Example #1
0
void RiemersmaDither(const Image16Bpp& inImage, Image8Bpp& outImage, unsigned short transparent, int dither, float ditherlevel)
{
    DitherImage dimage(inImage, outImage, transparent, dither, ditherlevel);
    int size = ceil(log2(std::max(inImage.width, inImage.height)));
    if (size > 0) Hilbert(dimage, size, UP);
    move(dimage, NONE);
}
Example #2
0
int main(int argc, char * argv[])
{
	std::cout << "press q to exit" << std::endl;
	R200Grabber grabber;
	const uint8_t nearColor[] = {255, 0, 0};
	const uint8_t farColor[] = {20, 40, 255};
	uint8_t cdepth[628 * 468 * 3];
	std::cout << "start" << std::endl;

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud = grabber.allocCloud();
	grabber.getCloudT(cloud);

	cloud->sensor_orientation_.w() = 0.0;
	cloud->sensor_orientation_.x() = 1.0;
	cloud->sensor_orientation_.y() = 0.0;
	cloud->sensor_orientation_.z() = 0.0;

	boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer ("3D Viewer"));
	viewer->setBackgroundColor(0, 0, 0);
	viewer->registerKeyboardCallback(KeyboardEventOccurred, (void*)&grabber);

	pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(cloud);
	viewer->addPointCloud<pcl::PointXYZRGB>(cloud, rgb, "sample cloud");
	viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");

	cv::Mat limage(grabber.getLRSize(), CV_8UC1);
    cv::Mat rimage(grabber.getLRSize(), CV_8UC1);
    cv::Mat dimage(grabber.getDepthSize(), CV_8UC3);
    cv::Mat cimage(grabber.getColorSize(), CV_8UC3);

	double ftime;
	int frame;
	int dwidth = grabber.getDepthSize().width;
	int dheight = grabber.getDepthSize().height;
	bool first = true;	
	while(!viewer->wasStopped())
	{
		if(grabber.hasData() ){

		    ftime = grabber.getFrameTime();
		    frame = grabber.getFrameNumber();
		    
		    //std::cout << "Frame " << frame << " @ " << std::fixed << ftime << std::endl;
		    
		    const uint16_t * pd = grabber.getDepthImage();
		    const void * pl = grabber.getLImage();
		    const void * pr = grabber.getRImage();
		    const void * pc = grabber.getColorImageRGB();
		    /*
		    ConvertDepthToRGBUsingHistogram(pd, dwidth, dheight, nearColor, farColor, cdepth);

		    limage.data = (uint8_t *)pl;
		    rimage.data = (uint8_t *)pr;
		    dimage.data = (uint8_t *)cdepth;
		    cimage.data = (uint8_t *)pc;

    		cv::imshow("limage", limage);
    		cv::imshow("rimage", rimage);
    		cv::imshow("cimage", cimage);
    		cv::imshow("dimage", dimage);
			cv::waitKey(1);
			*/

    		std::chrono::high_resolution_clock::time_point tnow = std::chrono::high_resolution_clock::now();
    		grabber.getCloudT(cloud);
    		std::chrono::high_resolution_clock::time_point tpost = std::chrono::high_resolution_clock::now();
    		std::cout << "delta " << std::chrono::duration_cast<std::chrono::duration<double>>(tpost-tnow).count() * 1000 << std::endl;

    		//pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(cloud);
    		viewer->updatePointCloud<pcl::PointXYZRGB>(cloud, rgb, "sample cloud");
    		viewer->spinOnce();
		}
	}

	return 0;
}
Example #3
0
int main(int argc, char *argv[]) try
{

	physics_driftmax = 0.0025f;

	GLWin glwin("point cloud push interaction");
	RSCam dcam;
	dcam.Init((argc == 2) ? argv[1] : NULL);
	Image<unsigned short> dimage(dcam.dcamera());

	glwin.ViewAngle = dcam.fov().y;
	float viewdist = 2.0f;
	float yaw = 120;
	int mousexold = 0;
	Mesh   mesh;

	bool   pause = false;
	bool   debuglines=false;
	int    center = 0;
	bool   chains = true;
	bool   usehull = false;
	std::vector<RigidBody*> rigidbodies;
	std::vector < std::pair<RigidBody*, RigidBody*>> links;
	for (float x = -0.2f; x < 0.2f; x+= 0.07f)  
		for(float z: {0.350f})
			for (float y = -0.2f; y <= 0.2f; y += 0.07f)
	{
				rigidbodies.push_back(new RigidBody({ AsShape(WingMeshDual(WingMeshCube(0.025f),0.028f)) }, { x,y,z }));
				//rigidbodies.push_back(new RigidBody({ AsShape(WingMeshCube(0.025f)                       ) }, { x,y,z }));
				links.push_back({(y > -0.2f)?rigidbodies[rigidbodies.size() - 2]:NULL , rigidbodies.back()});
	}

	//rigidbodies.push_back(new RigidBody({ AsShape(WingMeshCube(0.05f)) }, { 0,0,0.50f }));

	auto seesaw = new RigidBody({ AsShape(WingMeshBox({ 0.20f, 0.015f,  0.05f })) }, { 0,0,0.45f });
	rigidbodies.push_back(seesaw);

	glwin.keyboardfunc = [&](unsigned char key, int x, int y)->void
	{
		switch (std::tolower(key))
		{
		case 'q': case 27:  exit(0); break;   // 27 is ESC
		case ' ': pause = !pause; break;
		case 'c': chains = !chains; break;
		case 'd': debuglines = !debuglines; break;
		case 'h': usehull = !usehull; break;
		case 'r': for (auto &rb : rigidbodies) { rb->angular_momentum = rb->linear_momentum = float3(0.0f);rb->pose() = { rb->position_start,rb->orientation_start }; }  break;
		default:  std::cout << "unassigned key (" << (int)key << "): '" << key << "'\n";   break;
		}
	};

	if (dcam.dev->supports_option(rs::option::r200_lr_auto_exposure_enabled))
		dcam.dev->set_option(rs::option::r200_lr_auto_exposure_enabled, 1);

	while (glwin.WindowUp())
	{
		if (glwin.MouseState)
		{
			yaw += glwin.mousepos.x - mousexold;
		}
		mousexold = glwin.mousepos.x;
		viewdist *= powf(1.1f, (float)glwin.mousewheel);

		if (!pause)
			dimage = dcam.GetDepth();

		glPushAttrib(GL_ALL_ATTRIB_BITS);
		glViewport(0, 0, glwin.res.x, glwin.res.y);
		glClearColor(0.1f, 0.1f, 0.15f, 1);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		glMatrixMode(GL_PROJECTION);
		glPushMatrix();
		glLoadIdentity();
		gluPerspective(glwin.ViewAngle, (double)glwin.aspect_ratio(), 0.01f, 50.0f);

		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		gluLookAt(0, 0, viewdist, 0, 0, 0, 0, -1, 0);
		glEnable(GL_DEPTH_TEST);

		glTranslatef(0, 0, 0.35f);
		glRotatef(yaw, 0, 1, 0);
		glTranslatef(0, 0, -0.35f);

		std::vector<float3> pts;
		std::vector<float3> outliers;
		std::vector<float3> vpts;
		glDisable(GL_BLEND);

		float2 wrange = { 0.20f,0.60f };


		auto dp_image_c = Transform(dimage, [](unsigned short s) {return byte3((unsigned char)clamp(255 - s / 4, 0, 255)); });
		drawimage(dp_image_c, { 0.78f,0.22f }, { 0.2f,-0.2f }, 3);

		float depth_scale = (dcam.dev) ? dcam.dev->get_depth_scale() : 0.001f;  // to put into meters    // if file assume file is mm


		for (auto p : rect_iteration(dimage.dim())) // p is int2 from 0,0 to w,h of dcam
		{
			float d = dimage.pixel(p) * depth_scale;  // d is in meters, whereas depth[i] is in camera units  mm for R200, .125mm for SR300 ivycam
			if (p.x<5 || p.x> dimage.dim().x - 5 || p.y<5 || p.y>dimage.dim().y - 5) continue;  // crop, seems to be lots of noise at the edges
			if (d > 1.0f)  // just too far
				continue;  
			float3 v = dimage.cam.deprojectz(asfloat2(p), d);
			if (d>wrange.x && d < wrange.y) 
				pts.push_back(v);
			else
				outliers.push_back(v);
		}

		vpts = ObtainVoxelPointCloud(pts, 0.0082f, 8);


		std::vector<std::pair<float3, float3>> lines;
		std::vector<std::pair<float3, float3>> glines;

		if (1)// && pts.size())
		{
			std::vector<LimitLinear>  linears;
			std::vector<LimitAngular> angulars;
			physics_gravity = { 0,  (float) chains,0 };  // ugg y is down

			if(!usehull) for(auto rb:rigidbodies) 
			{
				if (!rb->shapes[0].planes.size())
					rb->shapes[0].planes = Planes(rb->shapes[0].verts, rb->shapes[0].tris);
				auto planes = Transform(rb->shapes[0].planes, [&](float4 p) { return rb->pose().TransformPlane(p);});
				rb->gravscale = (float)chains;
				float separation = FLT_MAX;
				float3 pushpoint = float3(0, 0, 0);  //
				float4 pushplane;
				for (auto p : vpts)
				{
						auto plane = mostabove(planes, p);
						float sep;
						if ((sep = dot(plane, float4(p, 1))) < separation)
						{
							pushpoint = p;
							pushplane = plane;
							separation = sep;
						}
				}
				if (separation > 0.1f)
					continue;
				float3 closestpoint = ProjectOntoPlane(pushplane, pushpoint);
				pushplane = float4({ -pushplane.xyz(), -dot(-pushplane.xyz(),pushpoint) });
				linears.push_back(ConstrainAlongDirection(NULL, pushpoint, rb, rb->pose().inverse()*closestpoint, pushplane.xyz(), 0, 100.0f)); //  FLT_MAX));
				lines.push_back({ closestpoint,pushpoint });
				auto cp=Separated(rb->shapes[0].verts, rb->position, rb->orientation, { pushpoint }, { 0,0,0 }, { 0,0,0,1 }, 1);
				glines.push_back({ cp.p0w, cp.p1w });
			}
			Append(linears, ConstrainPositionNailed(NULL, seesaw->position_start, seesaw, { 0, 0, 0 }));
			Append(angulars, ConstrainAngularRange(NULL, seesaw, { 0, 0, 0, 1 }, { 0, 0,-20 }, { 0, 0,20 }));

			if (chains) for (auto link : links)
				Append(linears, ConstrainPositionNailed(link.first,link.first? float3(0, 0.035f, 0) : link.second->position_start-float3(0, -0.035f, 0) , link.second, { 0,-0.035f,0 }));
			if(!pause)
				
				if(usehull && vpts.size()>5) 
					PhysicsUpdate(rigidbodies, linears, angulars, { &vpts });
				else 
					PhysicsUpdate(rigidbodies, linears, angulars, std::vector<std::vector<float3>*>());
		}


		glColor3f(1, 1, 1);
		glwirefrustumz(dcam.deprojectextents(), { 0.1f,1.0f });  // draw the camera frustum volume

		glPushAttrib(GL_ALL_ATTRIB_BITS);
		glPointSize(1);
		glBegin(GL_POINTS);
		glColor3f(0, 1, 0.5f);
		for (auto p : pts)
			glVertex3fv(p);
		glColor3f(1, 0.15f, 0.15f);
		for (auto p : outliers)
			glVertex3fv(p);
		glEnd();

		glPointSize(3);
		glBegin(GL_POINTS);
		glColor3f(1, 1, 1);
		for (auto p : vpts)  // was: spts
			glVertex3fv(p);
		glEnd();

		glPopAttrib();

		if (debuglines)
		{
			glBegin(GL_LINES);
			glColor3f(0, 1, 1);
			if (0)for (auto line : lines)
				glVertex3fv(line.first), glVertex3fv(line.second);
			glColor3f(1, 1, 0);
			for (auto line : glines)
				glVertex3fv(line.first), glVertex3fv(line.second);
			glEnd();
		}
		if (usehull && vpts.size() > 5)
		{
			auto tris = calchull(vpts, 0);
			glBegin(GL_LINES);
			glColor3f(1, 1, 1);
			for (auto t : tris) for( int i : {0,1,1,2,2,0})
				glVertex3fv(vpts[t[i]]);
			glEnd();

		}
		if (chains)
		{
			glBegin(GL_LINES);
			glColor3f(1, 0, 1);
			for (auto link : links)
			{
				if(link.first) 
					glVertex3fv(link.first->pose()* float3(0, 0, 0)), glVertex3fv(link.first->pose()* float3(0, 0.035f, 0));
				glVertex3fv(link.second->pose()* float3(0, 0, 0)) , glVertex3fv(link.second->pose()* float3(0, -0.035f, 0));
			}
			glEnd();
		}
		glPushAttrib(GL_ALL_ATTRIB_BITS);
		glEnable(GL_LIGHTING);
		glEnable(GL_LIGHT0);
		glEnable(GL_TEXTURE_2D);
		glColor3f(0.5f, 0.5f, 0.5f);
		for (auto &rb : rigidbodies)
			rbdraw(rb);
		glPopAttrib();   // Restore state

		// Restore state
		glPopMatrix();  //should be currently in modelview mode
		glMatrixMode(GL_PROJECTION);
		glPopMatrix();
		glPopAttrib();
		glMatrixMode(GL_MODELVIEW);

		glwin.PrintString({ 0,0 }, "esc to quit.");
		glwin.PrintString({ 0,1 }, "[h] collision %s  ",(usehull)?"hull":"points");
		glwin.SwapBuffers();

	}
	return 0;
}
catch (const char *c)
{
	MessageBox(GetActiveWindow(), c, "FAIL", 0);
}
catch (std::exception e)
{
	MessageBox(GetActiveWindow(), e.what(), "FAIL", 0);
}