) {

				dfield = dtuple_get_nth_field(entry, i);

				if (dfield->len != UNIV_SQL_NULL &&
			        		dfield->len > longest) {

			        	longest = dfield->len;

			        	longest_i = i;
				}
			}
		}
	
		/* We do not store externally fields which are smaller than
		DICT_MAX_INDEX_COL_LEN */

		ut_a(DICT_MAX_INDEX_COL_LEN > REC_1BYTE_OFFS_LIMIT);

		if (longest < BTR_EXTERN_FIELD_REF_SIZE + 10
						+ DICT_MAX_INDEX_COL_LEN) {
			/* Cannot shorten more */

			mem_heap_free(heap);

			return(NULL);
		}

		/* Move data from field longest_i to big rec vector;
		we do not let data size of the remaining entry
		drop below 128 which is the limit for the 2-byte
		offset storage format in a physical record. This
		we accomplish by storing 128 bytes of data in entry
		itself, and only the remaining part to big rec vec.

		We store the first bytes locally to the record. Then
		we can calculate all ordering fields in all indexes
		from locally stored data. */

		dfield = dtuple_get_nth_field(entry, longest_i);
		vector->fields[n_fields].field_no = longest_i;

		ut_a(dfield->len > DICT_MAX_INDEX_COL_LEN);
		
		vector->fields[n_fields].len = dfield->len
						- DICT_MAX_INDEX_COL_LEN;

		vector->fields[n_fields].data = mem_heap_alloc(heap,
						vector->fields[n_fields].len);

		/* Copy data (from the end of field) to big rec vector */

		ut_memcpy(vector->fields[n_fields].data,
				((byte*)dfield->data) + dfield->len
						- vector->fields[n_fields].len,
				vector->fields[n_fields].len);
		dfield->len = dfield->len - vector->fields[n_fields].len
						+ BTR_EXTERN_FIELD_REF_SIZE;

		/* Set the extern field reference in dfield to zero */
		memset(((byte*)dfield->data)
			+ dfield->len - BTR_EXTERN_FIELD_REF_SIZE,
					0, BTR_EXTERN_FIELD_REF_SIZE);
		n_fields++;
	}	

	vector->n_fields = n_fields;
	return(vector);
}
Example #6
0
/**************************************************************//**
Moves parts of long fields in entry to the big record vector so that
the size of tuple drops below the maximum record size allowed in the
database. Moves data only from those fields which are not necessary
to determine uniquely the insertion place of the tuple in the index.
@return own: created big record vector, NULL if we are not able to
shorten the entry enough, i.e., if there are too many fixed-length or
short fields in entry or the index is clustered */
UNIV_INTERN
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
	dict_index_t*	index,	/*!< in: index */
	dtuple_t*	entry,	/*!< in/out: index entry */
	ulint*		n_ext)	/*!< in/out: number of
				externally stored columns */
{
	mem_heap_t*	heap;
	big_rec_t*	vector;
	dfield_t*	dfield;
	dict_field_t*	ifield;
	ulint		size;
	ulint		n_fields;
	ulint		local_len;
	ulint		local_prefix_len;

	if (UNIV_UNLIKELY(!dict_index_is_clust(index))) {
		return(NULL);
	}

	if (dict_table_get_format(index->table) < DICT_TF_FORMAT_ZIP) {
		/* up to MySQL 5.1: store a 768-byte prefix locally */
		local_len = BTR_EXTERN_FIELD_REF_SIZE + DICT_MAX_INDEX_COL_LEN;
	} else {
		/* new-format table: do not store any BLOB prefix locally */
		local_len = BTR_EXTERN_FIELD_REF_SIZE;
	}

	ut_a(dtuple_check_typed_no_assert(entry));

	size = rec_get_converted_size(index, entry, *n_ext);

	if (UNIV_UNLIKELY(size > 1000000000)) {
		fprintf(stderr,
			"InnoDB: Warning: tuple size very big: %lu\n",
			(ulong) size);
		fputs("InnoDB: Tuple contents: ", stderr);
		dtuple_print(stderr, entry);
		putc('\n', stderr);
	}

	heap = mem_heap_create(size + dtuple_get_n_fields(entry)
			       * sizeof(big_rec_field_t) + 1000);

	vector = mem_heap_alloc(heap, sizeof(big_rec_t));

	vector->heap = heap;
	vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t));

	/* Decide which fields to shorten: the algorithm is to look for
	a variable-length field that yields the biggest savings when
	stored externally */

	n_fields = 0;

	while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry,
							     *n_ext),
				      dict_table_is_comp(index->table),
				      dict_index_get_n_fields(index),
				      dict_table_zip_size(index->table))) {
		ulint			i;
		ulint			longest		= 0;
		ulint			longest_i	= ULINT_MAX;
		byte*			data;
		big_rec_field_t*	b;

		for (i = dict_index_get_n_unique_in_tree(index);
		     i < dtuple_get_n_fields(entry); i++) {
			ulint	savings;

			dfield = dtuple_get_nth_field(entry, i);
			ifield = dict_index_get_nth_field(index, i);

			/* Skip fixed-length, NULL, externally stored,
			or short columns */

			if (ifield->fixed_len
			    || dfield_is_null(dfield)
			    || dfield_is_ext(dfield)
			    || dfield_get_len(dfield) <= local_len
			    || dfield_get_len(dfield)
			    <= BTR_EXTERN_FIELD_REF_SIZE * 2) {
				goto skip_field;
			}

			savings = dfield_get_len(dfield) - local_len;

			/* Check that there would be savings */
			if (longest >= savings) {
				goto skip_field;
			}

			longest_i = i;
			longest = savings;

skip_field:
			continue;
		}

		if (!longest) {
			/* Cannot shorten more */

			mem_heap_free(heap);

			return(NULL);
		}

		/* Move data from field longest_i to big rec vector.

		We store the first bytes locally to the record. Then
		we can calculate all ordering fields in all indexes
		from locally stored data. */

		dfield = dtuple_get_nth_field(entry, longest_i);
		ifield = dict_index_get_nth_field(index, longest_i);
		local_prefix_len = local_len - BTR_EXTERN_FIELD_REF_SIZE;

		b = &vector->fields[n_fields];
		b->field_no = longest_i;
		b->len = dfield_get_len(dfield) - local_prefix_len;
		b->data = (char*) dfield_get_data(dfield) + local_prefix_len;

		/* Allocate the locally stored part of the column. */
		data = mem_heap_alloc(heap, local_len);

		/* Copy the local prefix. */
		memcpy(data, dfield_get_data(dfield), local_prefix_len);
		/* Clear the extern field reference (BLOB pointer). */
		memset(data + local_prefix_len, 0, BTR_EXTERN_FIELD_REF_SIZE);
#if 0
		/* The following would fail the Valgrind checks in
		page_cur_insert_rec_low() and page_cur_insert_rec_zip().
		The BLOB pointers in the record will be initialized after
		the record and the BLOBs have been written. */
		UNIV_MEM_ALLOC(data + local_prefix_len,
			       BTR_EXTERN_FIELD_REF_SIZE);
#endif

		dfield_set_data(dfield, data, local_len);
		dfield_set_ext(dfield);

		n_fields++;
		(*n_ext)++;
		ut_ad(n_fields < dtuple_get_n_fields(entry));
	}

	vector->n_fields = n_fields;
	return(vector);
}
Example #7
0
/*****************************************************************//**
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table.
@return index entry which should be inserted or purged, or NULL if the
externally stored columns in the clustered index record are
unavailable and ext != NULL */
UNIV_INTERN
dtuple_t*
row_build_index_entry(
/*==================*/
	const dtuple_t*	row,	/*!< in: row which should be
				inserted or purged */
	row_ext_t*	ext,	/*!< in: externally stored column prefixes,
				or NULL */
	dict_index_t*	index,	/*!< in: index on the table */
	mem_heap_t*	heap)	/*!< in: memory heap from which the memory for
				the index entry is allocated */
{
	dtuple_t*	entry;
	ulint		entry_len;
	ulint		i;

	ut_ad(row && index && heap);
	ut_ad(dtuple_check_typed(row));

	entry_len = dict_index_get_n_fields(index);
	entry = dtuple_create(heap, entry_len);

	if (UNIV_UNLIKELY(index->type & DICT_UNIVERSAL)) {
		dtuple_set_n_fields_cmp(entry, entry_len);
		/* There may only be externally stored columns
		in a clustered index B-tree of a user table. */
		ut_a(!ext);
	} else {
		dtuple_set_n_fields_cmp(
			entry, dict_index_get_n_unique_in_tree(index));
	}

	for (i = 0; i < entry_len; i++) {
		const dict_field_t*	ind_field
			= dict_index_get_nth_field(index, i);
		const dict_col_t*	col
			= ind_field->col;
		ulint			col_no
			= dict_col_get_no(col);
		dfield_t*		dfield
			= dtuple_get_nth_field(entry, i);
		const dfield_t*		dfield2
			= dtuple_get_nth_field(row, col_no);
		ulint			len
			= dfield_get_len(dfield2);

		dfield_copy(dfield, dfield2);

		if (dfield_is_null(dfield)) {
			continue;
		}

		if (ind_field->prefix_len == 0
		    && (!dfield_is_ext(dfield)
			|| dict_index_is_clust(index))) {
			/* The dfield_copy() above suffices for
			columns that are stored in-page, or for
			clustered index record columns that are not
			part of a column prefix in the PRIMARY KEY. */
			continue;
		}

		/* If the column is stored externally (off-page) in
		the clustered index, it must be an ordering field in
		the secondary index.  In the Antelope format, only
		prefix-indexed columns may be stored off-page in the
		clustered index record. In the Barracuda format, also
		fully indexed long CHAR or VARCHAR columns may be
		stored off-page. */
		ut_ad(col->ord_part);

		if (UNIV_LIKELY_NULL(ext)) {
			/* See if the column is stored externally. */
			const byte*	buf = row_ext_lookup(ext, col_no,
							     &len);
			if (UNIV_LIKELY_NULL(buf)) {
				if (UNIV_UNLIKELY(buf == field_ref_zero)) {
					return(NULL);
				}
				dfield_set_data(dfield, buf, len);
			}

			if (ind_field->prefix_len == 0) {
				/* In the Barracuda format
				(ROW_FORMAT=DYNAMIC or
				ROW_FORMAT=COMPRESSED), we can have a
				secondary index on an entire column
				that is stored off-page in the
				clustered index. As this is not a
				prefix index (prefix_len == 0),
				include the entire off-page column in
				the secondary index record. */
				continue;
			}
		} else if (dfield_is_ext(dfield)) {
			/* This table is either in Antelope format
			(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
			or a purge record where the ordered part of
			the field is not external.
			In Antelope, the maximum column prefix
			index length is 767 bytes, and the clustered
			index record contains a 768-byte prefix of
			each off-page column. */
			ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
			len -= BTR_EXTERN_FIELD_REF_SIZE;
			dfield_set_len(dfield, len);
		}

		/* If a column prefix index, take only the prefix. */
		if (ind_field->prefix_len) {
			len = dtype_get_at_most_n_mbchars(
				col->prtype, col->mbminlen, col->mbmaxlen,
				ind_field->prefix_len, len,
				dfield_get_data(dfield));
			dfield_set_len(dfield, len);
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}
Example #8
0
/*********************************************************************//**
Updates the search info of an index about hash successes. NOTE that info
is NOT protected by any semaphore, to save CPU time! Do not assume its fields
are consistent. */
static
void
btr_search_info_update_hash(
/*========================*/
	btr_search_t*	info,	/*!< in/out: search info */
	btr_cur_t*	cursor)	/*!< in: cursor which was just positioned */
{
	dict_index_t*	index;
	ulint		n_unique;
	int		cmp;

#ifdef UNIV_SYNC_DEBUG
	ut_ad(!rw_lock_own(&btr_search_latch, RW_LOCK_SHARED));
	ut_ad(!rw_lock_own(&btr_search_latch, RW_LOCK_EX));
#endif /* UNIV_SYNC_DEBUG */

	index = cursor->index;

	if (dict_index_is_ibuf(index)) {
		/* So many deletes are performed on an insert buffer tree
		that we do not consider a hash index useful on it: */

		return;
	}

	n_unique = dict_index_get_n_unique_in_tree(index);

	if (info->n_hash_potential == 0) {

		goto set_new_recomm;
	}

	/* Test if the search would have succeeded using the recommended
	hash prefix */

	if (info->n_fields >= n_unique && cursor->up_match >= n_unique) {
increment_potential:
		info->n_hash_potential++;

		return;
	}

	cmp = ut_pair_cmp(info->n_fields, info->n_bytes,
			  cursor->low_match, cursor->low_bytes);

	if (info->left_side ? cmp <= 0 : cmp > 0) {

		goto set_new_recomm;
	}

	cmp = ut_pair_cmp(info->n_fields, info->n_bytes,
			  cursor->up_match, cursor->up_bytes);

	if (info->left_side ? cmp <= 0 : cmp > 0) {

		goto increment_potential;
	}

set_new_recomm:
	/* We have to set a new recommendation; skip the hash analysis
	for a while to avoid unnecessary CPU time usage when there is no
	chance for success */

	info->hash_analysis = 0;

	cmp = ut_pair_cmp(cursor->up_match, cursor->up_bytes,
			  cursor->low_match, cursor->low_bytes);
	if (cmp == 0) {
		info->n_hash_potential = 0;

		/* For extra safety, we set some sensible values here */

		info->n_fields = 1;
		info->n_bytes = 0;

		info->left_side = TRUE;

	} else if (cmp > 0) {
		info->n_hash_potential = 1;

		if (cursor->up_match >= n_unique) {

			info->n_fields = n_unique;
			info->n_bytes = 0;

		} else if (cursor->low_match < cursor->up_match) {

			info->n_fields = cursor->low_match + 1;
			info->n_bytes = 0;
		} else {
			info->n_fields = cursor->low_match;
			info->n_bytes = cursor->low_bytes + 1;
		}

		info->left_side = TRUE;
	} else {
		info->n_hash_potential = 1;

		if (cursor->low_match >= n_unique) {

			info->n_fields = n_unique;
			info->n_bytes = 0;

		} else if (cursor->low_match > cursor->up_match) {

			info->n_fields = cursor->up_match + 1;
			info->n_bytes = 0;
		} else {
			info->n_fields = cursor->up_match;
			info->n_bytes = cursor->up_bytes + 1;
		}

		info->left_side = FALSE;
	}
}
Example #9
0
/********************************************************//**
Opens a buffer for mlog, writes the initial log record and,
if needed, the field lengths of an index.
@return	buffer, NULL if log mode MTR_LOG_NONE */
UNIV_INTERN
byte*
mlog_open_and_write_index(
/*======================*/
	mtr_t*		mtr,	/*!< in: mtr */
	const byte*	rec,	/*!< in: index record or page */
	dict_index_t*	index,	/*!< in: record descriptor */
	byte		type,	/*!< in: log item type */
	ulint		size)	/*!< in: requested buffer size in bytes
				(if 0, calls mlog_close() and returns NULL) */
{
	byte*		log_ptr;
	const byte*	log_start;
	const byte*	log_end;

	ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table));

	if (!page_rec_is_comp(rec)) {
		log_start = log_ptr = mlog_open(mtr, 11 + size);
		if (!log_ptr) {
			return(NULL); /* logging is disabled */
		}
		log_ptr = mlog_write_initial_log_record_fast(rec, type,
							     log_ptr, mtr);
		log_end = log_ptr + 11 + size;
	} else {
		ulint	i;
		ulint	n	= dict_index_get_n_fields(index);
        ibool   is_gcs_cluster = dict_index_is_gcs_clust_after_alter_table(index);
		/* total size needed */
        /* redo日志有可能需要多两字节,total需要根据实际情况分配空间! */
        ulint	total	= 11 + size + (n + 2 + (is_gcs_cluster ? 1 : 0)) * 2;
		ulint	alloc	= total;
        
        /* allocate at most DYN_ARRAY_DATA_SIZE at a time */
		if (alloc > DYN_ARRAY_DATA_SIZE) {
			alloc = DYN_ARRAY_DATA_SIZE;
		}
		log_start = log_ptr = mlog_open(mtr, alloc);
		if (!log_ptr) {
			return(NULL); /* logging is disabled */
		}
		log_end = log_ptr + alloc;
		log_ptr = mlog_write_initial_log_record_fast(rec, type,
							     log_ptr, mtr);

        /* 在第一次alter table前,所有gcs表可以当成compact表,即使是redo过程,这样redo log也兼容! */
        if (is_gcs_cluster)
        {
            //ut_ad(rec_is_gcs(rec) || rec == page_align(rec) || rec_get_status(rec) & REC_STATUS_NODE_PTR);               /* rec有可能就是页头,如日志MLOG_COMP_LIST_END_COPY_CREATED */
            mach_write_to_2(log_ptr, n | 0x8000);                         /* 标记是gcs表 */
        }
        else
        {
            ut_ad(rec == page_align(rec) || !rec_is_gcs(rec));
		    mach_write_to_2(log_ptr, n);
        }

        /* 对于gcs聚集索引,记录第一次alter table前聚集索引的字段数 */
        if (is_gcs_cluster)
        {
            log_ptr += 2;
            mach_write_to_2(log_ptr, (ulint)index->n_fields_before_alter);

            ut_ad(!index->n_fields_before_alter == !dict_index_is_gcs_clust_after_alter_table(index));
        }

		log_ptr += 2;
		mach_write_to_2(log_ptr,
				dict_index_get_n_unique_in_tree(index));
		log_ptr += 2;
		for (i = 0; i < n; i++) {
			dict_field_t*		field;
			const dict_col_t*	col;
			ulint			len;

			field = dict_index_get_nth_field(index, i);
			col = dict_field_get_col(field);
			len = field->fixed_len;
			ut_ad(len < 0x7fff);
			if (len == 0
			    && (col->len > 255 || col->mtype == DATA_BLOB)) {
				/* variable-length field
				with maximum length > 255 */
				len = 0x7fff;
			}
			if (col->prtype & DATA_NOT_NULL) {
				len |= 0x8000;
			}
			if (log_ptr + 2 > log_end) {
				mlog_close(mtr, log_ptr);
				ut_a(total > (ulint) (log_ptr - log_start));
				total -= log_ptr - log_start;
				alloc = total;
				if (alloc > DYN_ARRAY_DATA_SIZE) {
					alloc = DYN_ARRAY_DATA_SIZE;
				}
				log_start = log_ptr = mlog_open(mtr, alloc);
				if (!log_ptr) {
					return(NULL); /* logging is disabled */
				}
				log_end = log_ptr + alloc;
			}
			mach_write_to_2(log_ptr, len);
			log_ptr += 2;
		}
	}
	if (size == 0) {
		mlog_close(mtr, log_ptr);
		log_ptr = NULL;
	} else if (log_ptr + size > log_end) {
		mlog_close(mtr, log_ptr);
		log_ptr = mlog_open(mtr, size);
	}
	return(log_ptr);
}