// Function definitions. 
// -----------------------------------------------------------------
void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{
    //Input Args
    user_function_data fun;
    double *x0, *ydata = NULL, *lb = NULL, *ub = NULL, *A = NULL, *b = NULL, *Aeq = NULL, *beq = NULL;
    //Options
    int maxIter = 500;
    double info[LM_INFO_SZ];
    double opts[LM_OPTS_SZ]={J_INIT_MU, J_STOP_THRESH, J_STOP_THRESH, J_STOP_THRESH, LM_DIFF_DELTA};
    
    //Outputs Args
    double *x, *fval, *exitflag, *iter, *feval;
    double *pcovar = NULL;
    
    //Internal Vars
    size_t ndec, ndat;   
    int i, status, havJac = 0, conMode = 0;
    int nineq=0, neq=0;
    double *covar = NULL;
    double *Apr, *bpr;
    double *llb, *lub;
    citer = 1;
    iterF.enabled = false;
    
    if (nrhs < 1) {
        if(nlhs < 1)
            printSolverInfo();
        else
            plhs[0] = mxCreateString(LM_VERSION);   
        return;
    }

    //Check user inputs & get constraint information
    checkInputs(prhs,nrhs,&conMode);

    //Get Sizes
    ndec = mxGetNumberOfElements(prhs[2]);
    ndat = mxGetNumberOfElements(prhs[3]);
    //Get Objective Function Handle
    if (mxIsChar(prhs[0])) {
        CHECK(mxGetString(prhs[0], fun.f, FLEN) == 0,"error reading objective name string");
        fun.nrhs = 1;
        fun.xrhs = 0;
    } else {
        fun.prhs[0] = (mxArray*)prhs[0];
        strcpy(fun.f, "feval");
        fun.nrhs = 2;
        fun.xrhs = 1;
    }
    fun.prhs[fun.xrhs] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    fun.print = 0;
    //Check and Get Gradient Function Handle
    if(!mxIsEmpty(prhs[1])) {  
        havJac = 1;
        if (mxIsChar(prhs[1])) {
            CHECK(mxGetString(prhs[1], fun.g, FLEN) == 0,"error reading gradient name string");
            fun.nrhs_g = 1;
            fun.xrhs_g = 0;
        } else {
            fun.prhs_g[0] = (mxArray*)prhs[1];
            strcpy(fun.g, "feval");
            fun.nrhs_g = 2;
            fun.xrhs_g = 1;
        }   
        fun.prhs_g[fun.xrhs_g] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    }

    //Get x0 + data
    x0 = mxGetPr(prhs[2]);
    ydata = mxGetPr(prhs[3]);
    fun.ydata = ydata;
    
    //Get Bounds
    if(conMode & 1) {
        //LB
        if(!mxIsEmpty(prhs[4])){
            llb = mxGetPr(prhs[4]);
            lb = mxCalloc(ndec,sizeof(double));
            memcpy(lb,llb,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(lb[i]))
                    lb[i] = -DBL_MAX;
            }
        }
        else {
            lb = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                lb[i] = -DBL_MAX;
        }
        //UB
        if(nrhs > 5 && !mxIsEmpty(prhs[5])){
            lub = mxGetPr(prhs[5]);
            ub = mxCalloc(ndec,sizeof(double));
            memcpy(ub,lub,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(ub[i]))
                    ub[i] = DBL_MAX;
            }
        }
        else {
            ub = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                ub[i] = DBL_MAX;
        }
    }
    //Get Linear Inequality Constraints
    if(conMode & 2) {
        nineq = (int)mxGetM(prhs[7]);
        Apr = mxGetPr(prhs[6]);
        bpr = mxGetPr(prhs[7]);
        //Need to flip >= to <=
        A = mxCalloc(ndec*nineq,sizeof(double));
        b = mxCalloc(nineq,sizeof(double));
        for(i=0;i<ndec*nineq;i++)
            A[i] = -Apr[i];
        for(i=0;i<nineq;i++)
            b[i] = -bpr[i];
    }
    //Get Linear Equality Constraints
    if(conMode & 4) {
        Aeq = mxGetPr(prhs[8]);
        beq = mxGetPr(prhs[9]);
        neq = (int)mxGetM(prhs[9]);
    }
    
    //Get Options if specified
    if(nrhs > 10) {
        if(mxGetField(prhs[10],0,"maxiter"))
            maxIter = (int)*mxGetPr(mxGetField(prhs[10],0,"maxiter"));
        if(mxGetField(prhs[10],0,"display"))
            fun.print = (int)*mxGetPr(mxGetField(prhs[10],0,"display"));
        if(mxGetField(prhs[10],0,"iterfun") && !mxIsEmpty(mxGetField(prhs[10],0,"iterfun")))
        {
            iterF.prhs[0] = (mxArray*)mxGetField(prhs[10],0,"iterfun");
            strcpy(iterF.f, "feval");
            iterF.enabled = true;  
            iterF.prhs[1] = mxCreateNumericMatrix(1,1,mxINT32_CLASS,mxREAL);
            iterF.prhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
            iterF.prhs[3] = mxCreateDoubleMatrix(ndec,1,mxREAL);
        }
    }                       

    //Create Outputs
    plhs[0] = mxCreateDoubleMatrix(ndec,1, mxREAL);
    plhs[1] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[2] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[3] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[4] = mxCreateDoubleMatrix(1,1, mxREAL);
    x = mxGetPr(plhs[0]); 
    fval = mxGetPr(plhs[1]); 
    exitflag = mxGetPr(plhs[2]);    
    iter = mxGetPr(plhs[3]);
    feval = mxGetPr(plhs[4]);
    
    //Copy initial guess to x
    memcpy(x,x0,ndec*sizeof(double));
    //Create Covariance Matrix if Required
    if(nlhs>4)
        covar=mxCalloc(ndec*ndec,sizeof(double));
    
    //Print Header
    if(fun.print) {
        mexPrintf("\n------------------------------------------------------------------\n");
        
        mexPrintf(" This is LEVMAR v2.5\n");
            
        mexPrintf(" Author: Manolis Lourakis\n MEX Interface J. Currie 2011\n\n");
        mexPrintf(" Problem Properties:\n");
        mexPrintf(" # Decision Variables:     %4d\n",ndec);
        mexPrintf(" # Data Points:            %4d\n",ndat);

        mexPrintf("------------------------------------------------------------------\n");
    }
  
    //Solve based on constraints
    switch(conMode)
    {
        case MIN_UNCONSTRAINED:
            //mexPrintf("Unc Problem\n");
            if(havJac)
                status = dlevmar_der(func, jac, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_dif(func, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);            
            break;
        case MIN_CONSTRAINED_BC:
            //mexPrintf("Box Constrained Problem\n");
            if(havJac)
                status = dlevmar_bc_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bc_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LIC:
            //mexPrintf("Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_lic_der(func, jac, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lic_dif(func, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLIC:
            //mexPrintf("Boxed Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_blic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEC:
            //mexPrintf("Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_lec_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lec_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEC:
            //mexPrintf("Boxed Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_blec_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blec_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEIC:
            //mexPrintf("Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_leic_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_leic_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEIC:
            //mexPrintf("Boxed Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_bleic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bleic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        default:
            mexErrMsgTxt("Unknown constraint configuration");
    }
       
    //Save Status & Iterations
    *fval = info[1];
    *exitflag = getStatus(info[6]);
    *iter = (double)status;
    *feval = (double)citer;
    
    //Save Covariance if Required
    if(nlhs > 5) {
        plhs[5] = mxCreateDoubleMatrix(ndec, ndec, mxREAL);
        pcovar = mxGetPr(plhs[5]);
        memcpy(pcovar,covar,ndec*ndec*sizeof(double));
    }
    
    //Print Header
    if(fun.print){            
        //Termination Detected
        if(*exitflag == 1)
            mexPrintf("\n *** SUCCESSFUL TERMINATION ***\n");
        else if(*exitflag == 0)
            mexPrintf("\n *** MAXIMUM ITERATIONS REACHED ***\n");
        else if(*exitflag == -1)
            mexPrintf("\n *** TERMINATION: TOLERANCE TOO SMALL ***\n");
        else if(*exitflag == -2)
            mexPrintf("\n *** TERMINATION: ROUTINE ERROR ***\n");     

        if(*exitflag==1)
            mexPrintf(" Final SSE: %12.5g\n In %3.0f iterations\n",*fval,*iter);

        mexPrintf("------------------------------------------------------------------\n\n");
    }
    
    //Clean Up
    if(lb) mxFree(lb);
    if(ub) mxFree(ub);
    if(covar) mxFree(covar);
    if(A) mxFree(A);
    if(b) mxFree(b);
}
Example #2
0
int main()
{
register int i, j;
int problem, ret;
double p[5], // 5 is max(2, 3, 5)
	   x[16]; // 16 is max(2, 3, 5, 6, 16)
int m, n;
double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
char *probname[]={
    "Rosenbrock function",
    "modified Rosenbrock problem",
    "Powell's function",
    "Wood's function",
    "Meyer's (reformulated) problem",
    "Osborne's problem",
    "helical valley function",
    "Boggs & Tolle's problem #3",
    "Hock - Schittkowski problem #28",
    "Hock - Schittkowski problem #48",
    "Hock - Schittkowski problem #51",
    "Hock - Schittkowski problem #01",
    "Hock - Schittkowski modified problem #21",
    "hatfldb problem",
    "hatfldc problem",
    "equilibrium combustion problem",
    "Hock - Schittkowski modified #1 problem #52",
    "Schittkowski modified problem #235",
    "Boggs & Tolle modified problem #7",
    "Hock - Schittkowski modified #2 problem #52",
    "Hock - Schittkowski modified problem #76",
};

  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
  opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing 
  //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!

  /* uncomment the appropriate line below to select a minimization problem */
  problem=
		  //0; // Rosenbrock function
		  //1; // modified Rosenbrock problem
		  //2; // Powell's function
      //3; // Wood's function
		  4; // Meyer's (reformulated) problem
		  //5; // Osborne's problem
      //6; // helical valley function
#ifdef HAVE_LAPACK
      //7; // Boggs & Tolle's problem 3
      //8; // Hock - Schittkowski problem 28
      //9; // Hock - Schittkowski problem 48
      //10; // Hock - Schittkowski problem 51
#else // no LAPACK
#ifdef _MSC_VER
#pragma message("LAPACK not available, some test problems cannot be used")
#else
#warning LAPACK not available, some test problems cannot be used
#endif // _MSC_VER

#endif /* HAVE_LAPACK */
      //11; // Hock - Schittkowski problem 01
      //12; // Hock - Schittkowski modified problem 21
      //13; // hatfldb problem
      //14; // hatfldc problem
      //15; // equilibrium combustion problem
#ifdef HAVE_LAPACK
      //16; // Hock - Schittkowski modified #1 problem 52
      //17; // Schittkowski modified problem 235
      //18; // Boggs & Tolle modified problem #7
      //19; // Hock - Schittkowski modified #2 problem 52
      //20; // Hock - Schittkowski modified problem #76"
#endif /* HAVE_LAPACK */
				
  switch(problem){
  default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem);
           exit(1);
    break;

  case 0:
  /* Rosenbrock function */
    m=2; n=2;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 1:
  /* modified Rosenbrock problem */
    m=2; n=3;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 2:
  /* Powell's function */
    m=2; n=2;
    p[0]=3.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);		// no Jacobian
  break;

  case 3:
  /* Wood's function */
    m=4; n=6;
    p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 4:
  /* Meyer's data fitting problem */
    m=3; n=16;
    p[0]=8.85; p[1]=4.0; p[2]=2.5;
    x[0]=34.780;	x[1]=28.610; x[2]=23.650; x[3]=19.630;
    x[4]=16.370;	x[5]=13.720; x[6]=11.540; x[7]=9.744;
    x[8]=8.261;	x[9]=7.030; x[10]=6.005; x[11]=5.147;
    x[12]=4.427;	x[13]=3.820; x[14]=3.307; x[15]=2.872;
    //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian

   { double *work, *covar;
    work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
    if(!work){
    	fprintf(stderr, "memory allocation request failed in main()\n");
      exit(1);
    }
    covar=work+LM_DIF_WORKSZ(m, n);

    ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated

    printf("Covariance of the fit:\n");
    for(i=0; i<m; ++i){
      for(j=0; j<m; ++j)
        printf("%g ", covar[i*m+j]);
      printf("\n");
    }
    printf("\n");

    free(work);
   }

/* uncomment the following block to verify Jacobian */
/*
   {
    double err[16];
    dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err); 
    for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
   }
*/
  break;

  case 5:
  /* Osborne's data fitting problem */
  {
    double x33[]={
      8.44E-1, 9.08E-1, 9.32E-1, 9.36E-1, 9.25E-1, 9.08E-1, 8.81E-1,
      8.5E-1, 8.18E-1, 7.84E-1, 7.51E-1, 7.18E-1, 6.85E-1, 6.58E-1,
      6.28E-1, 6.03E-1, 5.8E-1, 5.58E-1, 5.38E-1, 5.22E-1, 5.06E-1,
      4.9E-1, 4.78E-1, 4.67E-1, 4.57E-1, 4.48E-1, 4.38E-1, 4.31E-1,
      4.24E-1, 4.2E-1, 4.14E-1, 4.11E-1, 4.06E-1};

    m=5; n=33;
    p[0]=0.5; p[1]=1.5; p[2]=-1.0; p[3]=1.0E-2; p[4]=2.0E-2;

    ret=dlevmar_der(osborne, jacosborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(osborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  }
  break;

  case 6:
  /* helical valley function */
    m=3; n=3;
    p[0]=-1.0; p[1]=0.0; p[2]=0.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

#ifdef HAVE_LAPACK
  case 7:
  /* Boggs-Tolle problem 3 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

    ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 8:
  /* Hock - Schittkowski problem 28 */
    m=3; n=3;
    p[0]=-4.0; p[1]=1.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*3]={1.0, 2.0, 3.0},
             b[1]={1.0};

    ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 9:
  /* Hock - Schittkowski problem 48 */
    m=5; n=5;
    p[0]=3.0; p[1]=5.0; p[2]=-3.0;
    p[3]=2.0; p[4]=-2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0,  0.0, 0.0, 1.0, -2.0, -2.0},
             b[2]={5.0, -3.0};

    ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 10:
  /* Hock - Schittkowski problem 51 */
    m=5; n=5;
    p[0]=2.5; p[1]=0.5; p[2]=2.0;
    p[3]=-1.0; p[4]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={4.0, 0.0, 0.0};

    ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

#endif /* HAVE_LAPACK */

  case 11:
  /* Hock - Schittkowski problem 01 */
    m=2; n=2;
    p[0]=-2.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=-DBL_MAX; lb[1]=-1.5;
      ub[0]=ub[1]=DBL_MAX;

      ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 12:
  /* Hock - Schittkowski (modified) problem 21 */
    m=2; n=2;
    p[0]=-1.0; p[1]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=2.0; lb[1]=-50.0;
      ub[0]=50.0; ub[1]=50.0;

      ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 13:
  /* hatfldb problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.1;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[2]=ub[3]=DBL_MAX;
      ub[1]=0.8;

      ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 14:
  /* hatfldc problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.9;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[1]=ub[2]=ub[3]=10.0;

      ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 15:
  /* equilibrium combustion problem */
    m=5; n=5;
    p[0]=p[1]=p[2]=p[3]=p[4]=0.0001;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[5], ub[5];

      lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001;

      ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0;

      ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

#ifdef HAVE_LAPACK
  case 16:
  /* Hock - Schittkowski modified #1 problem 52 */
    m=5; n=4;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

      double lb[5], ub[5];

      double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights

      lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0;
      ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3;

      ret=dlevmar_blec_der(mod1hs52, jacmod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 17:
  /* Schittkowski modified problem 235 */
    m=3; n=2;
    p[0]=-2.0; p[1]=3.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*3]={1.0, 0.0, 1.0,  0.0, 1.0, -4.0},
             b[2]={-1.0, 0.0};

      double lb[3], ub[3];

      lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7;
      ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX;

      ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 18:
  /* Boggs & Tolle modified problem 7 */
    m=5; n=5;
    p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0,   1.0, 1.0, 0.0, -1.0, 0.0,   1.0, 0.0, 0.0, 0.0, 1.0},
             b[3]={1.0, 0.0, 0.5};

      double lb[5], ub[5];

      lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3;
      ub[0]=0.7;      ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX;

      ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 19:
  /* Hock - Schittkowski modified #2 problem 52 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double C[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, -1.0, 0.0, 0.0, 1.0},
             d[3]={-1.0, -2.0, -7.0};

      ret=dlevmar_bleic_der(mod2hs52, jacmod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      //ret=dlevmar_bleic_dif(mod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
    }
    break;

  case 20:
  /* Hock - Schittkowski modified problem 76 */
    m=4; n=4;
    p[0]=0.5; p[1]=0.5; p[2]=0.5; p[3]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*4]={0.0, 1.0, 4.0, 0.0},
             b[1]={1.5};

      double C[2*4]={-1.0, -2.0, -1.0, -1.0,   -3.0, -1.0, -2.0, 1.0},
             d[2]={-5.0, -0.4};

      double lb[4]={0.0, 0.0, 0.0, 0.0};

      ret=dlevmar_bleic_der(modhs76, jacmodhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      //ret=dlevmar_bleic_dif(modhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
      /* variations:
       * if no lb is used, the minimizer is (-0.1135922 0.1330097 0.3417476 0.07572816)
       * if the rhs of constr2 is 4.0, the minimizer is (0.0, 0.166667, 0.333333, 0.0)
       */
    }
    break;

#endif /* HAVE_LAPACK */
  } /* switch */
  
  printf("Results for %s:\n", probname[problem]);
  printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\nMinimization info:\n");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");

  return 0;
}
Example #3
0
static PyObject *
_pylm_dlevmar_generic(PyObject *mod, PyObject *args, PyObject *kwds,
                     char *argstring, char *kwlist[],
                      int jacobian, int bounds) {
    
    
    PyObject *func			= NULL;
	PyObject *jacf			= NULL; 
	PyObject *initial		= NULL,	*initial_npy		= NULL;
	PyObject *measurements	= NULL, *measurements_npy	= NULL;
    PyObject *lower			= NULL, *lower_npy			= NULL;
	PyObject *upper			= NULL, *upper_npy			= NULL;
	
    PyObject *opts			= NULL, *opts_npy			= NULL;
	PyObject *covar			= NULL;
    PyObject *retval		= NULL;
	PyObject *info			= NULL;
	
	pylm_callback_data *pydata = NULL;
	
    double *c_initial		= NULL;
	double *c_measurements	= NULL;
	double *c_opts			= NULL;
    double *c_lower			= NULL;
	double *c_upper			= NULL;
	double *c_covar			= NULL;
	
    int	   max_iter = 0;
	int    run_iter = 0;
	int    m = 0, n = 0;
	
    double c_info[LM_INFO_SZ];
	
	int nopts;

	// If finite-difference approximate Jacobians are used, we
	// need 5 optional params; otherwise 4.
	if (jacobian){
		nopts = 4;
	} else {
		nopts = 5;
	}

    // parse arguments
    if (!bounds) {
        if (jacobian) {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &jacf, &initial,
                                             &measurements, &max_iter, 
                                             &opts, &covar)){
				return NULL;	
			}
        } else {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &initial,
                                             &measurements, &max_iter, 
                                             &opts, &covar)){
				return NULL;
			}
        }
    } else {
        if (jacobian) {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &jacf, &initial,
                                             &measurements, &lower, &upper, &max_iter, 
                                             &opts, &covar)){
                return NULL;
			}
        } else {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &initial,
                                             &measurements, &lower, &upper, &max_iter,
                                             &opts, &covar)){
				return NULL;	
			}
        }
    }
     
    // Check each variable type
	
    if (!PyCallable_Check(func)) {
        PyErr_SetString(PyExc_TypeError, "func must be a callable object");
        return NULL;
    }

    if (!PyArray_Check(initial)) {
        PyErr_SetString(PyExc_TypeError, "initial must be a numpy array");
        return NULL;
    }

    if (!PyArray_Check(measurements)) {
        PyErr_SetString(PyExc_TypeError, "measurements must be a numpy array");
        return NULL;
    }

    if (jacobian && !PyCallable_Check(jacf)) {
        PyErr_SetString(PyExc_TypeError, "jacf must be a callable object");
        return NULL;
    }        

    if (lower && !PyArray_Check(lower)) {
        PyErr_SetString(PyExc_TypeError, "lower bounds must be a numpy array");
        return NULL;
    }
    if (upper && !PyArray_Check(upper)) {
        PyErr_SetString(PyExc_TypeError, "upper bounds must be a numpy array");
        return NULL;
    }

    if (opts && !PyArray_Check(opts) && (PyArray_Size(opts) != nopts)) {
		if (nopts == 4){
			PyErr_SetString(PyExc_TypeError,
							"opts must be a numpy vector of length 4.");
		} else {
			PyErr_SetString(PyExc_TypeError,
							"opts must be a numpy vector of length 5.");
		}
        return NULL;
    }

    // convert python types into C
	
    pydata = PyMem_Malloc(sizeof(pydata));
	if(!pydata){
		PyErr_SetString(PyExc_RuntimeError,
						"Error in allocating memory for data.");	
		return NULL;	
	}
    pydata->func = func;
    pydata->jacf = jacf;
	
	initial_npy = PyArray_FROMANY(initial, NPY_DOUBLE, 0, 0, NPY_INOUT_ARRAY);
	measurements_npy = PyArray_FROMANY(measurements, NPY_DOUBLE, 0, 0, NPY_IN_ARRAY);
	
	if(!initial_npy || !measurements_npy){
		// Cannot create array
		PyErr_SetString(PyExc_RuntimeError,
						"Error in creating arrays from input data.");	
		//Py_XDECREF(initial_npy);
		//Py_XDECREF(measurements_npy);
		return NULL;
	}
	
    c_initial = (double *)PyArray_DATA(initial_npy);
	c_measurements = (double *)PyArray_DATA(measurements_npy);
	m = PyArray_SIZE(initial_npy);
	n = PyArray_SIZE(measurements_npy);
	
	npy_intp dims[2] = {m, m};
	covar = PyArray_SimpleNew(2, dims, NPY_DOUBLE);
	c_covar = PyArray_DATA(covar);
	
	
	if (lower){
		lower_npy = PyArray_FROMANY(lower, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
		c_lower = PyArray_DATA(lower_npy);
		// TODO check dims
	}
    if (upper){
		upper_npy = PyArray_FROMANY(upper, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
        c_upper = PyArray_DATA(upper_npy);
		// TODO check dims
	}

	if (opts) {
		opts_npy = PyArray_FROMANY(opts, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
        c_opts = PyArray_DATA(opts_npy);
		// TODO check dims
    }
    
    // call function to do the fitting
	
    if (!bounds) {
        if (jacobian) {
            run_iter =  dlevmar_der(_pylm_func_callback, _pylm_jacf_callback,
                                    c_initial, c_measurements, m, n,
									max_iter, c_opts, c_info, NULL, c_covar, pydata);
        } else {
            run_iter =  dlevmar_dif(_pylm_func_callback, c_initial, c_measurements,
                                    m, n, max_iter, c_opts, c_info, NULL, c_covar, pydata);
        }
    } else {
        if (jacobian) {
            run_iter =  dlevmar_bc_der(_pylm_func_callback, _pylm_jacf_callback,
                                       c_initial, c_measurements, m, n,
                                       c_lower, c_upper,
                                       max_iter, c_opts, c_info, NULL, c_covar, pydata);
        } else {
            run_iter =  dlevmar_bc_dif(_pylm_func_callback, c_initial, c_measurements,
                                       m, n, c_lower, c_upper,
                                       max_iter, c_opts, c_info, NULL, c_covar, pydata);
        }
    }

    // convert results back into python
	
    if (run_iter > 0) {
		npy_intp dims[1] = {m};
		retval = PyArray_SimpleNewFromData(1, dims, PyArray_DOUBLE, c_initial);
    } else {
        retval = Py_None;
        Py_INCREF(Py_None);
    }

	if (pydata) {
        PyMem_Free(pydata);
    }	
	
    // convert additional information into python
    info = Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
                         "initial_e2", c_info[0],
                         "estimate_e2", c_info[1],
                         "estimate_Jt", c_info[2],
                         "estimate_Dp2", c_info[3],
                         "estimate_mu", c_info[4],
                         "iterations", c_info[5],
                         "termination", c_info[6],
                         "function_evaluations", c_info[7],
                         "jacobian_evaluations", c_info[8]);
	
	//Py_XDECREF(measurements_npy);
	//Py_XDECREF(initial_npy);
	//Py_XDECREF(lower_npy);
	//Py_XDECREF(upper_npy);
	//Py_XDECREF(opts_npy);

	return Py_BuildValue("(OOiO)", retval, covar, run_iter, info, NULL);
}
Example #4
0
bool SQ_fitter_b<PointT>::minimize( const int &_type, 
				    const PointCloudPtr &_cloud,
				    const SQ_parameters &_in,
				    SQ_parameters &_out,
				    double &_error ) {
    
    // Parameters initially _in:
    _out = _in; 

    // Set necessary parameters
    int n = _cloud->points.size();
    int m = 13; 
    double p[m]; // Parameters of SQ
    double y[n]; // Values we want to achieve

    double opts[LM_OPTS_SZ];
    double info[LM_INFO_SZ];
    
    opts[0] = LM_INIT_MU;
    opts[1] = 1E-15;
    opts[2] = 1E-15;
    opts[3] = 1E-20;
    opts[4] = LM_DIFF_DELTA;

    struct levmar_data data;
    data.x = new double[n];
    data.y = new double[n];
    data.z = new double[n];
    data.num = n;


    int i; int ret;
    typename pcl::PointCloud<PointT>::iterator pit;
    for( pit = _cloud->begin(), i = 0; pit != _cloud->end(); ++pit, ++i ) {
      data.x[i] = (*pit).x;
      data.y[i] = (*pit).y;
      data.z[i] = (*pit).z;
    }

    // Set minimizer value to zero (could be 1, depending of what equation you are minimizing)
    for( i = 0; i < n; ++i ) { y[i] = 0.0; }
  
    // Initialize values for parameters p
    for( i = 0; i < 3; ++i ) { p[i] = _in.dim[i]; }
    for( i = 0; i < 2; ++i ) { p[i+3] = _in.e[i]; }
    for( i = 0; i < 3; ++i ) { p[i+5] = _in.trans[i]; }
    for( i = 0; i < 3; ++i ) { p[i+8] = _in.rot[i]; }
    p[11] = _in.alpha;
    p[12] = _in.k;

    printf("Initial p: %f %f %f %f %f %f %f %f %f %f %f alpha: %f k: %f \n",
	   p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12] );

    
    // Set limits
    double ub[m], lb[m];
    for( i = 0; i < 3; ++i ) { lb[i] = this->mLowerLim_dim[i]; ub[i] = this->mUpperLim_dim[i]; }
    for( i = 0; i < 2; ++i ) { lb[i+3] = this->mLowerLim_e; ub[i+3] = this->mUpperLim_e; }
    for( i = 0; i < 3; ++i ) { lb[i+5] = this->mLowerLim_trans[i]; ub[i+5] = this->mUpperLim_trans[i]; }
    for( i = 0; i < 3; ++i ) { lb[i+8] = this->mLowerLim_rot[i]; ub[i+8] = this->mUpperLim_rot[i]; }
    lb[11] = mLowerLim_alpha; ub[11] = mUpperLim_alpha;
    lb[12] = mLowerLim_k; ub[12] = mUpperLim_k;


    switch( _type ) {
    case SQ_FX_RADIAL: {
      ret = dlevmar_bc_der( fr_add_b,
			    Jr_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    5000,
			    opts, info,
			    NULL, NULL, (void*)&data );
 
    } break;

    case SQ_FX_ICHIM: {
      
      ret = dlevmar_bc_der( fi_add_b,
			    Ji_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    1000,
			    opts, info,
			    NULL, NULL, (void*)&data );
    } break;
      
    case SQ_FX_SOLINA: {
      
      ret = dlevmar_bc_der( fs_add_b,
			    Js_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    1000,
			    opts, info,
			    NULL, NULL, (void*)&data );
    } break;
      
    case SQ_FX_CHEVALIER: {
      
      ret = dlevmar_bc_der( fc_add_b,
			    Jc_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    1000,
			    opts, info,
			    NULL, NULL, (void*)&data );
    } break;
      
    case SQ_FX_5: {
      
      ret = dlevmar_bc_der( f5_add_b,
			    J5_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    1000,
			    opts, info,
			    NULL, NULL, (void*)&data );
    } break;
      
    case SQ_FX_6: {
      
      ret = dlevmar_bc_der( f6_add_b,
			    J6_add_b,
			    p, y, m, n,
			    lb, ub,
			    NULL,
			    1000,
			    opts, info,
			    NULL, NULL, (void*)&data );
    } break;



    } // end switch

    // Fill _out
    for( i = 0; i < 3; ++i ) { _out.dim[i] = p[i]; }
    for( i = 0; i < 2; ++i ) { _out.e[i] = p[i+3]; }
    for( i = 0; i < 3; ++i ) { _out.trans[i] = p[i+5]; }
    for( i = 0; i < 3; ++i ) { _out.rot[i] = p[i+8]; }
    _out.alpha = p[11];
    _out.k = p[12];
    _out.type = BENT;
    
    // Return status and error
    double eg, er;
    get_error( _out, this->cloud_, eg, er, _error );
    
    // If stopped by invalid (TODO: Add other reasons)
    if( info[6] == 7 ) {
	return false;
    } else {
	return true;
    }
}
Example #5
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *Prhs[])
{
register int i;
register double *pdbl;
mxArray **prhs=(mxArray **)&Prhs[0], *At, *Ct;
struct mexdata mdata;
int len, status;
double *p, *p0, *ret, *x;
int m, n, havejac, Arows, Crows, itmax, nopts, mintype, nextra;
double opts[LM_OPTS_SZ]={LM_INIT_MU, LM_STOP_THRESH, LM_STOP_THRESH, LM_STOP_THRESH, LM_DIFF_DELTA};
double info[LM_INFO_SZ];
double *lb=NULL, *ub=NULL, *A=NULL, *b=NULL, *wghts=NULL, *C=NULL, *d=NULL, *covar=NULL;

  /* parse input args; start by checking their number */
  if((nrhs<5))
    matlabFmtdErrMsgTxt("levmar: at least 5 input arguments required (got %d).", nrhs);
  if(nlhs>4)
    matlabFmtdErrMsgTxt("levmar: too many output arguments (max. 4, got %d).", nlhs);
  else if(nlhs<2)
    matlabFmtdErrMsgTxt("levmar: too few output arguments (min. 2, got %d).", nlhs);
    
  /* note that in order to accommodate optional args, prhs & nrhs are adjusted accordingly below */

  /** func **/
  /* first argument must be a string , i.e. a char row vector */
  if(mxIsChar(prhs[0])!=1)
    mexErrMsgTxt("levmar: first argument must be a string.");
  if(mxGetM(prhs[0])!=1)
    mexErrMsgTxt("levmar: first argument must be a string (i.e. char row vector).");
  /* store supplied name */
  len=mxGetN(prhs[0])+1;
  mdata.fname=mxCalloc(len, sizeof(char));
  status=mxGetString(prhs[0], mdata.fname, len);
  if(status!=0)
    mexErrMsgTxt("levmar: not enough space. String is truncated.");

  /** jac (optional) **/
  /* check whether second argument is a string */
  if(mxIsChar(prhs[1])==1){
    if(mxGetM(prhs[1])!=1)
      mexErrMsgTxt("levmar: second argument must be a string (i.e. row vector).");
    /* store supplied name */
    len=mxGetN(prhs[1])+1;
    mdata.jacname=mxCalloc(len, sizeof(char));
    status=mxGetString(prhs[1], mdata.jacname, len);
    if(status!=0)
      mexErrMsgTxt("levmar: not enough space. String is truncated.");
    havejac=1;

    ++prhs;
    --nrhs;
  }
  else{
    mdata.jacname=NULL;
    havejac=0;
  }

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: %s analytic Jacobian\n", havejac? "with" : "no");
#endif /* DEBUG */

/* CHECK 
if(!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) || !(mxGetM(prhs[1])==1 && mxGetN(prhs[1])==1))
*/

  /** p0 **/
  /* the second required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) || !(mxGetM(prhs[1])==1 || mxGetN(prhs[1])==1))
    mexErrMsgTxt("levmar: p0 must be a real vector.");
  p0=mxGetPr(prhs[1]);
  /* determine if we have a row or column vector and retrieve its 
   * size, i.e. the number of parameters
   */
  if(mxGetM(prhs[1])==1){
    m=mxGetN(prhs[1]);
    mdata.isrow_p0=1;
  }
  else{
    m=mxGetM(prhs[1]);
    mdata.isrow_p0=0;
  }
  /* copy input parameter vector to avoid destroying it */
  p=mxMalloc(m*sizeof(double));
  for(i=0; i<m; ++i)
    p[i]=p0[i];
    
  /** x **/
  /* the third required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) || !(mxGetM(prhs[2])==1 || mxGetN(prhs[2])==1))
    mexErrMsgTxt("levmar: x must be a real vector.");
  x=mxGetPr(prhs[2]);
  n=__MAX__(mxGetM(prhs[2]), mxGetN(prhs[2]));

  /** itmax **/
  /* the fourth required argument must be a scalar */
  if(!mxIsDouble(prhs[3]) || mxIsComplex(prhs[3]) || mxGetM(prhs[3])!=1 || mxGetN(prhs[3])!=1)
    mexErrMsgTxt("levmar: itmax must be a scalar.");
  itmax=(int)mxGetScalar(prhs[3]);
    
  /** opts **/
  /* the fifth required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[4]) || mxIsComplex(prhs[4]) || (!(mxGetM(prhs[4])==1 || mxGetN(prhs[4])==1) &&
                                                      !(mxGetM(prhs[4])==0 && mxGetN(prhs[4])==0)))
    mexErrMsgTxt("levmar: opts must be a real vector.");
  pdbl=mxGetPr(prhs[4]);
  nopts=__MAX__(mxGetM(prhs[4]), mxGetN(prhs[4]));
  if(nopts!=0){ /* if opts==[], nothing needs to be done and the defaults are used */
    if(nopts>LM_OPTS_SZ)
      matlabFmtdErrMsgTxt("levmar: opts must have at most %d elements, got %d.", LM_OPTS_SZ, nopts);
    else if(nopts<((havejac)? LM_OPTS_SZ-1 : LM_OPTS_SZ))
      matlabFmtdWarnMsgTxt("levmar: only the %d first elements of opts specified, remaining set to defaults.", nopts);
    for(i=0; i<nopts; ++i)
      opts[i]=pdbl[i];
  }
#ifdef DEBUG
  else{
    fflush(stderr);
    fprintf(stderr, "LEVMAR: empty options vector, using defaults\n");
  }
#endif /* DEBUG */

  /** mintype (optional) **/
  /* check whether sixth argument is a string */
  if(nrhs>=6 && mxIsChar(prhs[5])==1 && mxGetM(prhs[5])==1){
    char *minhowto;

    /* examine supplied name */
    len=mxGetN(prhs[5])+1;
    minhowto=mxCalloc(len, sizeof(char));
    status=mxGetString(prhs[5], minhowto, len);
    if(status!=0)
      mexErrMsgTxt("levmar: not enough space. String is truncated.");

    for(i=0; minhowto[i]; ++i)
      minhowto[i]=tolower(minhowto[i]);
    if(!strncmp(minhowto, "unc", 3)) mintype=MIN_UNCONSTRAINED;
    else if(!strncmp(minhowto, "bc", 2)) mintype=MIN_CONSTRAINED_BC;
    else if(!strncmp(minhowto, "lec", 3)) mintype=MIN_CONSTRAINED_LEC;
    else if(!strncmp(minhowto, "blec", 4)) mintype=MIN_CONSTRAINED_BLEC;
    else if(!strncmp(minhowto, "bleic", 5)) mintype=MIN_CONSTRAINED_BLEIC;
    else if(!strncmp(minhowto, "blic", 4)) mintype=MIN_CONSTRAINED_BLIC;
    else if(!strncmp(minhowto, "leic", 4)) mintype=MIN_CONSTRAINED_LEIC;
    else if(!strncmp(minhowto, "lic", 3)) mintype=MIN_CONSTRAINED_BLIC;
    else matlabFmtdErrMsgTxt("levmar: unknown minimization type '%s'.", minhowto);

    mxFree(minhowto);

    ++prhs;
    --nrhs;
  }
  else
    mintype=MIN_UNCONSTRAINED;

  if(mintype==MIN_UNCONSTRAINED) goto extraargs;

  /* arguments below this point are optional and their presence depends
   * upon the minimization type determined above
   */
  /** lb, ub **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_BC || mintype==MIN_CONSTRAINED_BLEC || mintype==MIN_CONSTRAINED_BLIC || mintype==MIN_CONSTRAINED_BLEIC)){
    /* check if the next two arguments are real row or column vectors */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && (mxGetM(prhs[5])==1 || mxGetN(prhs[5])==1)){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=__MAX__(mxGetM(prhs[5]), mxGetN(prhs[5])))!=m)
          matlabFmtdErrMsgTxt("levmar: lb must have %d elements, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=m)
          matlabFmtdErrMsgTxt("levmar: ub must have %d elements, got %d.", m, i);

        lb=mxGetPr(prhs[5]);
        ub=mxGetPr(prhs[6]);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /** A, b **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_LEC || mintype==MIN_CONSTRAINED_BLEC || mintype==MIN_CONSTRAINED_LEIC || mintype==MIN_CONSTRAINED_BLEIC)){
    /* check if the next two arguments are a real matrix and a real row or column vector */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && mxGetM(prhs[5])>=1 && mxGetN(prhs[5])>=1){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=mxGetN(prhs[5]))!=m)
          matlabFmtdErrMsgTxt("levmar: A must have %d columns, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=(Arows=mxGetM(prhs[5])))
          matlabFmtdErrMsgTxt("levmar: b must have %d elements, got %d.", Arows, i);

        At=prhs[5];
        b=mxGetPr(prhs[6]);
        A=getTranspose(At);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /* wghts */
  /* check if we have a weights vector */
  if(nrhs>=6 && mintype==MIN_CONSTRAINED_BLEC){ /* only check if we have seen both box & linear constraints */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && (mxGetM(prhs[5])==1 || mxGetN(prhs[5])==1)){
      if(__MAX__(mxGetM(prhs[5]), mxGetN(prhs[5]))==m){
        wghts=mxGetPr(prhs[5]);

        ++prhs;
        --nrhs;
      }
    }
  }

  /** C, d **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_BLEIC || mintype==MIN_CONSTRAINED_BLIC || mintype==MIN_CONSTRAINED_LEIC || mintype==MIN_CONSTRAINED_LIC)){
    /* check if the next two arguments are a real matrix and a real row or column vector */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && mxGetM(prhs[5])>=1 && mxGetN(prhs[5])>=1){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=mxGetN(prhs[5]))!=m)
          matlabFmtdErrMsgTxt("levmar: C must have %d columns, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=(Crows=mxGetM(prhs[5])))
          matlabFmtdErrMsgTxt("levmar: d must have %d elements, got %d.", Crows, i);

        Ct=prhs[5];
        d=mxGetPr(prhs[6]);
        C=getTranspose(Ct);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /* arguments below this point are assumed to be extra arguments passed
   * to every invocation of the fitting function and its Jacobian
   */

extraargs:
  /* handle any extra args and allocate memory for
   * passing the current parameter estimate to matlab
   */
  nextra=nrhs-5;
  mdata.nrhs=nextra+1;
  mdata.rhs=(mxArray **)mxMalloc(mdata.nrhs*sizeof(mxArray *));
  for(i=0; i<nextra; ++i)
    mdata.rhs[i+1]=(mxArray *)prhs[nrhs-nextra+i]; /* discard 'const' modifier */
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: %d extra args\n", nextra);
#endif /* DEBUG */

  if(mdata.isrow_p0){ /* row vector */
    mdata.rhs[0]=mxCreateDoubleMatrix(1, m, mxREAL);
    /*
    mxSetM(mdata.rhs[0], 1);
    mxSetN(mdata.rhs[0], m);
    */
  }
  else{ /* column vector */
    mdata.rhs[0]=mxCreateDoubleMatrix(m, 1, mxREAL);
    /*
    mxSetM(mdata.rhs[0], m);
    mxSetN(mdata.rhs[0], 1);
    */
  }

  /* ensure that the supplied function & Jacobian are as expected */
  if(checkFuncAndJacobian(p, m, n, havejac, &mdata)){
    status=LM_ERROR;
    goto cleanup;
  }

  if(nlhs>3) /* covariance output required */
    covar=mxMalloc(m*m*sizeof(double));

  /* invoke levmar */
  switch(mintype){
    case MIN_UNCONSTRAINED: /* no constraints */
      if(havejac)
        status=dlevmar_der(func, jacfunc, p, x, m, n, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_dif(func,          p, x, m, n, itmax, opts, info, NULL, covar, (void *)&mdata);
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_der()/dlevmar_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BC: /* box constraints */
      if(havejac)
        status=dlevmar_bc_der(func, jacfunc, p, x, m, n, lb, ub, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bc_dif(func,          p, x, m, n, lb, ub, itmax, opts, info, NULL, covar, (void *)&mdata);
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_bc_der()/dlevmar_bc_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LEC:  /* linear equation constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_lec_der(func, jacfunc, p, x, m, n, A, b, Arows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_lec_dif(func,          p, x, m, n, A, b, Arows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_lec_der()/dlevmar_lec_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLEC: /* box & linear equation constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_blec_der(func, jacfunc, p, x, m, n, lb, ub, A, b, Arows, wghts, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_blec_dif(func,          p, x, m, n, lb, ub, A, b, Arows, wghts, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box & linear constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_blec_der()/dlevmar_blec_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLEIC: /* box, linear equation & inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, lb, ub, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, lb, ub, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box, linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_bleic_der()/dlevmar_bleic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLIC: /* box, linear inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box & linear inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_blic_der()/dlevmar_blic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LEIC: /* linear equation & inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, NULL, NULL, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, NULL, NULL, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_leic_der()/dlevmar_leic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LIC: /* linear inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_lic_der()/dlevmar_lic_dif()\n");
#endif /* DEBUG */
    break;
    default:
      mexErrMsgTxt("levmar: unexpected internal error.");
  }

#ifdef DEBUG
  fflush(stderr);
  printf("LEVMAR: minimization returned %d in %g iter, reason %g\n\tSolution: ", status, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\n\tMinimization info:\n\t");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");
#endif /* DEBUG */

  /* copy back return results */
  /** ret **/
  plhs[0]=mxCreateDoubleMatrix(1, 1, mxREAL);
  ret=mxGetPr(plhs[0]);
  ret[0]=(double)status;

  /** popt **/
  plhs[1]=(mdata.isrow_p0==1)? mxCreateDoubleMatrix(1, m, mxREAL) : mxCreateDoubleMatrix(m, 1, mxREAL);
  pdbl=mxGetPr(plhs[1]);
  for(i=0; i<m; ++i)
    pdbl[i]=p[i];

  /** info **/
  if(nlhs>2){
    plhs[2]=mxCreateDoubleMatrix(1, LM_INFO_SZ, mxREAL);
    pdbl=mxGetPr(plhs[2]);
    for(i=0; i<LM_INFO_SZ; ++i)
      pdbl[i]=info[i];
  }

  /** covar **/
  if(nlhs>3){
    plhs[3]=mxCreateDoubleMatrix(m, m, mxREAL);
    pdbl=mxGetPr(plhs[3]);
    for(i=0; i<m*m; ++i) /* covariance matrices are symmetric, thus no need to transpose! */
      pdbl[i]=covar[i];
  }

cleanup:
  /* cleanup */
  mxDestroyArray(mdata.rhs[0]);
  if(A) mxFree(A);
  if(C) mxFree(C);

  mxFree(mdata.fname);
  if(havejac) mxFree(mdata.jacname);
  mxFree(p);
  mxFree(mdata.rhs);
  if(covar) mxFree(covar);

  if(status==LM_ERROR)
    mexWarnMsgTxt("levmar: optimization returned with an error!");
}
Example #6
0
double stfnum::lmFit( const Vector_double& data, double dt,
                   const stfnum::storedFunc& fitFunc, const Vector_double& opts,
                   bool use_scaling,
                   Vector_double& p, std::string& info, int& warning )
{
    // Basic range checking:
    if (fitFunc.pInfo.size()!=p.size()) {
        std::string msg("Error in stfnum::lmFit()\n"
                "function parameters (p_fit) and parameters entered (p) have different sizes");
        throw std::runtime_error(msg);
    }
    if ( opts.size() != 6 ) {
        std::string msg("Error in stfnum::lmFit()\n"
                "wrong number of options");
        throw std::runtime_error(msg);
    }

    bool constrained = false;
    std::vector< double > constrains_lm_lb( fitFunc.pInfo.size() );
    std::vector< double > constrains_lm_ub( fitFunc.pInfo.size() );

    bool can_scale = use_scaling;
    
    for ( unsigned n_p=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        if ( fitFunc.pInfo[n_p].constrained ) {
            constrained = true;
            constrains_lm_lb[n_p] = fitFunc.pInfo[n_p].constr_lb;
            constrains_lm_ub[n_p] = fitFunc.pInfo[n_p].constr_ub;
        } else {
            constrains_lm_lb[n_p] = -DBL_MAX;
            constrains_lm_ub[n_p] = DBL_MAX;
        }
        if ( can_scale ) {
            if (fitFunc.pInfo[n_p].scale == stfnum::noscale) {
                can_scale = false;
            }
        }
    }

    // Store the functions at global scope:
    saveFunc(fitFunc.func);
    saveJac(fitFunc.jac);

    double info_id[LM_INFO_SZ];
    Vector_double data_ptr(data);
    Vector_double xyscale(4);
    if (can_scale) {
        xyscale = get_scale(data_ptr, dt);
    }
    
    // The parameters need to be separated into two parts:
    // Those that are to be fitted and those that the client wants
    // to keep constant. Since there is no native support to
    // do so in Lourakis' routines, the workaround is a little
    // tricky, making (ab)use of the *void pointer:

    // number of parameters that need to be fitted:
    int n_fitted=0;
    for ( unsigned n_p=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        n_fitted += fitFunc.pInfo[n_p].toFit;
    }
    // parameters that need to be fitted:
    Vector_double p_toFit(n_fitted);
    std::deque<bool> p_fit_bool( fitFunc.pInfo.size() );
    // parameters that are held constant:
    Vector_double p_const( fitFunc.pInfo.size()-n_fitted );
    for ( unsigned n_p=0, n_c=0, n_f=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        if (fitFunc.pInfo[n_p].toFit) {
            p_toFit[n_f++] = p[n_p];
            if (can_scale) {
                p_toFit[n_f-1] = fitFunc.pInfo[n_p].scale(p_toFit[n_f-1], xyscale[0],
                                                          xyscale[1], xyscale[2], xyscale[3]);
            }
        } else {
            p_const[n_c++] = p[n_p];
            if (can_scale) {
                p_const[n_c-1] = fitFunc.pInfo[n_p].scale(p_const[n_c-1], xyscale[0],
                                                          xyscale[1], xyscale[2], xyscale[3]);
            }
        }
        p_fit_bool[n_p] = fitFunc.pInfo[n_p].toFit;
    }
    // size * dt_new = 1 -> dt_new = 1.0/size
    double dt_finfo = dt;
    if (can_scale)
        dt_finfo = 1.0/data_ptr.size();

    fitInfo fInfo( p_fit_bool, p_const, dt_finfo );

    // make l-value of opts:
    Vector_double opts_l(5);
    for (std::size_t n=0; n < 4; ++n) opts_l[n] = opts[n];
    opts_l[4] = -1e-6;
    int it = 0;
    if (p_toFit.size()!=0 && data_ptr.size()!=0) {
        double old_info_id[LM_INFO_SZ];

        // initialize with initial parameter guess:
        Vector_double old_p_toFit(p_toFit);

#ifdef _DEBUG
        std::ostringstream optsMsg;
        optsMsg << "\nopts: ";
        for (std::size_t n_p=0; n_p < opts.size(); ++n_p)
            optsMsg << opts[n_p] << "\t";
        optsMsg << "\n" << "data_ptr[" << data_ptr.size()-1 << "]=" << data_ptr[data_ptr.size()-1] << "\n";
        optsMsg << "constrains_lm_lb: ";
        for (std::size_t n_p=0; n_p < constrains_lm_lb.size(); ++n_p) 
            optsMsg << constrains_lm_lb[n_p] << "\t";
        optsMsg << "\n" << "constrains_lm_ub: ";
        for (std::size_t n_p=0; n_p < constrains_lm_ub.size(); ++n_p) 
            optsMsg << constrains_lm_ub[n_p] << "\t";
        optsMsg << "\n\n";
        std::cout << optsMsg;
#endif

        while ( 1 ) {
#ifdef _DEBUG
            std::ostringstream paramMsg;
            paramMsg << "Pass: "******"\t";
            paramMsg << "p_toFit: ";
            for (std::size_t n_p=0; n_p < p_toFit.size(); ++n_p)
                paramMsg << p_toFit[n_p] << "\t";
            paramMsg << "\n";
            std::cout << paramMsg.str().c_str();
#endif

            if ( !fitFunc.hasJac ) {
                if ( !constrained ) {
                    dlevmar_dif( c_func_lour, &p_toFit[0], &data_ptr[0], n_fitted, 
                            (int)data.size(), (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );
                } else {
                    dlevmar_bc_dif( c_func_lour, &p_toFit[0], &data_ptr[0], n_fitted, 
                            (int)data.size(), &constrains_lm_lb[0], &constrains_lm_ub[0], NULL,
                            (int)opts[4], &opts_l[0], info_id, NULL, NULL, &fInfo );
                }
            } else {
                if ( !constrained ) {
                    dlevmar_der( c_func_lour, c_jac_lour, &p_toFit[0], &data_ptr[0], 
                            n_fitted, (int)data.size(), (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );                
                } else {
                    dlevmar_bc_der( c_func_lour,  c_jac_lour, &p_toFit[0], 
                            &data_ptr[0], n_fitted, (int)data.size(), &constrains_lm_lb[0], 
                            &constrains_lm_ub[0], NULL, (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );
                }
            }
            it++;
            if ( info_id[1] != info_id[1] ) {
                // restore previous parameters if new chisqr is NaN:
                p_toFit = old_p_toFit;
            } else {
                double dchisqr = (info_id[0] - info_id[1]) / info_id[1]; // (old chisqr - new chisqr) / new_chisqr
            
                if ( dchisqr < 0 ) {
                    // restore previous results and exit if new chisqr is larger:
                    for ( int n_i = 0; n_i < LM_INFO_SZ; ++n_i )  info_id[n_i] = old_info_id[n_i];
                    p_toFit = old_p_toFit;
                    break;
                }
                if ( dchisqr < 1e-5 ) {
                    // Keep current results and exit if change in chisqr is below threshold
                    break;
                }
                // otherwise, store results and continue iterating:
                for ( int n_i = 0; n_i < LM_INFO_SZ; ++n_i ) old_info_id[n_i] = info_id[n_i];
                old_p_toFit = p_toFit;
            }
            if ( it >= opts[5] )
                // Exit if maximal number of iterations is reached
                break;
            // decrease initial step size for next iteration:
            opts_l[0] *= 1e-4;
        }
    } else {
        std::runtime_error e("Array of size zero in lmFit");
        throw e;
    }

    // copy back the fitted parameters to p:
    for ( unsigned n_p=0, n_f=0, n_c=0; n_p<fitFunc.pInfo.size(); ++n_p ) {
        if (fitFunc.pInfo[n_p].toFit) {
            p[n_p] = p_toFit[n_f++];
        } else {
            p[n_p] = p_const[n_c++];
        }
        if (can_scale) {
            p[n_p] = fitFunc.pInfo[n_p].unscale(p[n_p], xyscale[0],
                                                xyscale[1], xyscale[2], xyscale[3]);
        }
    }
    
    std::ostringstream str_info;
    str_info << "Passes: " << it;
    str_info << "\nIterations during last pass: "******"\nStopping reason during last pass:"******"\nStopped by small gradient of squared error.";
         warning = 0;
         break;
     case 2:
         str_info << "\nStopped by small rel. parameter change.";
         warning = 0;
         break;
     case 3:
         str_info << "\nReached max. number of iterations. Restart\n"
                  << "with smarter initial parameters and / or with\n"
                  << "increased initial scaling factor and / or with\n"
                  << "increased max. number of iterations.";
         warning = 3;
         break;
     case 4:
         str_info << "\nSingular matrix. Restart from current parameters\n"
                  << "with increased initial scaling factor.";
         warning = 4;
         break;
     case 5:
         str_info << "\nNo further error reduction is possible.\n"
                  << "Restart with increased initial scaling factor.";
         warning = 5;
         break;
     case 6:
         str_info << "\nStopped by small squared error.";
         warning = 0;
         break;
     case 7:
         str_info << "\nStopped by invalid (i.e. NaN or Inf) \"func\" values.\n";
         str_info << "This is a user error.";
         warning = 7;
         break;
     default:
         str_info << "\nUnknown reason for stopping the fit.";
         warning = -1;
    }
    if (use_scaling && !can_scale) {
        str_info << "\nCouldn't use scaling because one or more "
                 << "of the parameters don't allow it.";
    }
    info=str_info.str();
    return info_id[1];
}
Example #7
0
void gaussfit_main (int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[], char* variant, char* model, const int m, const int background_int,
                        void(*fit_model)(double *p, double *x, int m, int n, void *data ), void(*fit_jacobian)(double *p, double *jac, int m, int n, void *data),
                        const int numEqualityConstraints, const int numBounds, const int numInputs, const int numDataEntries)

{

    //gets the dimensions of the input data (window size)
    int sizex = mxGetN(prhs[0]);
    int sizey = mxGetM(prhs[0]);


    //checks that input frame is square
    if( sizex != sizey)
    {
      mexErrMsgTxt("Input data is not a square matrix.");
    }
    //===================================


    //Read in data from MATLAB
    //===================================

    int n = sizex*sizey;    //number of pixels in data
    //here we create a dynamic array of size N to hold the data

    double* x;
    x = new double[n];


    //Read in data to x from MATLAB
    double *datapoint = mxGetPr(prhs[0]);

    for(int j = 0; j < sizey; j++)
    {
    for(int i = 0; i < sizex; i++)
    {

          x[(i * sizex) + j] = datapoint[i + (j*sizey)];
    }
    }

    //Because of the way MATLAB reads mxArrays (down each column)
    //important to account for this because of having fixed positions etc
    //or fixed elliptical width.

    //so read the MATLAB array consecutively for speed and then the first element (1,1) goes to
    //position (1,1) [element 0], then the second element (1,2) goes to position (2,1) [element 1*sizex] etc
    //so we fill x[] down the "columns" in the array
    //eg for a 3x3 matrix we read in elements[0 - 8] from MATLAB and input them in array element order
    //[0], [3], [6] (first column done), [1],[4],[7] (second), [2], [5], [8] - all done

       double* constraints_pointer;

       double *data;           //read in data from MATLAB input, if required
       if(numDataEntries == 0)
          {
             data = NULL;
          }
       else
           {
             data = new double[numDataEntries];

             for(int i = 0; i < numDataEntries; i++)
              {
                constraints_pointer = mxGetPr(prhs[i+1]); //+1 because array of intensity data is indexed at [0]
                data[i] = constraints_pointer[0];
              }

           }
    //data contains any constants we need to pass to the constraints functions
    //data contains any constants we need to pass to the constraints functions


    //Read in bounding condition data from MATLAB to pass to constraints function

    //Matlab input convention - data first, then all fixed parameters, then all bounded parameters in order -
    //lower bound first, then upper bound, with standard variable sequence A, sigma, b, Xo, Yo, then extra options. So bound indices for
    // prhs[] start at numEqualityConstraints + 1 ([0] is always the data)

    //===================================


    //Sets up initial guess and boundaries for solver
    //===================================
       double* p;
       p = new double[m];
       double back_p[1];

       void initialfit (char *variant, double p[], double data_array[], int n, double *data); //define initial fit function

       //if flag in input is set to true, use supplied guess, otherwise run initial fit routine
       bool* use_initial_fit_guess = mxGetLogicals(prhs[numInputs-3] );
       if (use_initial_fit_guess[0] == true) //then use the guess given in input
          {
              double* init_guess_pointer = mxGetPr(prhs[numEqualityConstraints + numBounds + 2]); //gets pointer to guess
              for(int i = 0; i < m; i++)
              {
		p[i] = init_guess_pointer[i];
	      } //transfer guess from input argument


          }

       else //run the initial fits program to generate the initial guess
          {initialfit(variant, p, x, n, data);}

    //sets the initial value for the background to be used by the background only solver
       back_p[0] = p[background_int - 1];

    //initialise boundary and penalty weighting arrays
    //which will be taken as the arguments for constraint calculating
    //and solver functions - constraints() and dlevmar_etc()

       double* lb;
       double* ub;
       lb = new double[m];
       ub = new double[m];
       //lower and upper boundary arrays

       double* weights;
       weights = new double[m]; //Not actually used but if we want to define weighting for penalty function
       //for use in the boundary conditions, this is here


       double info[LM_INFO_SZ];

     //Read in search stopping parameters from input array from Matlab

       double* options_pointer = mxGetPr(prhs[numEqualityConstraints+numBounds+3]);

       double searchstopParams[4] = {options_pointer[1], options_pointer[2], options_pointer[3]};
       int numIterations = options_pointer[4];

    //this array controls parameters epsilon 1,2 and 3 as described in http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf
    //the purpose of them is to stop the solver before it has reached its maximum number of iterations if the solution has
    //already sufficiently converged
    //for data with reasonable signal to noise, sufficient convergence should only take ~10 iterations, so these conditions
    //are important

    //searchstopParams[0] is epsilon1, the gradient of chi squared, 10^-2 or -3 seems to work well
    //searchstopParams[1] is epsilon2, the gradient of the change in best fit parameters, relative to the values of those parameters
    //this is generally the condition that will determine the speed/accuracy/precision of the output and is worth playing around with
    //higher values generally slow down the routine, but increase the accuracy, especially for badly scaled conditions (eg. background
    //several orders of magnitude higher than peak amplitude) good values seem to be in the range 10^-3 (for well scaled conditions) to
    //10^-5
    //searchstopParams[2] is epsilon3, the absolute value of chi squared. For a well solved gaussian with low noise
    //this will still be a large number so this is essentially ignored





       double opts[LM_OPTS_SZ] = {LM_INIT_MU, searchstopParams[0],searchstopParams[1],searchstopParams[2], LM_DIFF_DELTA};
        //opts[0] is initial mu value - controls the damping in the LM algorithm - using default
        //opts[1] is stopping threshold on gradient of chi square
        //opts[2] is stopping threshold on relative change of parameter magnitudes
        //opts[3] is stopping threshold on value of chi squared
        //opts[4] is irrelevant if analytic jacobian used, so use default
    //===================================

       //define constraint setting function
       void constraints(char *variant, double *lb, double *ub, double *constraintMatrix, double *constraintRHS,
                    int numBounds, int numEqualityConstraints, double *weights, int m, int framesize, double *data);

        int ret;








    //We will always have box (inequality constraints) eg. amplitude must be positive
    //However, in some cases we will have linear (equality) constraints and will need to use dlevmar_blec_der
    //But, if we have no equality constraints we should use dlevmar_bc_der which uses box constraints only
    //So use an if-else condition on numEqualityConstraints to decide which to us

         if(numEqualityConstraints > 0) //then we need box and linear constraints

            {
               double *ConstraintMatrix = new double[numEqualityConstraints * m];
               double *ConstraintRHS    = new double[numEqualityConstraints];

        ///constraints function
         constraints(variant, lb, ub, ConstraintMatrix, ConstraintRHS, numBounds, numEqualityConstraints, weights, m, sizex, data);

                    ///main solver function if you need equality constraints
              ret = dlevmar_blec_der

                     ///basics
                     (fit_model,  //pointer to the function that calculates the model values at each datapoint given parameters p
                      fit_jacobian, //pointer to the function that calculates the analytic jacobian dxi/dpj at each datapoint
                      p, //current best guess parameters as an array of size m
                      x,  //data to be fitted to the model, array of size n
                      m,  //number of free parameters
                      n, //number of datapoints

                      ///constraints
                      lb, //array of m elements setting lower bounds on each parameter (p[i] >= lb[i])
                      ub, //array of m elements setting upper bounds on each parameter (p[i] <= ub[i])
                      ConstraintMatrix, //matrix of equality constraint values, numEqualityconstraints = number of rows
                                        //m is number of columns
                      ConstraintRHS, //RHS of constraint equation ConstraintMatrix * p = ConstraintRHS
                      numEqualityConstraints, //how many constraints you have
                      NULL, //penalty weighting array, set to NULL to use defaults, otherwise fill and use weights[m]

                     ///solver stop procedure and debugging
                      numIterations, //max no. of iterations the solver will run for, 50 to 100 seems about right
                      opts, //5 element array, described above
                      info, //from source code of levmar library:
                            /* info: information regarding the minimization. Used to find the lsq minimisation value at output
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
                      * info[7]= # function evaluations
                      * info[8]= # Jacobian evaluations
                      * info[9]= # linear systems solved, i.e. # attempts for reducing error
                      */

                      NULL,    // working memory at least LM_BLEC_DER_WORKSZ() reals large, allocated if NULL
                      NULL,   //Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed.
                      data); // pointer to additional data passed to function and jacobian calculator - fixed constants etc

                      delete [] ConstraintMatrix;
                      delete [] ConstraintRHS;
            }

           ///main solver function if you only need inequality constraints - see above for arg details
        else if(numEqualityConstraints == 0) //we only need box constraints

            {
                ///constraints function, inequality constraints only
                constraints(variant, lb, ub, NULL, NULL, numBounds, numEqualityConstraints, weights, m, sizex, data);
                ///main solver, see above for arg descriptions
                ret = dlevmar_bc_der

                       (fit_model, fit_jacobian, p, x, m, n,

                        lb, ub, NULL,

                        numIterations, opts, info, NULL, NULL, data); // with analytic Jacobian



            }

        else { mexErrMsgTxt("Number of equality constraints not set properly, should be an integer >= 0"); }





        ///OUTPUT
        //output brightness, final fit parameters and normalised least squares value to matlab

         double brightness, lsq_normalised;
         const double pi = 3.14159265358979323846; //easier to do this than require a library Pi function

         bool got_signal = true; //assume signal as default

         if ( model == "circular" )
         {brightness = 2.0*pi*p[0]*pow(p[1],2);}
         else if (model == "elliptical")
         {	
	   brightness = 2.0*pi*p[0]*p[1]*p[2];
	 }
         else
         {mexErrMsgTxt("Error, model not set.");}
	  
	  //if elliptical model transform the paramaters st. s_y is semimajor axis, and 0<theta<pi
	  if(model == "elliptical")
          {
	    double s_x,s_y,theta;
	    s_x = p[1];
	    s_y = p[2];
	    theta = p[6];

	    if (s_x > s_y) //ie if the fit has got the axes the wrong way around
	    { 
	      p[1] = s_y;//swap the two values
	      p[2] = s_x;
	      theta = theta + pi/2; //rotate the axes 90deg
	    }
	    
	    //transform theta st. its 0<theta<pi ie 
	    //ie, mod(theta,pi) = theta - floor(theta/pi) * pi;

	    theta = theta - floor(theta/pi) * pi;
	    p[6] = theta;
	  }




          lsq_normalised = info[1]/n;



          plhs[0] = mxCreateDoubleScalar(brightness); //send brightness as output to MATLAB

          plhs[1] = mxCreateDoubleMatrix(1, m, mxREAL);

          //need to do this next bit because can only pass an array back to Matlab as a matrix if array is
         //in dynamic memory via mxCalloc command
          void* final_fit_alloc = mxCalloc(m, sizeof(double));
          double* final_fit = (double *) final_fit_alloc;


          for (int i = 0; i < m; i++)
            {
                final_fit[i] = p[i];
            }

          mxFree(mxGetPr(plhs[1])); //mxSetPr will not deallocate memory allocated to plhs[1], so do it manually or get a leak
          mxSetPr(plhs[1],final_fit); //fit parameters are now ready to be passed to Matlab


          plhs[2] = mxCreateDoubleScalar(lsq_normalised);


          if (options_pointer[0] == true) //then display the output, otherwise just forward it to MATLAB
            {
                if (model == "circular")
                {
                mexPrintf("\nBrightness is %f.\n", brightness);
                mexPrintf("Fit parameters are: A = %f, sigma = %f, b = %f, Xo = %f, Yo = %f. \n", p[0],p[1],p[2],p[3],p[4]);
                mexPrintf("Normalised lsq is %f.\n", lsq_normalised);
                }

               if (model == "elliptical") //then display the output, otherwise just forward it to MATLAB
                {
                mexPrintf("\nBrightness is %f.\n", brightness);
                mexPrintf("Fit parameters are: A = %f, sigma = %f, %f, b = %f, Xo = %f, Yo = %f. Theta = %f. \n", p[0],p[1],p[2],p[3],p[4],p[5],p[6]);
                mexPrintf("Normalised lsq is %f.\n", lsq_normalised);
                }
   		//******************Uncomment for extra information*************************************** 
		mexPrintf("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]);
   		   //   Debugging - info[0] returns lsq at start of fit,info[1] returns lsq at end of fit,
 		  //******************Uncomment for extra information*************************************** 
            }

            //freeup memory allocated for dynamic arrays
            delete [] x;
            delete [] p;
            delete [] data;
            delete [] lb;
            delete [] ub;
            delete [] weights;


            return;


}