int normAm(double alpha, int m, double* est, double* dwrk, int* iwrk, expo_type* expo) { int tcol = 1; // Number of columns used by DLACN1 char trans = 'N'; double* mvwrk = dwrk; double* v = mvwrk + 2*expo->dim; double* x = v + expo->dim; double* xold = x + expo->dim; double* wrk = xold + expo->dim; double* h = wrk + tcol; int* ind = iwrk; int* indh = ind + expo->dim; int kase = 0; int info = 0; int iseed[] = { 153, 1673, 2, 3567 }; int isave[] = { 0, 0, 0 }; int mv = 0; *est = 0.0; // dlacn1_(&expo->dim,&tcol,v,x,&expo->dim,xold,&expo->dim,wrk,h,ind,indh,est,&kase,iseed,&info); dlacn2_(&expo->dim,v,x,iwrk,est,&kase,isave); while (kase != 0) { if (kase == 1) trans = 'N'; else if (kase == 2) trans = 'T'; afun_power(trans,alpha,m,x,expo,mvwrk); // dlacn1_(&expo->dim,&tcol,v,x,&expo->dim,xold,&expo->dim,wrk,h,ind,indh,est,&kase,iseed,&info); dlacn2_(&expo->dim,v,x,iwrk,est,&kase,isave); mv += m*tcol; } return mv; }
/* Subroutine */ int dpbcon_(char *uplo, integer *n, integer *kd, doublereal * ab, integer *ldab, doublereal *anorm, doublereal *rcond, doublereal * work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal scalel; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlatbs_(char *, char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); doublereal scaleu; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal ainvnm; char normin[1]; doublereal smlnum; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } else if (*anorm < 0.) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DPBCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the 1-norm of the inverse. */ kase = 0; *(unsigned char *)normin = 'N'; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (upper) { /* Multiply by inv(U**T). */ dlatbs_("Upper", "Transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(U). */ dlatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(L). */ dlatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(L**T). */ dlatbs_("Lower", "Transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], info); } /* Multiply by 1/SCALE if doing so will not cause overflow. */ scale = scalel * scaleu; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], f2c_abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DPBCON */ }
/* Subroutine */ int dgtrfs_(char *trans, integer *n, integer *nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *dlf, doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal * ferr, doublereal *berr, doublereal *work, integer *iwork, integer * info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer i__, j; doublereal s; integer nz; doublereal eps; integer kase; doublereal safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer count; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlagtm_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); logical notran; char transn[1]; extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); char transt[1]; doublereal lstres; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGTRFS improves the computed solution to a system of linear */ /* equations when the coefficient matrix is tridiagonal, and provides */ /* error bounds and backward error estimates for the solution. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* DL (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) subdiagonal elements of A. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal elements of A. */ /* DU (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) superdiagonal elements of A. */ /* DLF (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) multipliers that define the matrix L from the */ /* LU factorization of A as computed by DGTTRF. */ /* DF (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the upper triangular matrix U from */ /* the LU factorization of A. */ /* DUF (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) elements of the first superdiagonal of U. */ /* DU2 (input) DOUBLE PRECISION array, dimension (N-2) */ /* The (n-2) elements of the second superdiagonal of U. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ /* interchanged with row IPIV(i). IPIV(i) will always be either */ /* i or i+1; IPIV(i) = i indicates a row interchange was not */ /* required. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by DGTTRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Internal Parameters */ /* =================== */ /* ITMAX is the maximum number of steps of iterative refinement. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --dl; --d__; --du; --dlf; --df; --duf; --du2; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; notran = lsame_(trans, "N"); if (! notran && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*ldb < max(1,*n)) { *info = -13; } else if (*ldx < max(1,*n)) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("DGTRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transn = 'N'; *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transn = 'T'; *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = 4; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - op(A) * X, */ /* where op(A) = A, A**T, or A**H, depending on TRANS. */ dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); dlagtm_(trans, n, &c__1, &c_b18, &dl[1], &d__[1], &du[1], &x[j * x_dim1 + 1], ldx, &c_b19, &work[*n + 1], n); /* Compute abs(op(A))*abs(x) + abs(b) for use in the backward */ /* error bound. */ if (notran) { if (*n == 1) { work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[ 1] * x[j * x_dim1 + 1], abs(d__2)); } else { work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[ 1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = du[1] * x[j * x_dim1 + 2], abs(d__3)); i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + ( d__2 = dl[i__ - 1] * x[i__ - 1 + j * x_dim1], abs( d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1], abs(d__3)) + (d__4 = du[i__] * x[i__ + 1 + j * x_dim1], abs(d__4)); /* L30: */ } work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 = dl[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + ( d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3)); } } else { if (*n == 1) { work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[ 1] * x[j * x_dim1 + 1], abs(d__2)); } else { work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[ 1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = dl[1] * x[j * x_dim1 + 2], abs(d__3)); i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + ( d__2 = du[i__ - 1] * x[i__ - 1 + j * x_dim1], abs( d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1], abs(d__3)) + (d__4 = dl[i__] * x[i__ + 1 + j * x_dim1], abs(d__4)); /* L40: */ } work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 = du[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + ( d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3)); } } /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[ i__]; s = max(d__2,d__3); } else { /* Computing MAX */ d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) / (work[i__] + safe1); s = max(d__2,d__3); } /* L50: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) { /* Update solution and try again. */ dgttrs_(trans, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[ 1], &work[*n + 1], n, info); daxpy_(n, &c_b19, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) ; lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(op(A)))* */ /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__] + safe1; } /* L60: */ } kase = 0; L70: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)**T). */ dgttrs_(transt, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], & ipiv[1], &work[*n + 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L80: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L90: */ } dgttrs_(transn, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], & ipiv[1], &work[*n + 1], n, info); } goto L70; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1)); lstres = max(d__2,d__3); /* L100: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L110: */ } return 0; /* End of DGTRFS */ } /* dgtrfs_ */
/* ===================================================================== */ doublereal dla_syrcond_(char *uplo, integer *n, doublereal *a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv, integer *cmode, doublereal *c__, integer *info, doublereal *work, integer *iwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; doublereal ret_val, d__1; /* Local variables */ integer i__, j; logical up; doublereal tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal ainvnm; char normin[1]; doublereal smlnum; extern /* Subroutine */ int dsytrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); /* -- LAPACK computational routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; --work; --iwork; /* Function Body */ ret_val = 0.; *info = 0; if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldaf < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DLA_SYRCOND", &i__1); return ret_val; } if (*n == 0) { ret_val = 1.; return ret_val; } up = FALSE_; if (lsame_(uplo, "U")) { up = TRUE_; } /* Compute the equilibration matrix R such that */ /* inv(R)*A*C has unit 1-norm. */ if (up) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1)); } } else { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1)); } } else { i__2 = i__; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } /* Estimate the norm of inv(op(A)). */ smlnum = dlamch_("Safe minimum"); ainvnm = 0.; *(unsigned char *)normin = 'N'; kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } if (up) { dsytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } else { dsytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } /* Multiply by inv(C). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } } else { /* Multiply by inv(C**T). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } if (up) { dsytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } else { dsytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; }
/* Subroutine */ int dgbcon_(char *norm, integer *n, integer *kl, integer *ku, doublereal *ab, integer *ldab, integer *ipiv, doublereal *anorm, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer j; doublereal t; integer kd, lm, jp, ix, kase; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); integer kase1; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); logical lnoti; extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlatbs_(char *, char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); doublereal ainvnm; logical onenrm; char normin[1]; doublereal smlnum; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGBCON estimates the reciprocal of the condition number of a real */ /* general band matrix A, in either the 1-norm or the infinity-norm, */ /* using the LU factorization computed by DGBTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* Details of the LU factorization of the band matrix A, as */ /* computed by DGBTRF. U is stored as an upper triangular band */ /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */ /* the multipliers used during the factorization are stored in */ /* rows KL+KU+2 to 2*KL+KU+1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= N, row i of the matrix was */ /* interchanged with row IPIV(i). */ /* ANORM (input) DOUBLE PRECISION */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --ipiv; --work; --iwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0) { *info = -3; } else if (*ku < 0) { *info = -4; } else if (*ldab < (*kl << 1) + *ku + 1) { *info = -6; } else if (*anorm < 0.) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DGBCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the norm of inv(A). */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kd = *kl + *ku + 1; lnoti = *kl > 0; kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ if (lnoti) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = *kl, i__3 = *n - j; lm = min(i__2,i__3); jp = ipiv[j]; t = work[jp]; if (jp != j) { work[jp] = work[j]; work[j] = t; } d__1 = -t; daxpy_(&lm, &d__1, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); /* L20: */ } } /* Multiply by inv(U). */ i__1 = *kl + *ku; dlatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, & ab[ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(U'). */ i__1 = *kl + *ku; dlatbs_("Upper", "Transpose", "Non-unit", normin, n, &i__1, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info); /* Multiply by inv(L'). */ if (lnoti) { for (j = *n - 1; j >= 1; --j) { /* Computing MIN */ i__1 = *kl, i__2 = *n - j; lm = min(i__1,i__2); work[j] -= ddot_(&lm, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); jp = ipiv[j]; if (jp != j) { t = work[jp]; work[jp] = work[j]; work[j] = t; } /* L30: */ } } } /* Divide X by 1/SCALE if doing so will not cause overflow. */ *(unsigned char *)normin = 'Y'; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L40; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L40: return 0; /* End of DGBCON */ } /* dgbcon_ */
/* Subroutine */ int dtrsna_(char *job, char *howmny, logical *select, integer *n, doublereal *t, integer *ldt, doublereal *vl, integer * ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep, integer *mm, integer *m, doublereal *work, integer *ldwork, integer * iwork, integer *info) { /* System generated locals */ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, work_dim1, work_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k, n2; doublereal cs; integer nn, ks; doublereal sn, mu, eps, est; integer kase; doublereal cond; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); logical pair; integer ierr; doublereal dumm, prod; integer ifst; doublereal lnrm; integer ilst; doublereal rnrm; extern doublereal dnrm2_(integer *, doublereal *, integer *); doublereal prod1, prod2, scale, delta; extern logical lsame_(char *, char *); integer isave[3]; logical wants; doublereal dummy[1]; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlapy2_(doublereal *, doublereal *); extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); doublereal bignum; logical wantbh; extern /* Subroutine */ int dlaqtr_(logical *, logical *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dtrexc_(char *, integer * , doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *); logical somcon; doublereal smlnum; logical wantsp; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode and test the input parameters */ /* Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --s; --sep; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --iwork; /* Function Body */ wantbh = lsame_(job, "B"); wants = lsame_(job, "E") || wantbh; wantsp = lsame_(job, "V") || wantbh; somcon = lsame_(howmny, "S"); *info = 0; if (! wants && ! wantsp) { *info = -1; } else if (! lsame_(howmny, "A") && ! somcon) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < max(1,*n)) { *info = -6; } else if (*ldvl < 1 || wants && *ldvl < *n) { *info = -8; } else if (*ldvr < 1 || wants && *ldvr < *n) { *info = -10; } else { /* Set M to the number of eigenpairs for which condition numbers */ /* are required, and test MM. */ if (somcon) { *m = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { if (k < *n) { if (t[k + 1 + k * t_dim1] == 0.) { if (select[k]) { ++(*m); } } else { pair = TRUE_; if (select[k] || select[k + 1]) { *m += 2; } } } else { if (select[*n]) { ++(*m); } } } /* L10: */ } } else { *m = *n; } if (*mm < *m) { *info = -13; } else if (*ldwork < 1 || wantsp && *ldwork < *n) { *info = -16; } } if (*info != 0) { i__1 = -(*info); xerbla_("DTRSNA", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (somcon) { if (! select[1]) { return 0; } } if (wants) { s[1] = 1.; } if (wantsp) { sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1)); } return 0; } /* Get machine constants */ eps = dlamch_("P"); smlnum = dlamch_("S") / eps; bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); ks = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */ if (pair) { pair = FALSE_; goto L60; } else { if (k < *n) { pair = t[k + 1 + k * t_dim1] != 0.; } } /* Determine whether condition numbers are required for the k-th */ /* eigenpair. */ if (somcon) { if (pair) { if (! select[k] && ! select[k + 1]) { goto L60; } } else { if (! select[k]) { goto L60; } } } ++ks; if (wants) { /* Compute the reciprocal condition number of the k-th */ /* eigenvalue. */ if (! pair) { /* Real eigenvalue. */ prod = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * vl_dim1 + 1], &c__1); rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1); lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1); s[ks] = abs(prod) / (rnrm * lnrm); } else { /* Complex eigenvalue. */ prod1 = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * vl_dim1 + 1], &c__1); prod1 += ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], &c__1); prod2 = ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) * vr_dim1 + 1], &c__1); prod2 -= ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks * vr_dim1 + 1], &c__1); d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1); d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1); rnrm = dlapy2_(&d__1, &d__2); d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1); d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1); lnrm = dlapy2_(&d__1, &d__2); cond = dlapy2_(&prod1, &prod2) / (rnrm * lnrm); s[ks] = cond; s[ks + 1] = cond; } } if (wantsp) { /* Estimate the reciprocal condition number of the k-th */ /* eigenvector. */ /* Copy the matrix T to the array WORK and swap the diagonal */ /* block beginning at T(k,k) to the (1,1) position. */ dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], ldwork); ifst = k; ilst = 1; dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, & ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr); if (ierr == 1 || ierr == 2) { /* Could not swap because blocks not well separated */ scale = 1.; est = bignum; } else { /* Reordering successful */ if (work[work_dim1 + 2] == 0.) { /* Form C = T22 - lambda*I in WORK(2:N,2:N). */ i__2 = *n; for (i__ = 2; i__ <= i__2; ++i__) { work[i__ + i__ * work_dim1] -= work[work_dim1 + 1]; /* L20: */ } n2 = 1; nn = *n - 1; } else { /* Triangularize the 2 by 2 block by unitary */ /* transformation U = [ cs i*ss ] */ /* [ i*ss cs ]. */ /* such that the (1,1) position of WORK is complex */ /* eigenvalue lambda with positive imaginary part. (2,2) */ /* position of WORK is the complex eigenvalue lambda */ /* with negative imaginary part. */ mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1))) * sqrt((d__2 = work[work_dim1 + 2], abs(d__2))); delta = dlapy2_(&mu, &work[work_dim1 + 2]); cs = mu / delta; sn = -work[work_dim1 + 2] / delta; /* Form */ /* C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */ /* [ mu ] */ /* [ .. ] */ /* [ .. ] */ /* [ mu ] */ /* where C**T is transpose of matrix C, */ /* and RWORK is stored starting in the N+1-st column of */ /* WORK. */ i__2 = *n; for (j = 3; j <= i__2; ++j) { work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2] ; work[j + j * work_dim1] -= work[work_dim1 + 1]; /* L30: */ } work[(work_dim1 << 1) + 2] = 0.; work[(*n + 1) * work_dim1 + 1] = mu * 2.; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1) * work_dim1 + 1]; /* L40: */ } n2 = 2; nn = *n - 1 << 1; } /* Estimate norm(inv(C**T)) */ est = 0.; kase = 0; L50: dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) * work_dim1 + 1], &iwork[1], &est, &kase, isave); if (kase != 0) { if (kase == 1) { if (n2 == 1) { /* Real eigenvalue: solve C**T*x = scale*c. */ i__2 = *n - 1; dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1 << 1) + 2], ldwork, dummy, &dumm, &scale, &work[(*n + 4) * work_dim1 + 1], &work[(* n + 6) * work_dim1 + 1], &ierr); } else { /* Complex eigenvalue: solve */ /* C**T*(p+iq) = scale*(c+id) in real arithmetic. */ i__2 = *n - 1; dlaqtr_(&c_true, &c_false, &i__2, &work[( work_dim1 << 1) + 2], ldwork, &work[(*n + 1) * work_dim1 + 1], &mu, &scale, &work[(* n + 4) * work_dim1 + 1], &work[(*n + 6) * work_dim1 + 1], &ierr); } } else { if (n2 == 1) { /* Real eigenvalue: solve C*x = scale*c. */ i__2 = *n - 1; dlaqtr_(&c_false, &c_true, &i__2, &work[( work_dim1 << 1) + 2], ldwork, dummy, & dumm, &scale, &work[(*n + 4) * work_dim1 + 1], &work[(*n + 6) * work_dim1 + 1], & ierr); } else { /* Complex eigenvalue: solve */ /* C*(p+iq) = scale*(c+id) in real arithmetic. */ i__2 = *n - 1; dlaqtr_(&c_false, &c_false, &i__2, &work[( work_dim1 << 1) + 2], ldwork, &work[(*n + 1) * work_dim1 + 1], &mu, &scale, &work[(* n + 4) * work_dim1 + 1], &work[(*n + 6) * work_dim1 + 1], &ierr); } } goto L50; } } sep[ks] = scale / max(est,smlnum); if (pair) { sep[ks + 1] = sep[ks]; } } if (pair) { ++ks; } L60: ; } return 0; /* End of DTRSNA */ }
/* Subroutine */ int dtbrfs_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, k; doublereal s, xk; integer nz; doublereal eps; integer kase; doublereal safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dtbmv_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer * , doublereal *, integer *), dtbsv_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal * , doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); logical notran; char transt[1]; logical nounit; doublereal lstres; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); notran = lsame_(trans, "N"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*nrhs < 0) { *info = -6; } else if (*ldab < *kd + 1) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("DTBRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *kd + 2; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Compute residual R = B - op(A) * X, */ /* where op(A) = A or A**T, depending on TRANS. */ dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1); dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1], &c__1); daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)); /* L20: */ } if (notran) { /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MAX */ i__3 = 1; i__4 = k - *kd; // , expr subst i__5 = k; for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) { work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * xk; /* L30: */ } /* L40: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MAX */ i__5 = 1; i__3 = k - *kd; // , expr subst i__4 = k - 1; for (i__ = max(i__5,i__3); i__ <= i__4; ++i__) { work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * xk; /* L50: */ } work[k] += xk; /* L60: */ } } } else { if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MIN */ i__5 = *n; i__3 = k + *kd; // , expr subst i__4 = min(i__5,i__3); for (i__ = k; i__ <= i__4; ++i__) { work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1] , abs(d__1)) * xk; /* L70: */ } /* L80: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MIN */ i__5 = *n; i__3 = k + *kd; // , expr subst i__4 = min(i__5,i__3); for (i__ = k + 1; i__ <= i__4; ++i__) { work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1] , abs(d__1)) * xk; /* L90: */ } work[k] += xk; /* L100: */ } } } } else { /* Compute abs(A**T)*abs(X) + abs(B). */ if (upper) { if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; /* Computing MAX */ i__4 = 1; i__5 = k - *kd; // , expr subst i__3 = k; for (i__ = max(i__4,i__5); i__ <= i__3; ++i__) { s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L110: */ } work[k] += s; /* L120: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MAX */ i__3 = 1; i__4 = k - *kd; // , expr subst i__5 = k - 1; for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) { s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L130: */ } work[k] += s; /* L140: */ } } } else { if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; /* Computing MIN */ i__3 = *n; i__4 = k + *kd; // , expr subst i__5 = min(i__3,i__4); for (i__ = k; i__ <= i__5; ++i__) { s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs( d__1)) * (d__2 = x[i__ + j * x_dim1], abs( d__2)); /* L150: */ } work[k] += s; /* L160: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (d__1 = x[k + j * x_dim1], abs(d__1)); /* Computing MIN */ i__3 = *n; i__4 = k + *kd; // , expr subst i__5 = min(i__3,i__4); for (i__ = k + 1; i__ <= i__5; ++i__) { s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs( d__1)) * (d__2 = x[i__ + j * x_dim1], abs( d__2)); /* L170: */ } work[k] += s; /* L180: */ } } } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s; d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[ i__]; // , expr subst s = max(d__2,d__3); } else { /* Computing MAX */ d__2 = s; d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) / (work[i__] + safe1); // , expr subst s = max(d__2,d__3); } /* L190: */ } berr[j] = s; /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(op(A)))* */ /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__] + safe1; } /* L200: */ } kase = 0; L210: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)**T). */ dtbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[ *n + 1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L220: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L230: */ } dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[* n + 1], &c__1); } goto L210; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres; d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1)); // , expr subst lstres = max(d__2,d__3); /* L240: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L250: */ } return 0; /* End of DTBRFS */ }
/* Subroutine */ int dsyrfs_(char *uplo, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, integer * ipiv, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, k; doublereal s, xk; integer nz; doublereal eps; integer kase; doublereal safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer count; logical upper; extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal lstres; extern /* Subroutine */ int dsytrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYRFS improves the computed solution to a system of linear */ /* equations when the coefficient matrix is symmetric indefinite, and */ /* provides error bounds and backward error estimates for the solution. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of A contains the upper triangular part */ /* of the matrix A, and the strictly lower triangular part of A */ /* is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of A contains the lower triangular part of */ /* the matrix A, and the strictly upper triangular part of A is */ /* not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */ /* The factored form of the matrix A. AF contains the block */ /* diagonal matrix D and the multipliers used to obtain the */ /* factor U or L from the factorization A = U*D*U**T or */ /* A = L*D*L**T as computed by DSYTRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by DSYTRF. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by DSYTRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Internal Parameters */ /* =================== */ /* ITMAX is the maximum number of steps of iterative refinement. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldaf < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - A * X */ dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); dsymv_(uplo, n, &c_b12, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, &c_b14, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)); /* L30: */ } /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; xk = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * xk; s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (d__2 = x[ i__ + j * x_dim1], abs(d__2)); /* L40: */ } work[k] = work[k] + (d__1 = a[k + k * a_dim1], abs(d__1)) * xk + s; /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; xk = (d__1 = x[k + j * x_dim1], abs(d__1)); work[k] += (d__1 = a[k + k * a_dim1], abs(d__1)) * xk; i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * xk; s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (d__2 = x[ i__ + j * x_dim1], abs(d__2)); /* L60: */ } work[k] += s; /* L70: */ } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[ i__]; s = max(d__2,d__3); } else { /* Computing MAX */ d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) / (work[i__] + safe1); s = max(d__2,d__3); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) { /* Update solution and try again. */ dsytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[*n + 1], n, info); daxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) ; lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(A))* */ /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(A) is the inverse of A */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(A)*abs(X) + abs(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(A) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__] + safe1; } /* L90: */ } kase = 0; L100: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(A'). */ dsytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ *n + 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L110: */ } } else if (kase == 2) { /* Multiply by inv(A)*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L120: */ } dsytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ *n + 1], n, info); } goto L100; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1)); lstres = max(d__2,d__3); /* L130: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of DSYRFS */ } /* dsyrfs_ */
doublereal dla_gercond__(char *trans, integer *n, doublereal *a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv, integer *cmode, doublereal *c__, integer *info, doublereal *work, integer *iwork, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; doublereal ret_val, d__1; /* Local variables */ integer i__, j; doublereal tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); doublereal ainvnm; extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); logical notrans; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C) */ /* where op2 is determined by CMODE as follows */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */ /* is computed by computing scaling factors R such that */ /* diag(R)*A*op2(C) is row equilibrated and computing the standard */ /* infinity-norm condition number. */ /* Arguments */ /* ========== */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */ /* The factors L and U from the factorization */ /* A = P*L*U as computed by DGETRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from the factorization A = P*L*U */ /* as computed by DGETRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* CMODE (input) INTEGER */ /* Determines op2(C) in the formula op(A) * op2(C) as follows: */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* C (input) DOUBLE PRECISION array, dimension (N) */ /* The vector C in the formula op(A) * op2(C). */ /* INFO (output) INTEGER */ /* = 0: Successful exit. */ /* i > 0: The ith argument is invalid. */ /* WORK (input) DOUBLE PRECISION array, dimension (3*N). */ /* Workspace. */ /* IWORK (input) INTEGER array, dimension (N). */ /* Workspace. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; --work; --iwork; /* Function Body */ ret_val = 0.; *info = 0; notrans = lsame_(trans, "N"); if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldaf < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DLA_GERCOND", &i__1); return ret_val; } if (*n == 0) { ret_val = 1.; return ret_val; } /* Compute the equilibration matrix R such that */ /* inv(R)*A*C has unit 1-norm. */ if (notrans) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1)); } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1)); } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.; kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } if (notrans) { dgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } else { dgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } /* Multiply by inv(C). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } } else { /* Multiply by inv(C'). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } if (notrans) { dgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } else { dgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; } /* dla_gercond__ */
/* Subroutine */ int dgecon_(char *norm, integer *n, doublereal *a, integer * lda, doublereal *anorm, doublereal *rcond, doublereal *work, integer * iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1; /* Local variables */ doublereal sl; integer ix; doublereal su; integer kase, kase1; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal ainvnm; extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); logical onenrm; char normin[1]; doublereal smlnum; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGECON estimates the reciprocal of the condition number of a general */ /* real matrix A, in either the 1-norm or the infinity-norm, using */ /* the LU factorization computed by DGETRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The factors L and U from the factorization A = P*L*U */ /* as computed by DGETRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* ANORM (input) DOUBLE PRECISION */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --iwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*anorm < 0.) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("DGECON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the norm of inv(A). */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ dlatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info); /* Multiply by inv(U). */ dlatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[ a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info); } else { /* Multiply by inv(U'). */ dlatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info); /* Multiply by inv(L'). */ dlatrs_("Lower", "Transpose", "Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info); } /* Divide X by 1/(SL*SU) if doing so will not cause overflow. */ scale = sl * su; *(unsigned char *)normin = 'Y'; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DGECON */ } /* dgecon_ */
/* Subroutine */ int dspcon_(char *uplo, integer *n, doublereal *ap, integer * ipiv, doublereal *anorm, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer i__1; /* Local variables */ integer i__, ip, kase; extern logical lsame_(char *, char *); integer isave[3]; logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); doublereal ainvnm; extern /* Subroutine */ int dsptrs_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSPCON estimates the reciprocal of the condition number (in the */ /* 1-norm) of a real symmetric packed matrix A using the factorization */ /* A = U*D*U**T or A = L*D*L**T computed by DSPTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the details of the factorization are stored */ /* as an upper or lower triangular matrix. */ /* = 'U': Upper triangular, form is A = U*D*U**T; */ /* = 'L': Lower triangular, form is A = L*D*L**T. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The block diagonal matrix D and the multipliers used to */ /* obtain the factor U or L as computed by DSPTRF, stored as a */ /* packed triangular matrix. */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by DSPTRF. */ /* ANORM (input) DOUBLE PRECISION */ /* The 1-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --iwork; --work; --ipiv; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("DSPCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm <= 0.) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ ip = *n * (*n + 1) / 2; for (i__ = *n; i__ >= 1; --i__) { if (ipiv[i__] > 0 && ap[ip] == 0.) { return 0; } ip -= i__; /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ ip = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (ipiv[i__] > 0 && ap[ip] == 0.) { return 0; } ip = ip + *n - i__ + 1; /* L20: */ } } /* Estimate the 1-norm of the inverse. */ kase = 0; L30: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { /* Multiply by inv(L*D*L') or inv(U*D*U'). */ dsptrs_(uplo, n, &c__1, &ap[1], &ipiv[1], &work[1], n, info); goto L30; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } return 0; /* End of DSPCON */ } /* dspcon_ */
/* Subroutine */ int dtgsen_(integer *ijob, logical *wantq, logical *wantz, logical *select, integer *n, doublereal *a, integer *lda, doublereal * b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal * beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, integer *m, doublereal *pl, doublereal *pr, doublereal *dif, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer i__, k, n1, n2, kk, ks, mn2, ijb; doublereal eps; integer kase; logical pair; integer ierr; doublereal dsum; logical swap; integer isave[3]; logical wantd; integer lwmin; logical wantp; logical wantd1, wantd2; doublereal dscale, rdscal; integer liwmin; doublereal smlnum; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* January 2007 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* Purpose */ /* ======= */ /* DTGSEN reorders the generalized real Schur decomposition of a real */ /* matrix pair (A, B) (in terms of an orthonormal equivalence trans- */ /* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */ /* appears in the leading diagonal blocks of the upper quasi-triangular */ /* matrix A and the upper triangular B. The leading columns of Q and */ /* Z form orthonormal bases of the corresponding left and right eigen- */ /* spaces (deflating subspaces). (A, B) must be in generalized real */ /* Schur canonical form (as returned by DGGES), i.e. A is block upper */ /* triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */ /* triangular. */ /* DTGSEN also computes the generalized eigenvalues */ /* w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */ /* of the reordered matrix pair (A, B). */ /* Optionally, DTGSEN computes the estimates of reciprocal condition */ /* numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */ /* (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */ /* between the matrix pairs (A11, B11) and (A22,B22) that correspond to */ /* the selected cluster and the eigenvalues outside the cluster, resp., */ /* and norms of "projections" onto left and right eigenspaces w.r.t. */ /* the selected cluster in the (1,1)-block. */ /* Arguments */ /* ========= */ /* IJOB (input) INTEGER */ /* Specifies whether condition numbers are required for the */ /* cluster of eigenvalues (PL and PR) or the deflating subspaces */ /* (Difu and Difl): */ /* =0: Only reorder w.r.t. SELECT. No extras. */ /* =1: Reciprocal of norms of "projections" onto left and right */ /* eigenspaces w.r.t. the selected cluster (PL and PR). */ /* =2: Upper bounds on Difu and Difl. F-norm-based estimate */ /* (DIF(1:2)). */ /* =3: Estimate of Difu and Difl. 1-norm-based estimate */ /* (DIF(1:2)). */ /* About 5 times as expensive as IJOB = 2. */ /* =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */ /* version to get it all. */ /* =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */ /* WANTQ (input) LOGICAL */ /* .TRUE. : update the left transformation matrix Q; */ /* .FALSE.: do not update Q. */ /* WANTZ (input) LOGICAL */ /* .TRUE. : update the right transformation matrix Z; */ /* .FALSE.: do not update Z. */ /* SELECT (input) LOGICAL array, dimension (N) */ /* SELECT specifies the eigenvalues in the selected cluster. */ /* To select a real eigenvalue w(j), SELECT(j) must be set to */ /* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */ /* either SELECT(j) or SELECT(j+1) or both must be set to */ /* .TRUE.; a complex conjugate pair of eigenvalues must be */ /* either both included in the cluster or both excluded. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension(LDA,N) */ /* On entry, the upper quasi-triangular matrix A, with (A, B) in */ /* generalized real Schur canonical form. */ /* On exit, A is overwritten by the reordered matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) DOUBLE PRECISION array, dimension(LDB,N) */ /* On entry, the upper triangular matrix B, with (A, B) in */ /* generalized real Schur canonical form. */ /* On exit, B is overwritten by the reordered matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */ /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */ /* BETA (output) DOUBLE PRECISION array, dimension (N) */ /* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */ /* form (S,T) that would result if the 2-by-2 diagonal blocks of */ /* the real generalized Schur form of (A,B) were further reduced */ /* to triangular form using complex unitary transformations. */ /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */ /* positive, then the j-th and (j+1)-st eigenvalues are a */ /* complex conjugate pair, with ALPHAI(j+1) negative. */ /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */ /* On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */ /* On exit, Q has been postmultiplied by the left orthogonal */ /* transformation matrix which reorder (A, B); The leading M */ /* columns of Q form orthonormal bases for the specified pair of */ /* left eigenspaces (deflating subspaces). */ /* If WANTQ = .FALSE., Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= 1; */ /* and if WANTQ = .TRUE., LDQ >= N. */ /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */ /* On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */ /* On exit, Z has been postmultiplied by the left orthogonal */ /* transformation matrix which reorder (A, B); The leading M */ /* columns of Z form orthonormal bases for the specified pair of */ /* left eigenspaces (deflating subspaces). */ /* If WANTZ = .FALSE., Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1; */ /* If WANTZ = .TRUE., LDZ >= N. */ /* M (output) INTEGER */ /* The dimension of the specified pair of left and right eigen- */ /* spaces (deflating subspaces). 0 <= M <= N. */ /* PL (output) DOUBLE PRECISION */ /* PR (output) DOUBLE PRECISION */ /* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */ /* reciprocal of the norm of "projections" onto left and right */ /* eigenspaces with respect to the selected cluster. */ /* 0 < PL, PR <= 1. */ /* If M = 0 or M = N, PL = PR = 1. */ /* If IJOB = 0, 2 or 3, PL and PR are not referenced. */ /* DIF (output) DOUBLE PRECISION array, dimension (2). */ /* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */ /* If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */ /* Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */ /* estimates of Difu and Difl. */ /* If M = 0 or N, DIF(1:2) = F-norm([A, B]). */ /* If IJOB = 0 or 1, DIF is not referenced. */ /* WORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= 4*N+16. */ /* If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */ /* If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* IF IJOB = 0, IWORK is not referenced. Otherwise, */ /* on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. LIWORK >= 1. */ /* If IJOB = 1, 2 or 4, LIWORK >= N+6. */ /* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal size of the IWORK array, */ /* returns this value as the first entry of the IWORK array, and */ /* no error message related to LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* =0: Successful exit. */ /* <0: If INFO = -i, the i-th argument had an illegal value. */ /* =1: Reordering of (A, B) failed because the transformed */ /* matrix pair (A, B) would be too far from generalized */ /* Schur form; the problem is very ill-conditioned. */ /* (A, B) may have been partially reordered. */ /* If requested, 0 is returned in DIF(*), PL and PR. */ /* Further Details */ /* =============== */ /* DTGSEN first collects the selected eigenvalues by computing */ /* orthogonal U and W that move them to the top left corner of (A, B). */ /* In other words, the selected eigenvalues are the eigenvalues of */ /* (A11, B11) in: */ /* U'*(A, B)*W = (A11 A12) (B11 B12) n1 */ /* ( 0 A22),( 0 B22) n2 */ /* n1 n2 n1 n2 */ /* where N = n1+n2 and U' means the transpose of U. The first n1 columns */ /* of U and W span the specified pair of left and right eigenspaces */ /* (deflating subspaces) of (A, B). */ /* If (A, B) has been obtained from the generalized real Schur */ /* decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */ /* reordered generalized real Schur form of (C, D) is given by */ /* (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */ /* and the first n1 columns of Q*U and Z*W span the corresponding */ /* deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */ /* Note that if the selected eigenvalue is sufficiently ill-conditioned, */ /* then its value may differ significantly from its value before */ /* reordering. */ /* The reciprocal condition numbers of the left and right eigenspaces */ /* spanned by the first n1 columns of U and W (or Q*U and Z*W) may */ /* be returned in DIF(1:2), corresponding to Difu and Difl, resp. */ /* The Difu and Difl are defined as: */ /* Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) */ /* and */ /* Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */ /* where sigma-min(Zu) is the smallest singular value of the */ /* (2*n1*n2)-by-(2*n1*n2) matrix */ /* Zu = [ kron(In2, A11) -kron(A22', In1) ] */ /* [ kron(In2, B11) -kron(B22', In1) ]. */ /* Here, Inx is the identity matrix of size nx and A22' is the */ /* transpose of A22. kron(X, Y) is the Kronecker product between */ /* the matrices X and Y. */ /* When DIF(2) is small, small changes in (A, B) can cause large changes */ /* in the deflating subspace. An approximate (asymptotic) bound on the */ /* maximum angular error in the computed deflating subspaces is */ /* EPS * norm((A, B)) / DIF(2), */ /* where EPS is the machine precision. */ /* The reciprocal norm of the projectors on the left and right */ /* eigenspaces associated with (A11, B11) may be returned in PL and PR. */ /* They are computed as follows. First we compute L and R so that */ /* P*(A, B)*Q is block diagonal, where */ /* P = ( I -L ) n1 Q = ( I R ) n1 */ /* ( 0 I ) n2 and ( 0 I ) n2 */ /* n1 n2 n1 n2 */ /* and (L, R) is the solution to the generalized Sylvester equation */ /* A11*R - L*A22 = -A12 */ /* B11*R - L*B22 = -B12 */ /* Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */ /* An approximate (asymptotic) bound on the average absolute error of */ /* the selected eigenvalues is */ /* EPS * norm((A, B)) / PL. */ /* There are also global error bounds which valid for perturbations up */ /* to a certain restriction: A lower bound (x) on the smallest */ /* F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */ /* coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */ /* (i.e. (A + E, B + F), is */ /* x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). */ /* An approximate bound on x can be computed from DIF(1:2), PL and PR. */ /* If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */ /* (L', R') and unperturbed (L, R) left and right deflating subspaces */ /* associated with the selected cluster in the (1,1)-blocks can be */ /* bounded as */ /* max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */ /* max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */ /* See LAPACK User's Guide section 4.11 or the following references */ /* for more information. */ /* Note that if the default method for computing the Frobenius-norm- */ /* based estimate DIF is not wanted (see DLATDF), then the parameter */ /* IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF */ /* (IJOB = 2 will be used)). See DTGSYL for more details. */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* References */ /* ========== */ /* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */ /* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */ /* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */ /* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */ /* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */ /* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */ /* Estimation: Theory, Algorithms and Software, */ /* Report UMINF - 94.04, Department of Computing Science, Umea */ /* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */ /* Note 87. To appear in Numerical Algorithms, 1996. */ /* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */ /* for Solving the Generalized Sylvester Equation and Estimating the */ /* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */ /* Department of Computing Science, Umea University, S-901 87 Umea, */ /* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */ /* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */ /* 1996. */ /* ===================================================================== */ /* Decode and test the input parameters */ /* Parameter adjustments */ --select; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --dif; --work; --iwork; /* Function Body */ *info = 0; lquery = *lwork == -1 || *liwork == -1; if (*ijob < 0 || *ijob > 5) { *info = -1; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldq < 1 || *wantq && *ldq < *n) { *info = -14; } else if (*ldz < 1 || *wantz && *ldz < *n) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("DTGSEN", &i__1); return 0; } /* Get machine constants */ eps = dlamch_("P"); smlnum = dlamch_("S") / eps; ierr = 0; wantp = *ijob == 1 || *ijob >= 4; wantd1 = *ijob == 2 || *ijob == 4; wantd2 = *ijob == 3 || *ijob == 5; wantd = wantd1 || wantd2; /* Set M to the dimension of the specified pair of deflating */ /* subspaces. */ *m = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { if (k < *n) { if (a[k + 1 + k * a_dim1] == 0.) { if (select[k]) { ++(*m); } } else { pair = TRUE_; if (select[k] || select[k + 1]) { *m += 2; } } } else { if (select[*n]) { ++(*m); } } } } if (*ijob == 1 || *ijob == 2 || *ijob == 4) { /* Computing MAX */ i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 1) * (*n - *m); lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n + 6; liwmin = max(i__1,i__2); } else if (*ijob == 3 || *ijob == 5) { /* Computing MAX */ i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 2) * (*n - *m); lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 = *n + 6; liwmin = max(i__1,i__2); } else { /* Computing MAX */ i__1 = 1, i__2 = (*n << 2) + 16; lwmin = max(i__1,i__2); liwmin = 1; } work[1] = (doublereal) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -22; } else if (*liwork < liwmin && ! lquery) { *info = -24; } if (*info != 0) { i__1 = -(*info); xerbla_("DTGSEN", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (*m == *n || *m == 0) { if (wantp) { *pl = 1.; *pr = 1.; } if (wantd) { dscale = 0.; dsum = 1.; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum); dlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum); } dif[1] = dscale * sqrt(dsum); dif[2] = dif[1]; } goto L60; } /* Collect the selected blocks at the top-left corner of (A, B). */ ks = 0; pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { swap = select[k]; if (k < *n) { if (a[k + 1 + k * a_dim1] != 0.) { pair = TRUE_; swap = swap || select[k + 1]; } } if (swap) { ++ks; /* Swap the K-th block to position KS. */ /* Perform the reordering of diagonal blocks in (A, B) */ /* by orthogonal transformation matrices and update */ /* Q and Z accordingly (if requested): */ kk = k; if (k != ks) { dtgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk, &ks, &work[1], lwork, &ierr); } if (ierr > 0) { /* Swap is rejected: exit. */ *info = 1; if (wantp) { *pl = 0.; *pr = 0.; } if (wantd) { dif[1] = 0.; dif[2] = 0.; } goto L60; } if (pair) { ++ks; } } } } if (wantp) { /* Solve generalized Sylvester equation for R and L */ /* and compute PL and PR. */ n1 = *m; n2 = *n - *m; i__ = n1 + 1; ijb = 0; dlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1); dlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 1], &n1); i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1] , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], & work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); /* Estimate the reciprocal of norms of "projections" onto left */ /* and right eigenspaces. */ rdscal = 0.; dsum = 1.; i__1 = n1 * n2; dlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum); *pl = rdscal * sqrt(dsum); if (*pl == 0.) { *pl = 1.; } else { *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl)); } rdscal = 0.; dsum = 1.; i__1 = n1 * n2; dlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum); *pr = rdscal * sqrt(dsum); if (*pr == 0.) { *pr = 1.; } else { *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr)); } } if (wantd) { /* Compute estimates of Difu and Difl. */ if (wantd1) { n1 = *m; n2 = *n - *m; i__ = n1 + 1; ijb = 3; /* Frobenius norm-based Difu-estimate. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, & dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], & ierr); /* Frobenius norm-based Difl-estimate. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[ a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], & ierr); } else { /* Compute 1-norm-based estimates of Difu and Difl using */ /* reversed communication with DLACN2. In each step a */ /* generalized Sylvester equation or a transposed variant */ /* is solved. */ kase = 0; n1 = *m; n2 = *n - *m; i__ = n1 + 1; ijb = 0; mn2 = (n1 << 1) * n2; /* 1-norm-based estimate of Difu. */ L40: dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve generalized Sylvester equation. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &ierr); } else { /* Solve the transposed variant. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &ierr); } goto L40; } dif[1] = dscale / dif[1]; /* 1-norm-based estimate of Difl. */ L50: dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve generalized Sylvester equation. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &ierr); } else { /* Solve the transposed variant. */ i__1 = *lwork - (n1 << 1) * n2; dtgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &ierr); } goto L50; } dif[2] = dscale / dif[2]; } } L60: /* Compute generalized eigenvalues of reordered pair (A, B) and */ /* normalize the generalized Schur form. */ pair = FALSE_; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE_; } else { if (k < *n) { if (a[k + 1 + k * a_dim1] != 0.) { pair = TRUE_; } } if (pair) { /* Compute the eigenvalue(s) at position K. */ work[1] = a[k + k * a_dim1]; work[2] = a[k + 1 + k * a_dim1]; work[3] = a[k + (k + 1) * a_dim1]; work[4] = a[k + 1 + (k + 1) * a_dim1]; work[5] = b[k + k * b_dim1]; work[6] = b[k + 1 + k * b_dim1]; work[7] = b[k + (k + 1) * b_dim1]; work[8] = b[k + 1 + (k + 1) * b_dim1]; d__1 = smlnum * eps; dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta[k], & beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]); alphai[k + 1] = -alphai[k]; } else { if (d_sign(&c_b28, &b[k + k * b_dim1]) < 0.) { /* If B(K,K) is negative, make it positive */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a[k + i__ * a_dim1] = -a[k + i__ * a_dim1]; b[k + i__ * b_dim1] = -b[k + i__ * b_dim1]; if (*wantq) { q[i__ + k * q_dim1] = -q[i__ + k * q_dim1]; } } } alphar[k] = a[k + k * a_dim1]; alphai[k] = 0.; beta[k] = b[k + k * b_dim1]; } } } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DTGSEN */ } /* dtgsen_ */
/* Subroutine */ int dgtcon_(char *norm, integer *n, doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2, integer *ipiv, doublereal *anorm, doublereal *rcond, doublereal *work, integer * iwork, integer *info) { /* System generated locals */ integer i__1; /* Local variables */ integer i__, kase, kase1; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); doublereal ainvnm; logical onenrm; extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGTCON estimates the reciprocal of the condition number of a real */ /* tridiagonal matrix A using the LU factorization as computed by */ /* DGTTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* DL (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) multipliers that define the matrix L from the */ /* LU factorization of A as computed by DGTTRF. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the upper triangular matrix U from */ /* the LU factorization of A. */ /* DU (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) elements of the first superdiagonal of U. */ /* DU2 (input) DOUBLE PRECISION array, dimension (N-2) */ /* The (n-2) elements of the second superdiagonal of U. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ /* interchanged with row IPIV(i). IPIV(i) will always be either */ /* i or i+1; IPIV(i) = i indicates a row interchange was not */ /* required. */ /* ANORM (input) DOUBLE PRECISION */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ --iwork; --work; --ipiv; --du2; --du; --d__; --dl; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DGTCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } /* Check that D(1:N) is non-zero. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (d__[i__] == 0.) { return 0; } /* L10: */ } ainvnm = 0.; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L20: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(U)*inv(L). */ dgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1] , &ipiv[1], &work[1], n, info); } else { /* Multiply by inv(L')*inv(U'). */ dgttrs_("Transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], & ipiv[1], &work[1], n, info); } goto L20; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } return 0; /* End of DGTCON */ } /* dgtcon_ */
int dgerfs_(char *trans, int *n, int *nrhs, double *a, int *lda, double *af, int *ldaf, int * ipiv, double *b, int *ldb, double *x, int *ldx, double *ferr, double *berr, double *work, int *iwork, int *info) { /* System generated locals */ int a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; double d__1, d__2, d__3; /* Local variables */ int i__, j, k; double s, xk; int nz; double eps; int kase; double safe1, safe2; extern int lsame_(char *, char *); extern int dgemv_(char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); int isave[3]; extern int dcopy_(int *, double *, int *, double *, int *), daxpy_(int *, double *, double *, int *, double *, int *); int count; extern int dlacn2_(int *, double *, double *, int *, double *, int *, int *); extern double dlamch_(char *); double safmin; extern int xerbla_(char *, int *), dgetrs_( char *, int *, int *, double *, int *, int *, double *, int *, int *); int notran; char transt[1]; double lstres; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGERFS improves the computed solution to a system of linear */ /* equations and provides error bounds and backward error estimates for */ /* the solution. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The original N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,N). */ /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */ /* The factors L and U from the factorization A = P*L*U */ /* as computed by DGETRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= MAX(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from DGETRF; for 1<=i<=N, row i of the */ /* matrix was interchanged with row IPIV(i). */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= MAX(1,N). */ /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by DGETRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= MAX(1,N). */ /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Internal Parameters */ /* =================== */ /* ITMAX is the maximum number of steps of iterative refinement. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; notran = lsame_(trans, "N"); if (! notran && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < MAX(1,*n)) { *info = -5; } else if (*ldaf < MAX(1,*n)) { *info = -7; } else if (*ldb < MAX(1,*n)) { *info = -10; } else if (*ldx < MAX(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("DGERFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - op(A) * X, */ /* where op(A) = A, A**T, or A**H, depending on TRANS. */ dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); dgemv_(trans, n, n, &c_b15, &a[a_offset], lda, &x[j * x_dim1 + 1], & c__1, &c_b17, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* MAX(i) ( ABS(R(i)) / ( ABS(op(A))*ABS(X) + ABS(B) )(i) ) */ /* where ABS(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], ABS(d__1)); /* L30: */ } /* Compute ABS(op(A))*ABS(X) + ABS(B). */ if (notran) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], ABS(d__1)); i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = a[i__ + k * a_dim1], ABS(d__1)) * xk; /* L40: */ } /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { s += (d__1 = a[i__ + k * a_dim1], ABS(d__1)) * (d__2 = x[ i__ + j * x_dim1], ABS(d__2)); /* L60: */ } work[k] += s; /* L70: */ } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s, d__3 = (d__1 = work[*n + i__], ABS(d__1)) / work[ i__]; s = MAX(d__2,d__3); } else { /* Computing MAX */ d__2 = s, d__3 = ((d__1 = work[*n + i__], ABS(d__1)) + safe1) / (work[i__] + safe1); s = MAX(d__2,d__3); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) { /* Update solution and try again. */ dgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[*n + 1], n, info); daxpy_(n, &c_b17, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) ; lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( ABS(inv(op(A)))* */ /* ( ABS(R) + NZ*EPS*( ABS(op(A))*ABS(X)+ABS(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* ABS(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of ABS(R)+NZ*EPS*(ABS(op(A))*ABS(X)+ABS(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* ABS(op(A))*ABS(X) + ABS(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = ABS(R) + NZ*EPS*( ABS(op(A))*ABS(X)+ABS(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], ABS(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], ABS(d__1)) + nz * eps * work[i__] + safe1; } /* L90: */ } kase = 0; L100: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)**T). */ dgetrs_(transt, n, &c__1, &af[af_offset], ldaf, &ipiv[1], & work[*n + 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L110: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L120: */ } dgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], & work[*n + 1], n, info); } goto L100; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], ABS(d__1)); lstres = MAX(d__2,d__3); /* L130: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of DGERFS */ } /* dgerfs_ */
/* Subroutine */ int dsprfs_(char *uplo, integer *n, integer *nrhs, doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, k; doublereal s; integer ik, kk; doublereal xk; integer nz; doublereal eps; integer kase; doublereal safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer count; extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal lstres; extern /* Subroutine */ int dsptrs_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --afp; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*ldx < max(1,*n)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("DSPRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - A * X */ dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); dspmv_(uplo, n, &c_b12, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b14, & work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( f2c_abs(R(i)) / ( f2c_abs(A)*f2c_abs(X) + f2c_abs(B) )(i) ) */ /* where f2c_abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], f2c_abs(d__1)); /* L30: */ } /* Compute f2c_abs(A)*f2c_abs(X) + f2c_abs(B). */ kk = 1; if (upper) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1)); ik = kk; i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[ik], f2c_abs(d__1)) * xk; s += (d__1 = ap[ik], f2c_abs(d__1)) * (d__2 = x[i__ + j * x_dim1], f2c_abs(d__2)); ++ik; /* L40: */ } work[k] = work[k] + (d__1 = ap[kk + k - 1], f2c_abs(d__1)) * xk + s; kk += k; /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1)); work[k] += (d__1 = ap[kk], f2c_abs(d__1)) * xk; ik = kk + 1; i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[ik], f2c_abs(d__1)) * xk; s += (d__1 = ap[ik], f2c_abs(d__1)) * (d__2 = x[i__ + j * x_dim1], f2c_abs(d__2)); ++ik; /* L60: */ } work[k] += s; kk += *n - k + 1; /* L70: */ } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s; d__3 = (d__1 = work[*n + i__], f2c_abs(d__1)) / work[ i__]; // , expr subst s = max(d__2,d__3); } else { /* Computing MAX */ d__2 = s; d__3 = ((d__1 = work[*n + i__], f2c_abs(d__1)) + safe1) / (work[i__] + safe1); // , expr subst s = max(d__2,d__3); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) { /* Update solution and try again. */ dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, info); daxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) ; lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( f2c_abs(inv(A))* */ /* ( f2c_abs(R) + NZ*EPS*( f2c_abs(A)*f2c_abs(X)+f2c_abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(A) is the inverse of A */ /* f2c_abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of f2c_abs(R)+NZ*EPS*(f2c_abs(A)*f2c_abs(X)+f2c_abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* f2c_abs(A)*f2c_abs(X) + f2c_abs(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(A) * diag(W), */ /* where W = f2c_abs(R) + NZ*EPS*( f2c_abs(A)*f2c_abs(X)+f2c_abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], f2c_abs(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], f2c_abs(d__1)) + nz * eps * work[i__] + safe1; } /* L90: */ } kase = 0; L100: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(A**T). */ dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L110: */ } } else if (kase == 2) { /* Multiply by inv(A)*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L120: */ } dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, info); } goto L100; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres; d__3 = (d__1 = x[i__ + j * x_dim1], f2c_abs(d__1)); // , expr subst lstres = max(d__2,d__3); /* L130: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of DSPRFS */ }
/* Subroutine */ int dtrcon_(char *norm, char *uplo, char *diag, integer *n, doublereal *a, integer *lda, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase, kase1; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); doublereal anorm; logical upper; doublereal xnorm; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal dlantr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); doublereal ainvnm; extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); logical onenrm; char normin[1]; doublereal smlnum; logical nounit; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTRCON estimates the reciprocal of the condition number of a */ /* triangular matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The triangular matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of the array A contains the upper */ /* triangular matrix, and the strictly lower triangular part of */ /* A is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of the array A contains the lower triangular */ /* matrix, and the strictly upper triangular part of A is not */ /* referenced. If DIAG = 'U', the diagonal elements of A are */ /* also not referenced and are assumed to be 1. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DTRCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.; return 0; } *rcond = 0.; smlnum = dlamch_("Safe minimum") * (doublereal) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = dlantr_(norm, uplo, diag, n, n, &a[a_offset], lda, &work[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ dlatrs_(uplo, "No transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(A'). */ dlatrs_(uplo, "Transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); xnorm = (d__1 = work[ix], abs(d__1)); if (scale < xnorm * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / anorm / ainvnm; } } L20: return 0; /* End of DTRCON */ } /* dtrcon_ */
/* Subroutine */ int dtbcon_(char *norm, char *uplo, char *diag, integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase, kase1; doublereal scale; integer isave[3]; doublereal anorm; logical upper; doublereal xnorm; doublereal ainvnm; logical onenrm; char normin[1]; doublereal smlnum; logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* Purpose */ /* ======= */ /* DTBCON estimates the reciprocal of the condition number of a */ /* triangular band matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*ldab < *kd + 1) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DTBCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.; return 0; } *rcond = 0.; smlnum = dlamch_("Safe minimum") * (doublereal) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = dlantb_(norm, uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ dlatbs_(uplo, "No transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info) ; } else { /* Multiply by inv(A'). */ dlatbs_(uplo, "Transpose", diag, normin, n, kd, &ab[ab_offset] , ldab, &work[1], &scale, &work[(*n << 1) + 1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); xnorm = (d__1 = work[ix], abs(d__1)); if (scale < xnorm * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / anorm / ainvnm; } } L20: return 0; /* End of DTBCON */ } /* dtbcon_ */
/* Subroutine */ int dppcon_(char *uplo, integer *n, doublereal *ap, doublereal *anorm, doublereal *rcond, doublereal *work, integer * iwork, integer *info) { /* System generated locals */ integer i__1; doublereal d__1; /* Local variables */ integer ix, kase; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal scalel; extern integer idamax_(integer *, doublereal *, integer *); doublereal scaleu; extern /* Subroutine */ int xerbla_(char *, integer *), dlatps_( char *, char *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); doublereal ainvnm; char normin[1]; doublereal smlnum; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPPCON estimates the reciprocal of the condition number (in the */ /* 1-norm) of a real symmetric positive definite packed matrix using */ /* the Cholesky factorization A = U**T*U or A = L*L**T computed by */ /* DPPTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The triangular factor U or L from the Cholesky factorization */ /* A = U**T*U or A = L*L**T, packed columnwise in a linear */ /* array. The j-th column of U or L is stored in the array AP */ /* as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* ANORM (input) DOUBLE PRECISION */ /* The 1-norm (or infinity-norm) of the symmetric matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --iwork; --work; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DPPCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the 1-norm of the inverse. */ kase = 0; *(unsigned char *)normin = 'N'; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (upper) { /* Multiply by inv(U'). */ dlatps_("Upper", "Transpose", "Non-unit", normin, n, &ap[1], & work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(U). */ dlatps_("Upper", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scaleu, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(L). */ dlatps_("Lower", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(L'). */ dlatps_("Lower", "Transpose", "Non-unit", normin, n, &ap[1], & work[1], &scaleu, &work[(*n << 1) + 1], info); } /* Multiply by 1/SCALE if doing so will not cause overflow. */ scale = scalel * scaleu; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DPPCON */ } /* dppcon_ */
int dtrsen_(char *job, char *compq, int *select, int *n, double *t, int *ldt, double *q, int *ldq, double *wr, double *wi, int *m, double *s, double *sep, double *work, int *lwork, int *iwork, int * liwork, int *info) { /* System generated locals */ int q_dim1, q_offset, t_dim1, t_offset, i__1, i__2; double d__1, d__2; /* Builtin functions */ double sqrt(double); /* Local variables */ int k, n1, n2, kk, nn, ks; double est; int kase; int pair; int ierr; int swap; double scale; extern int lsame_(char *, char *); int isave[3], lwmin; int wantq, wants; double rnorm; extern int dlacn2_(int *, double *, double *, int *, double *, int *, int *); extern double dlange_(char *, int *, int *, double *, int *, double *); extern int dlacpy_(char *, int *, int *, double *, int *, double *, int *), xerbla_(char *, int *); int wantbh; extern int dtrexc_(char *, int *, double *, int *, double *, int *, int *, int *, double *, int *); int liwmin; int wantsp, lquery; extern int dtrsyl_(char *, char *, int *, int *, int *, double *, int *, double *, int *, double *, int *, double *, int *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTRSEN reorders the float Schur factorization of a float matrix */ /* A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */ /* the leading diagonal blocks of the upper quasi-triangular matrix T, */ /* and the leading columns of Q form an orthonormal basis of the */ /* corresponding right invariant subspace. */ /* Optionally the routine computes the reciprocal condition numbers of */ /* the cluster of eigenvalues and/or the invariant subspace. */ /* T must be in Schur canonical form (as returned by DHSEQR), that is, */ /* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */ /* 2-by-2 diagonal block has its diagonal elemnts equal and its */ /* off-diagonal elements of opposite sign. */ /* Arguments */ /* ========= */ /* JOB (input) CHARACTER*1 */ /* Specifies whether condition numbers are required for the */ /* cluster of eigenvalues (S) or the invariant subspace (SEP): */ /* = 'N': none; */ /* = 'E': for eigenvalues only (S); */ /* = 'V': for invariant subspace only (SEP); */ /* = 'B': for both eigenvalues and invariant subspace (S and */ /* SEP). */ /* COMPQ (input) CHARACTER*1 */ /* = 'V': update the matrix Q of Schur vectors; */ /* = 'N': do not update Q. */ /* SELECT (input) LOGICAL array, dimension (N) */ /* SELECT specifies the eigenvalues in the selected cluster. To */ /* select a float eigenvalue w(j), SELECT(j) must be set to */ /* .TRUE.. To select a complex conjugate pair of eigenvalues */ /* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */ /* either SELECT(j) or SELECT(j+1) or both must be set to */ /* .TRUE.; a complex conjugate pair of eigenvalues must be */ /* either both included in the cluster or both excluded. */ /* N (input) INTEGER */ /* The order of the matrix T. N >= 0. */ /* T (input/output) DOUBLE PRECISION array, dimension (LDT,N) */ /* On entry, the upper quasi-triangular matrix T, in Schur */ /* canonical form. */ /* On exit, T is overwritten by the reordered matrix T, again in */ /* Schur canonical form, with the selected eigenvalues in the */ /* leading diagonal blocks. */ /* LDT (input) INTEGER */ /* The leading dimension of the array T. LDT >= MAX(1,N). */ /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */ /* On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */ /* On exit, if COMPQ = 'V', Q has been postmultiplied by the */ /* orthogonal transformation matrix which reorders T; the */ /* leading M columns of Q form an orthonormal basis for the */ /* specified invariant subspace. */ /* If COMPQ = 'N', Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. */ /* LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */ /* WR (output) DOUBLE PRECISION array, dimension (N) */ /* WI (output) DOUBLE PRECISION array, dimension (N) */ /* The float and imaginary parts, respectively, of the reordered */ /* eigenvalues of T. The eigenvalues are stored in the same */ /* order as on the diagonal of T, with WR(i) = T(i,i) and, if */ /* T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */ /* WI(i+1) = -WI(i). Note that if a complex eigenvalue is */ /* sufficiently ill-conditioned, then its value may differ */ /* significantly from its value before reordering. */ /* M (output) INTEGER */ /* The dimension of the specified invariant subspace. */ /* 0 < = M <= N. */ /* S (output) DOUBLE PRECISION */ /* If JOB = 'E' or 'B', S is a lower bound on the reciprocal */ /* condition number for the selected cluster of eigenvalues. */ /* S cannot underestimate the true reciprocal condition number */ /* by more than a factor of sqrt(N). If M = 0 or N, S = 1. */ /* If JOB = 'N' or 'V', S is not referenced. */ /* SEP (output) DOUBLE PRECISION */ /* If JOB = 'V' or 'B', SEP is the estimated reciprocal */ /* condition number of the specified invariant subspace. If */ /* M = 0 or N, SEP = norm(T). */ /* If JOB = 'N' or 'E', SEP is not referenced. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If JOB = 'N', LWORK >= MAX(1,N); */ /* if JOB = 'E', LWORK >= MAX(1,M*(N-M)); */ /* if JOB = 'V' or 'B', LWORK >= MAX(1,2*M*(N-M)). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If JOB = 'N' or 'E', LIWORK >= 1; */ /* if JOB = 'V' or 'B', LIWORK >= MAX(1,M*(N-M)). */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal size of the IWORK array, */ /* returns this value as the first entry of the IWORK array, and */ /* no error message related to LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* = 1: reordering of T failed because some eigenvalues are too */ /* close to separate (the problem is very ill-conditioned); */ /* T may have been partially reordered, and WR and WI */ /* contain the eigenvalues in the same order as in T; S and */ /* SEP (if requested) are set to zero. */ /* Further Details */ /* =============== */ /* DTRSEN first collects the selected eigenvalues by computing an */ /* orthogonal transformation Z to move them to the top left corner of T. */ /* In other words, the selected eigenvalues are the eigenvalues of T11 */ /* in: */ /* Z'*T*Z = ( T11 T12 ) n1 */ /* ( 0 T22 ) n2 */ /* n1 n2 */ /* where N = n1+n2 and Z' means the transpose of Z. The first n1 columns */ /* of Z span the specified invariant subspace of T. */ /* If T has been obtained from the float Schur factorization of a matrix */ /* A = Q*T*Q', then the reordered float Schur factorization of A is given */ /* by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span */ /* the corresponding invariant subspace of A. */ /* The reciprocal condition number of the average of the eigenvalues of */ /* T11 may be returned in S. S lies between 0 (very badly conditioned) */ /* and 1 (very well conditioned). It is computed as follows. First we */ /* compute R so that */ /* P = ( I R ) n1 */ /* ( 0 0 ) n2 */ /* n1 n2 */ /* is the projector on the invariant subspace associated with T11. */ /* R is the solution of the Sylvester equation: */ /* T11*R - R*T22 = T12. */ /* Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */ /* the two-norm of M. Then S is computed as the lower bound */ /* (1 + F-norm(R)**2)**(-1/2) */ /* on the reciprocal of 2-norm(P), the true reciprocal condition number. */ /* S cannot underestimate 1 / 2-norm(P) by more than a factor of */ /* sqrt(N). */ /* An approximate error bound for the computed average of the */ /* eigenvalues of T11 is */ /* EPS * norm(T) / S */ /* where EPS is the machine precision. */ /* The reciprocal condition number of the right invariant subspace */ /* spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */ /* SEP is defined as the separation of T11 and T22: */ /* sep( T11, T22 ) = sigma-MIN( C ) */ /* where sigma-MIN(C) is the smallest singular value of the */ /* n1*n2-by-n1*n2 matrix */ /* C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */ /* I(m) is an m by m identity matrix, and kprod denotes the Kronecker */ /* product. We estimate sigma-MIN(C) by the reciprocal of an estimate of */ /* the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */ /* cannot differ from sigma-MIN(C) by more than a factor of sqrt(n1*n2). */ /* When SEP is small, small changes in T can cause large changes in */ /* the invariant subspace. An approximate bound on the maximum angular */ /* error in the computed right invariant subspace is */ /* EPS * norm(T) / SEP */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode and test the input parameters */ /* Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --wr; --wi; --work; --iwork; /* Function Body */ wantbh = lsame_(job, "B"); wants = lsame_(job, "E") || wantbh; wantsp = lsame_(job, "V") || wantbh; wantq = lsame_(compq, "V"); *info = 0; lquery = *lwork == -1; if (! lsame_(job, "N") && ! wants && ! wantsp) { *info = -1; } else if (! lsame_(compq, "N") && ! wantq) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < MAX(1,*n)) { *info = -6; } else if (*ldq < 1 || wantq && *ldq < *n) { *info = -8; } else { /* Set M to the dimension of the specified invariant subspace, */ /* and test LWORK and LIWORK. */ *m = 0; pair = FALSE; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE; } else { if (k < *n) { if (t[k + 1 + k * t_dim1] == 0.) { if (select[k]) { ++(*m); } } else { pair = TRUE; if (select[k] || select[k + 1]) { *m += 2; } } } else { if (select[*n]) { ++(*m); } } } /* L10: */ } n1 = *m; n2 = *n - *m; nn = n1 * n2; if (wantsp) { /* Computing MAX */ i__1 = 1, i__2 = nn << 1; lwmin = MAX(i__1,i__2); liwmin = MAX(1,nn); } else if (lsame_(job, "N")) { lwmin = MAX(1,*n); liwmin = 1; } else if (lsame_(job, "E")) { lwmin = MAX(1,nn); liwmin = 1; } if (*lwork < lwmin && ! lquery) { *info = -15; } else if (*liwork < liwmin && ! lquery) { *info = -17; } } if (*info == 0) { work[1] = (double) lwmin; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); xerbla_("DTRSEN", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (*m == *n || *m == 0) { if (wants) { *s = 1.; } if (wantsp) { *sep = dlange_("1", n, n, &t[t_offset], ldt, &work[1]); } goto L40; } /* Collect the selected blocks at the top-left corner of T. */ ks = 0; pair = FALSE; i__1 = *n; for (k = 1; k <= i__1; ++k) { if (pair) { pair = FALSE; } else { swap = select[k]; if (k < *n) { if (t[k + 1 + k * t_dim1] != 0.) { pair = TRUE; swap = swap || select[k + 1]; } } if (swap) { ++ks; /* Swap the K-th block to position KS. */ ierr = 0; kk = k; if (k != ks) { dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, & kk, &ks, &work[1], &ierr); } if (ierr == 1 || ierr == 2) { /* Blocks too close to swap: exit. */ *info = 1; if (wants) { *s = 0.; } if (wantsp) { *sep = 0.; } goto L40; } if (pair) { ++ks; } } } /* L20: */ } if (wants) { /* Solve Sylvester equation for R: */ /* T11*R - R*T22 = scale*T12 */ dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1); dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr); /* Estimate the reciprocal of the condition number of the cluster */ /* of eigenvalues. */ rnorm = dlange_("F", &n1, &n2, &work[1], &n1, &work[1]); if (rnorm == 0.) { *s = 1.; } else { *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm)); } } if (wantsp) { /* Estimate sep(T11,T22). */ est = 0.; kase = 0; L30: dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve T11*R - R*T22 = scale*X. */ dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, & ierr); } else { /* Solve T11'*R - R*T22' = scale*X. */ dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, & ierr); } goto L30; } *sep = scale / est; } L40: /* Store the output eigenvalues in WR and WI. */ i__1 = *n; for (k = 1; k <= i__1; ++k) { wr[k] = t[k + k * t_dim1]; wi[k] = 0.; /* L50: */ } i__1 = *n - 1; for (k = 1; k <= i__1; ++k) { if (t[k + 1 + k * t_dim1] != 0.) { wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], ABS(d__1))) * sqrt(( d__2 = t[k + 1 + k * t_dim1], ABS(d__2))); wi[k + 1] = -wi[k]; } /* L60: */ } work[1] = (double) lwmin; iwork[1] = liwmin; return 0; /* End of DTRSEN */ } /* dtrsen_ */
doublereal dla_gbrcond__(char *trans, integer *n, integer *kl, integer *ku, doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb, integer *ipiv, integer *cmode, doublereal *c__, integer *info, doublereal *work, integer *iwork, ftnlen trans_len) { /* System generated locals */ integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4; doublereal ret_val, d__1; /* Local variables */ integer i__, j, kd, ke; doublereal tmp; integer kase; integer isave[3]; doublereal ainvnm; logical notrans; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* Purpose */ /* ======= */ /* DLA_GERCOND Estimates the Skeel condition number of op(A) * op2(C) */ /* where op2 is determined by CMODE as follows */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */ /* is computed by computing scaling factors R such that */ /* diag(R)*A*op2(C) is row equilibrated and computing the standard */ /* infinity-norm condition number. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ /* The j-th column of A is stored in the j-th column of the */ /* array AB as follows: */ /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ /* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */ /* Details of the LU factorization of the band matrix A, as */ /* computed by DGBTRF. U is stored as an upper triangular */ /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */ /* and the multipliers used during the factorization are stored */ /* in rows KL+KU+2 to 2*KL+KU+1. */ /* LDAFB (input) INTEGER */ /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from the factorization A = P*L*U */ /* as computed by DGBTRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* CMODE (input) INTEGER */ /* Determines op2(C) in the formula op(A) * op2(C) as follows: */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* C (input) DOUBLE PRECISION array, dimension (N) */ /* The vector C in the formula op(A) * op2(C). */ /* INFO (output) INTEGER */ /* = 0: Successful exit. */ /* i > 0: The ith argument is invalid. */ /* WORK (input) DOUBLE PRECISION array, dimension (5*N). */ /* Workspace. */ /* IWORK (input) INTEGER array, dimension (N). */ /* Workspace. */ /* ===================================================================== */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; afb_dim1 = *ldafb; afb_offset = 1 + afb_dim1; afb -= afb_offset; --ipiv; --c__; --work; --iwork; /* Function Body */ ret_val = 0.; *info = 0; notrans = lsame_(trans, "N"); if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0 || *kl > *n - 1) { *info = -3; } else if (*ku < 0 || *ku > *n - 1) { *info = -4; } else if (*ldab < *kl + *ku + 1) { *info = -6; } else if (*ldafb < (*kl << 1) + *ku + 1) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DLA_GBRCOND", &i__1); return ret_val; } if (*n == 0) { ret_val = 1.; return ret_val; } /* Compute the equilibration matrix R such that */ /* inv(R)*A*C has unit 1-norm. */ kd = *ku + 1; ke = *kl + 1; if (notrans) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { /* Computing MAX */ i__2 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__3 = min(i__4,*n); for (j = max(i__2,1); j <= i__3; ++j) { tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__2 = min(i__4,*n); for (j = max(i__3,1); j <= i__2; ++j) { tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1)); } } else { /* Computing MAX */ i__2 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__3 = min(i__4,*n); for (j = max(i__2,1); j <= i__3; ++j) { tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__2 = min(i__4,*n); for (j = max(i__3,1); j <= i__2; ++j) { tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { /* Computing MAX */ i__2 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__3 = min(i__4,*n); for (j = max(i__2,1); j <= i__3; ++j) { tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1], abs(d__1) ); } } else { /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__2 = min(i__4,*n); for (j = max(i__3,1); j <= i__2; ++j) { tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.; kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } if (notrans) { dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info); } else { dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info); } /* Multiply by inv(C). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } } else { /* Multiply by inv(C'). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } if (notrans) { dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info); } else { dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1], &work[1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; } /* dla_gbrcond__ */
/* Subroutine */ int dtprfs_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, doublereal *ap, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, k; doublereal s; integer kc; doublereal xk; integer nz; doublereal eps; integer kase; doublereal safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dtpmv_(char *, char *, char *, integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dtpsv_(char *, char *, char *, integer *, doublereal *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); logical notran; char transt[1]; logical nounit; doublereal lstres; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTPRFS provides error bounds and backward error estimates for the */ /* solution to a system of linear equations with a triangular packed */ /* coefficient matrix. */ /* The solution matrix X must be computed by DTPTRS or some other */ /* means before entering this routine. DTPRFS does not do iterative */ /* refinement because doing so cannot improve the backward error. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); notran = lsame_(trans, "N"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*nrhs < 0) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*ldx < max(1,*n)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("DTPRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = dlamch_("Epsilon"); safmin = dlamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Compute residual R = B - op(A) * X, */ /* where op(A) = A or A', depending on TRANS. */ dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1); dtpmv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1); daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)); /* L20: */ } if (notran) { /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = k; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[kc + i__ - 1], abs(d__1)) * xk; /* L30: */ } kc += k; /* L40: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[kc + i__ - 1], abs(d__1)) * xk; /* L50: */ } work[k] += xk; kc += k; /* L60: */ } } } else { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = *n; for (i__ = k; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[kc + i__ - k], abs(d__1)) * xk; /* L70: */ } kc = kc + *n - k + 1; /* L80: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { work[i__] += (d__1 = ap[kc + i__ - k], abs(d__1)) * xk; /* L90: */ } work[k] += xk; kc = kc + *n - k + 1; /* L100: */ } } } } else { /* Compute abs(A')*abs(X) + abs(B). */ if (upper) { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; i__3 = k; for (i__ = 1; i__ <= i__3; ++i__) { s += (d__1 = ap[kc + i__ - 1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L110: */ } work[k] += s; kc += k; /* L120: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { s += (d__1 = ap[kc + i__ - 1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L130: */ } work[k] += s; kc += k; /* L140: */ } } } else { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; i__3 = *n; for (i__ = k; i__ <= i__3; ++i__) { s += (d__1 = ap[kc + i__ - k], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L150: */ } work[k] += s; kc = kc + *n - k + 1; /* L160: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (d__1 = x[k + j * x_dim1], abs(d__1)); i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { s += (d__1 = ap[kc + i__ - k], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2)); /* L170: */ } work[k] += s; kc = kc + *n - k + 1; /* L180: */ } } } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[ i__]; s = max(d__2,d__3); } else { /* Computing MAX */ d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) / (work[i__] + safe1); s = max(d__2,d__3); } /* L190: */ } berr[j] = s; /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(op(A)))* */ /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ /* Use DLACN2 to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__]; } else { work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__] + safe1; } /* L200: */ } kase = 0; L210: dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)'). */ dtpsv_(uplo, transt, diag, n, &ap[1], &work[*n + 1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L220: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L230: */ } dtpsv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1); } goto L210; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1)); lstres = max(d__2,d__3); /* L240: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L250: */ } return 0; /* End of DTPRFS */ } /* dtprfs_ */
/* Subroutine */ int dtrcon_(char *norm, char *uplo, char *diag, integer *n, doublereal *a, integer *lda, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase, kase1; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); doublereal anorm; logical upper; doublereal xnorm; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal dlantr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); doublereal ainvnm; extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); logical onenrm; char normin[1]; doublereal smlnum; logical nounit; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DTRCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.; return 0; } *rcond = 0.; smlnum = dlamch_("Safe minimum") * (doublereal) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = dlantr_(norm, uplo, diag, n, n, &a[a_offset], lda, &work[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ dlatrs_(uplo, "No transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(A**T). */ dlatrs_(uplo, "Transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); xnorm = (d__1 = work[ix], abs(d__1)); if (scale < xnorm * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / anorm / ainvnm; } } L20: return 0; /* End of DTRCON */ }