Example #1
0
int main()
{
const int n=40, m=3; // 40 measurements, 3 parameters
double p[m], x[n], opts[LM_OPTS_SZ], info[LM_INFO_SZ];
register int i;
int ret;

  /* generate some measurement using the exponential model with
   * parameters (5.0, 0.1, 1.0), corrupted with zero-mean
   * Gaussian noise of s=0.1
   */
  INIT_RANDOM(0);
  for(i=0; i<n; ++i)
    x[i]=(5.0*exp(-0.1*i) + 1.0) + gNoise(0.0, 0.1);

  /* initial parameters estimate: (1.0, 0.0, 0.0) */
  p[0]=1.0; p[1]=0.0; p[2]=0.0;

  /* optimization control parameters; passing to levmar NULL instead of opts reverts to defaults */
  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
  opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used 

  /* invoke the optimization function */
  ret=dlevmar_der(expfunc, jacexpfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
  //ret=dlevmar_dif(expfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // without Jacobian
  printf("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]);
  printf("Best fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]);

  exit(0);
}
Example #2
0
void stack_levmar_der( double* ygiven, double* p, const int m, const int n, void* data ) {
  double opts[LM_OPTS_SZ], info[LM_INFO_SZ];

  // optimization control parameters; passing to levmar NULL instead of opts reverts to defaults
  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
  opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used

  // invoke the optimization function
  dlevmar_der(stack_func, stack_jacfunc, p, ygiven, m, n, 1000, opts, info, NULL, NULL, data); // with analytic Jacobian
}
Example #3
0
int main( int argc, char* argv[] ) {
    
    srandom(0);
    const int n = 4; // Size of measurements
    const int m = 4; // Size of parameters

    double p[m]; double x[n];

    double opts[LM_OPTS_SZ];
    double info[LM_INFO_SZ];

    int i, ret;
    
    // We want the function to be the minimum possible
    x[0] = 0; x[1] = 0; x[2] = 0; x[3] = 0;
    p[0] = 3; p[1] = -1; p[2] = 0; p[3] = 1;
 
    double dt; clock_t ts, tf;
    ts = clock();
    ret = dlevmar_der( ex3_fx, ex3_jac,
		       p, x,
		       m, n,
		       1000,
		       NULL, info,
		       NULL, NULL, NULL );
    tf = clock();
    
    dt = (double)(tf-ts)/(double)CLOCKS_PER_SEC;
    std::cout << "Calculation time: "<< dt << std::endl;
    std::cout << " Levenberg Marquardt returned in "<<info[5]<<" iterations "<<
	", reason: "<< info[6] << " sumsq: "<< info[1] <<"["<<info[0]<<"]"<<std::endl;

    std::cout << "Best fit parameter: "<< p[0]<<", "<<p[1]<<", "<<p[2]<<", "<<p[3]<< std::endl;

    return 0;

}
Example #4
0
int main()
{
register int i, j;
int problem, ret;
double p[5], // 5 is max(2, 3, 5)
	   x[16]; // 16 is max(2, 3, 5, 6, 16)
int m, n;
double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
char *probname[]={
    "Rosenbrock function",
    "modified Rosenbrock problem",
    "Powell's function",
    "Wood's function",
    "Meyer's (reformulated) problem",
    "Osborne's problem",
    "helical valley function",
    "Boggs & Tolle's problem #3",
    "Hock - Schittkowski problem #28",
    "Hock - Schittkowski problem #48",
    "Hock - Schittkowski problem #51",
    "Hock - Schittkowski problem #01",
    "Hock - Schittkowski modified problem #21",
    "hatfldb problem",
    "hatfldc problem",
    "equilibrium combustion problem",
    "Hock - Schittkowski modified #1 problem #52",
    "Schittkowski modified problem #235",
    "Boggs & Tolle modified problem #7",
    "Hock - Schittkowski modified #2 problem #52",
    "Hock - Schittkowski modified problem #76",
};

  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
  opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing 
  //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!

  /* uncomment the appropriate line below to select a minimization problem */
  problem=
		  //0; // Rosenbrock function
		  //1; // modified Rosenbrock problem
		  //2; // Powell's function
      //3; // Wood's function
		  4; // Meyer's (reformulated) problem
		  //5; // Osborne's problem
      //6; // helical valley function
#ifdef HAVE_LAPACK
      //7; // Boggs & Tolle's problem 3
      //8; // Hock - Schittkowski problem 28
      //9; // Hock - Schittkowski problem 48
      //10; // Hock - Schittkowski problem 51
#else // no LAPACK
#ifdef _MSC_VER
#pragma message("LAPACK not available, some test problems cannot be used")
#else
#warning LAPACK not available, some test problems cannot be used
#endif // _MSC_VER

#endif /* HAVE_LAPACK */
      //11; // Hock - Schittkowski problem 01
      //12; // Hock - Schittkowski modified problem 21
      //13; // hatfldb problem
      //14; // hatfldc problem
      //15; // equilibrium combustion problem
#ifdef HAVE_LAPACK
      //16; // Hock - Schittkowski modified #1 problem 52
      //17; // Schittkowski modified problem 235
      //18; // Boggs & Tolle modified problem #7
      //19; // Hock - Schittkowski modified #2 problem 52
      //20; // Hock - Schittkowski modified problem #76"
#endif /* HAVE_LAPACK */
				
  switch(problem){
  default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem);
           exit(1);
    break;

  case 0:
  /* Rosenbrock function */
    m=2; n=2;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 1:
  /* modified Rosenbrock problem */
    m=2; n=3;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 2:
  /* Powell's function */
    m=2; n=2;
    p[0]=3.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);		// no Jacobian
  break;

  case 3:
  /* Wood's function */
    m=4; n=6;
    p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 4:
  /* Meyer's data fitting problem */
    m=3; n=16;
    p[0]=8.85; p[1]=4.0; p[2]=2.5;
    x[0]=34.780;	x[1]=28.610; x[2]=23.650; x[3]=19.630;
    x[4]=16.370;	x[5]=13.720; x[6]=11.540; x[7]=9.744;
    x[8]=8.261;	x[9]=7.030; x[10]=6.005; x[11]=5.147;
    x[12]=4.427;	x[13]=3.820; x[14]=3.307; x[15]=2.872;
    //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian

   { double *work, *covar;
    work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
    if(!work){
    	fprintf(stderr, "memory allocation request failed in main()\n");
      exit(1);
    }
    covar=work+LM_DIF_WORKSZ(m, n);

    ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated

    printf("Covariance of the fit:\n");
    for(i=0; i<m; ++i){
      for(j=0; j<m; ++j)
        printf("%g ", covar[i*m+j]);
      printf("\n");
    }
    printf("\n");

    free(work);
   }

/* uncomment the following block to verify Jacobian */
/*
   {
    double err[16];
    dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err); 
    for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
   }
*/
  break;

  case 5:
  /* Osborne's data fitting problem */
  {
    double x33[]={
      8.44E-1, 9.08E-1, 9.32E-1, 9.36E-1, 9.25E-1, 9.08E-1, 8.81E-1,
      8.5E-1, 8.18E-1, 7.84E-1, 7.51E-1, 7.18E-1, 6.85E-1, 6.58E-1,
      6.28E-1, 6.03E-1, 5.8E-1, 5.58E-1, 5.38E-1, 5.22E-1, 5.06E-1,
      4.9E-1, 4.78E-1, 4.67E-1, 4.57E-1, 4.48E-1, 4.38E-1, 4.31E-1,
      4.24E-1, 4.2E-1, 4.14E-1, 4.11E-1, 4.06E-1};

    m=5; n=33;
    p[0]=0.5; p[1]=1.5; p[2]=-1.0; p[3]=1.0E-2; p[4]=2.0E-2;

    ret=dlevmar_der(osborne, jacosborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(osborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  }
  break;

  case 6:
  /* helical valley function */
    m=3; n=3;
    p[0]=-1.0; p[1]=0.0; p[2]=0.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

#ifdef HAVE_LAPACK
  case 7:
  /* Boggs-Tolle problem 3 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

    ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 8:
  /* Hock - Schittkowski problem 28 */
    m=3; n=3;
    p[0]=-4.0; p[1]=1.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*3]={1.0, 2.0, 3.0},
             b[1]={1.0};

    ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 9:
  /* Hock - Schittkowski problem 48 */
    m=5; n=5;
    p[0]=3.0; p[1]=5.0; p[2]=-3.0;
    p[3]=2.0; p[4]=-2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0,  0.0, 0.0, 1.0, -2.0, -2.0},
             b[2]={5.0, -3.0};

    ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 10:
  /* Hock - Schittkowski problem 51 */
    m=5; n=5;
    p[0]=2.5; p[1]=0.5; p[2]=2.0;
    p[3]=-1.0; p[4]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={4.0, 0.0, 0.0};

    ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

#endif /* HAVE_LAPACK */

  case 11:
  /* Hock - Schittkowski problem 01 */
    m=2; n=2;
    p[0]=-2.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=-DBL_MAX; lb[1]=-1.5;
      ub[0]=ub[1]=DBL_MAX;

      ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 12:
  /* Hock - Schittkowski (modified) problem 21 */
    m=2; n=2;
    p[0]=-1.0; p[1]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=2.0; lb[1]=-50.0;
      ub[0]=50.0; ub[1]=50.0;

      ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 13:
  /* hatfldb problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.1;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[2]=ub[3]=DBL_MAX;
      ub[1]=0.8;

      ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 14:
  /* hatfldc problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.9;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[1]=ub[2]=ub[3]=10.0;

      ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 15:
  /* equilibrium combustion problem */
    m=5; n=5;
    p[0]=p[1]=p[2]=p[3]=p[4]=0.0001;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[5], ub[5];

      lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001;

      ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0;

      ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

#ifdef HAVE_LAPACK
  case 16:
  /* Hock - Schittkowski modified #1 problem 52 */
    m=5; n=4;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

      double lb[5], ub[5];

      double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights

      lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0;
      ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3;

      ret=dlevmar_blec_der(mod1hs52, jacmod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 17:
  /* Schittkowski modified problem 235 */
    m=3; n=2;
    p[0]=-2.0; p[1]=3.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*3]={1.0, 0.0, 1.0,  0.0, 1.0, -4.0},
             b[2]={-1.0, 0.0};

      double lb[3], ub[3];

      lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7;
      ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX;

      ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 18:
  /* Boggs & Tolle modified problem 7 */
    m=5; n=5;
    p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0,   1.0, 1.0, 0.0, -1.0, 0.0,   1.0, 0.0, 0.0, 0.0, 1.0},
             b[3]={1.0, 0.0, 0.5};

      double lb[5], ub[5];

      lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3;
      ub[0]=0.7;      ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX;

      ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 19:
  /* Hock - Schittkowski modified #2 problem 52 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double C[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, -1.0, 0.0, 0.0, 1.0},
             d[3]={-1.0, -2.0, -7.0};

      ret=dlevmar_bleic_der(mod2hs52, jacmod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      //ret=dlevmar_bleic_dif(mod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
    }
    break;

  case 20:
  /* Hock - Schittkowski modified problem 76 */
    m=4; n=4;
    p[0]=0.5; p[1]=0.5; p[2]=0.5; p[3]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*4]={0.0, 1.0, 4.0, 0.0},
             b[1]={1.5};

      double C[2*4]={-1.0, -2.0, -1.0, -1.0,   -3.0, -1.0, -2.0, 1.0},
             d[2]={-5.0, -0.4};

      double lb[4]={0.0, 0.0, 0.0, 0.0};

      ret=dlevmar_bleic_der(modhs76, jacmodhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      //ret=dlevmar_bleic_dif(modhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
      /* variations:
       * if no lb is used, the minimizer is (-0.1135922 0.1330097 0.3417476 0.07572816)
       * if the rhs of constr2 is 4.0, the minimizer is (0.0, 0.166667, 0.333333, 0.0)
       */
    }
    break;

#endif /* HAVE_LAPACK */
  } /* switch */
  
  printf("Results for %s:\n", probname[problem]);
  printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\nMinimization info:\n");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");

  return 0;
}
Example #5
0
void Test::ExpFit(int nSample)
{
	LOGI("Fitting %d samples..", nSample);
	LOGI(" LM_OPTS_SZ=%d", LM_OPTS_SZ);
	LOGI(" LM_INFO_SZ=%d", LM_INFO_SZ);

	LOGI(" LM_INIT_MU=%f", LM_INIT_MU);
	LOGI(" LM_DIFF_DELTA=%f", LM_DIFF_DELTA);


	const int n=nSample, m=3; // 40 measurements, 3 parameters
	double p[m], x[n], opts[LM_OPTS_SZ], info[LM_INFO_SZ];
	register int i;
	int ret;

	/* generate some measurement using the exponential model with
	* parameters (5.0, 0.1, 1.0), corrupted with zero-mean
	* Gaussian noise of s=0.1
	*/
	INIT_RANDOM(0);

	for(i=0; i<n; ++i)
	x[i]=(5.0*exp(-0.1*i) + 1.0) + gNoise(0.0, 0.1);

	/* initial parameters estimate: (1.0, 0.0, 0.0) */
	p[0]=1.0; p[1]=0.0; p[2]=0.0;
	LOGI("Initial fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]);

	/* optimization control parameters; passing to levmar NULL instead of opts reverts to defaults */
	opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
	opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used

#ifdef COMPILEDWITHC11
    std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
    std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif

	/* invoke the optimization function */
	ret=dlevmar_der(expfunc, jacexpfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian

#ifdef COMPILEDWITHC11
    std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
    std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif

    double dt= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
    LOGI("time elapsed for optimization = %f ms", dt*1000.0);
	//ret=dlevmar_dif(expfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // without Jacobian
	LOGI("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]);
	LOGI("Best fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]);

	//DD::
	FILE *fp = fopen("/mnt/sdcard/dev/out_params.txt", "w+");
	fprintf(fp, "%f\t%f\t%f\n", p[0], p[1], p[2]);
	fclose(fp);

	fp = fopen("/mnt/sdcard/dev/out_data.txt", "w+");
	for(i=0; i<n; i++)
	{
		float xest = p[0]*exp(-p[1]*i) + p[2];
		fprintf(fp, "%d\t%f\t%f\n",i, x[i], xest);
	}

	fclose(fp);
}
// Function definitions. 
// -----------------------------------------------------------------
void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{
    //Input Args
    user_function_data fun;
    double *x0, *ydata = NULL, *lb = NULL, *ub = NULL, *A = NULL, *b = NULL, *Aeq = NULL, *beq = NULL;
    //Options
    int maxIter = 500;
    double info[LM_INFO_SZ];
    double opts[LM_OPTS_SZ]={J_INIT_MU, J_STOP_THRESH, J_STOP_THRESH, J_STOP_THRESH, LM_DIFF_DELTA};
    
    //Outputs Args
    double *x, *fval, *exitflag, *iter, *feval;
    double *pcovar = NULL;
    
    //Internal Vars
    size_t ndec, ndat;   
    int i, status, havJac = 0, conMode = 0;
    int nineq=0, neq=0;
    double *covar = NULL;
    double *Apr, *bpr;
    double *llb, *lub;
    citer = 1;
    iterF.enabled = false;
    
    if (nrhs < 1) {
        if(nlhs < 1)
            printSolverInfo();
        else
            plhs[0] = mxCreateString(LM_VERSION);   
        return;
    }

    //Check user inputs & get constraint information
    checkInputs(prhs,nrhs,&conMode);

    //Get Sizes
    ndec = mxGetNumberOfElements(prhs[2]);
    ndat = mxGetNumberOfElements(prhs[3]);
    //Get Objective Function Handle
    if (mxIsChar(prhs[0])) {
        CHECK(mxGetString(prhs[0], fun.f, FLEN) == 0,"error reading objective name string");
        fun.nrhs = 1;
        fun.xrhs = 0;
    } else {
        fun.prhs[0] = (mxArray*)prhs[0];
        strcpy(fun.f, "feval");
        fun.nrhs = 2;
        fun.xrhs = 1;
    }
    fun.prhs[fun.xrhs] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    fun.print = 0;
    //Check and Get Gradient Function Handle
    if(!mxIsEmpty(prhs[1])) {  
        havJac = 1;
        if (mxIsChar(prhs[1])) {
            CHECK(mxGetString(prhs[1], fun.g, FLEN) == 0,"error reading gradient name string");
            fun.nrhs_g = 1;
            fun.xrhs_g = 0;
        } else {
            fun.prhs_g[0] = (mxArray*)prhs[1];
            strcpy(fun.g, "feval");
            fun.nrhs_g = 2;
            fun.xrhs_g = 1;
        }   
        fun.prhs_g[fun.xrhs_g] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    }

    //Get x0 + data
    x0 = mxGetPr(prhs[2]);
    ydata = mxGetPr(prhs[3]);
    fun.ydata = ydata;
    
    //Get Bounds
    if(conMode & 1) {
        //LB
        if(!mxIsEmpty(prhs[4])){
            llb = mxGetPr(prhs[4]);
            lb = mxCalloc(ndec,sizeof(double));
            memcpy(lb,llb,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(lb[i]))
                    lb[i] = -DBL_MAX;
            }
        }
        else {
            lb = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                lb[i] = -DBL_MAX;
        }
        //UB
        if(nrhs > 5 && !mxIsEmpty(prhs[5])){
            lub = mxGetPr(prhs[5]);
            ub = mxCalloc(ndec,sizeof(double));
            memcpy(ub,lub,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(ub[i]))
                    ub[i] = DBL_MAX;
            }
        }
        else {
            ub = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                ub[i] = DBL_MAX;
        }
    }
    //Get Linear Inequality Constraints
    if(conMode & 2) {
        nineq = (int)mxGetM(prhs[7]);
        Apr = mxGetPr(prhs[6]);
        bpr = mxGetPr(prhs[7]);
        //Need to flip >= to <=
        A = mxCalloc(ndec*nineq,sizeof(double));
        b = mxCalloc(nineq,sizeof(double));
        for(i=0;i<ndec*nineq;i++)
            A[i] = -Apr[i];
        for(i=0;i<nineq;i++)
            b[i] = -bpr[i];
    }
    //Get Linear Equality Constraints
    if(conMode & 4) {
        Aeq = mxGetPr(prhs[8]);
        beq = mxGetPr(prhs[9]);
        neq = (int)mxGetM(prhs[9]);
    }
    
    //Get Options if specified
    if(nrhs > 10) {
        if(mxGetField(prhs[10],0,"maxiter"))
            maxIter = (int)*mxGetPr(mxGetField(prhs[10],0,"maxiter"));
        if(mxGetField(prhs[10],0,"display"))
            fun.print = (int)*mxGetPr(mxGetField(prhs[10],0,"display"));
        if(mxGetField(prhs[10],0,"iterfun") && !mxIsEmpty(mxGetField(prhs[10],0,"iterfun")))
        {
            iterF.prhs[0] = (mxArray*)mxGetField(prhs[10],0,"iterfun");
            strcpy(iterF.f, "feval");
            iterF.enabled = true;  
            iterF.prhs[1] = mxCreateNumericMatrix(1,1,mxINT32_CLASS,mxREAL);
            iterF.prhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
            iterF.prhs[3] = mxCreateDoubleMatrix(ndec,1,mxREAL);
        }
    }                       

    //Create Outputs
    plhs[0] = mxCreateDoubleMatrix(ndec,1, mxREAL);
    plhs[1] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[2] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[3] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[4] = mxCreateDoubleMatrix(1,1, mxREAL);
    x = mxGetPr(plhs[0]); 
    fval = mxGetPr(plhs[1]); 
    exitflag = mxGetPr(plhs[2]);    
    iter = mxGetPr(plhs[3]);
    feval = mxGetPr(plhs[4]);
    
    //Copy initial guess to x
    memcpy(x,x0,ndec*sizeof(double));
    //Create Covariance Matrix if Required
    if(nlhs>4)
        covar=mxCalloc(ndec*ndec,sizeof(double));
    
    //Print Header
    if(fun.print) {
        mexPrintf("\n------------------------------------------------------------------\n");
        
        mexPrintf(" This is LEVMAR v2.5\n");
            
        mexPrintf(" Author: Manolis Lourakis\n MEX Interface J. Currie 2011\n\n");
        mexPrintf(" Problem Properties:\n");
        mexPrintf(" # Decision Variables:     %4d\n",ndec);
        mexPrintf(" # Data Points:            %4d\n",ndat);

        mexPrintf("------------------------------------------------------------------\n");
    }
  
    //Solve based on constraints
    switch(conMode)
    {
        case MIN_UNCONSTRAINED:
            //mexPrintf("Unc Problem\n");
            if(havJac)
                status = dlevmar_der(func, jac, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_dif(func, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);            
            break;
        case MIN_CONSTRAINED_BC:
            //mexPrintf("Box Constrained Problem\n");
            if(havJac)
                status = dlevmar_bc_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bc_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LIC:
            //mexPrintf("Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_lic_der(func, jac, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lic_dif(func, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLIC:
            //mexPrintf("Boxed Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_blic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEC:
            //mexPrintf("Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_lec_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lec_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEC:
            //mexPrintf("Boxed Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_blec_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blec_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEIC:
            //mexPrintf("Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_leic_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_leic_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEIC:
            //mexPrintf("Boxed Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_bleic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bleic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        default:
            mexErrMsgTxt("Unknown constraint configuration");
    }
       
    //Save Status & Iterations
    *fval = info[1];
    *exitflag = getStatus(info[6]);
    *iter = (double)status;
    *feval = (double)citer;
    
    //Save Covariance if Required
    if(nlhs > 5) {
        plhs[5] = mxCreateDoubleMatrix(ndec, ndec, mxREAL);
        pcovar = mxGetPr(plhs[5]);
        memcpy(pcovar,covar,ndec*ndec*sizeof(double));
    }
    
    //Print Header
    if(fun.print){            
        //Termination Detected
        if(*exitflag == 1)
            mexPrintf("\n *** SUCCESSFUL TERMINATION ***\n");
        else if(*exitflag == 0)
            mexPrintf("\n *** MAXIMUM ITERATIONS REACHED ***\n");
        else if(*exitflag == -1)
            mexPrintf("\n *** TERMINATION: TOLERANCE TOO SMALL ***\n");
        else if(*exitflag == -2)
            mexPrintf("\n *** TERMINATION: ROUTINE ERROR ***\n");     

        if(*exitflag==1)
            mexPrintf(" Final SSE: %12.5g\n In %3.0f iterations\n",*fval,*iter);

        mexPrintf("------------------------------------------------------------------\n\n");
    }
    
    //Clean Up
    if(lb) mxFree(lb);
    if(ub) mxFree(ub);
    if(covar) mxFree(covar);
    if(A) mxFree(A);
    if(b) mxFree(b);
}
Example #7
0
static PyObject *
_pylm_dlevmar_generic(PyObject *mod, PyObject *args, PyObject *kwds,
                     char *argstring, char *kwlist[],
                      int jacobian, int bounds) {
    
    
    PyObject *func			= NULL;
	PyObject *jacf			= NULL; 
	PyObject *initial		= NULL,	*initial_npy		= NULL;
	PyObject *measurements	= NULL, *measurements_npy	= NULL;
    PyObject *lower			= NULL, *lower_npy			= NULL;
	PyObject *upper			= NULL, *upper_npy			= NULL;
	
    PyObject *opts			= NULL, *opts_npy			= NULL;
	PyObject *covar			= NULL;
    PyObject *retval		= NULL;
	PyObject *info			= NULL;
	
	pylm_callback_data *pydata = NULL;
	
    double *c_initial		= NULL;
	double *c_measurements	= NULL;
	double *c_opts			= NULL;
    double *c_lower			= NULL;
	double *c_upper			= NULL;
	double *c_covar			= NULL;
	
    int	   max_iter = 0;
	int    run_iter = 0;
	int    m = 0, n = 0;
	
    double c_info[LM_INFO_SZ];
	
	int nopts;

	// If finite-difference approximate Jacobians are used, we
	// need 5 optional params; otherwise 4.
	if (jacobian){
		nopts = 4;
	} else {
		nopts = 5;
	}

    // parse arguments
    if (!bounds) {
        if (jacobian) {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &jacf, &initial,
                                             &measurements, &max_iter, 
                                             &opts, &covar)){
				return NULL;	
			}
        } else {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &initial,
                                             &measurements, &max_iter, 
                                             &opts, &covar)){
				return NULL;
			}
        }
    } else {
        if (jacobian) {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &jacf, &initial,
                                             &measurements, &lower, &upper, &max_iter, 
                                             &opts, &covar)){
                return NULL;
			}
        } else {
            if (!PyArg_ParseTupleAndKeywords(args, kwds, argstring, kwlist,
                                             &func, &initial,
                                             &measurements, &lower, &upper, &max_iter,
                                             &opts, &covar)){
				return NULL;	
			}
        }
    }
     
    // Check each variable type
	
    if (!PyCallable_Check(func)) {
        PyErr_SetString(PyExc_TypeError, "func must be a callable object");
        return NULL;
    }

    if (!PyArray_Check(initial)) {
        PyErr_SetString(PyExc_TypeError, "initial must be a numpy array");
        return NULL;
    }

    if (!PyArray_Check(measurements)) {
        PyErr_SetString(PyExc_TypeError, "measurements must be a numpy array");
        return NULL;
    }

    if (jacobian && !PyCallable_Check(jacf)) {
        PyErr_SetString(PyExc_TypeError, "jacf must be a callable object");
        return NULL;
    }        

    if (lower && !PyArray_Check(lower)) {
        PyErr_SetString(PyExc_TypeError, "lower bounds must be a numpy array");
        return NULL;
    }
    if (upper && !PyArray_Check(upper)) {
        PyErr_SetString(PyExc_TypeError, "upper bounds must be a numpy array");
        return NULL;
    }

    if (opts && !PyArray_Check(opts) && (PyArray_Size(opts) != nopts)) {
		if (nopts == 4){
			PyErr_SetString(PyExc_TypeError,
							"opts must be a numpy vector of length 4.");
		} else {
			PyErr_SetString(PyExc_TypeError,
							"opts must be a numpy vector of length 5.");
		}
        return NULL;
    }

    // convert python types into C
	
    pydata = PyMem_Malloc(sizeof(pydata));
	if(!pydata){
		PyErr_SetString(PyExc_RuntimeError,
						"Error in allocating memory for data.");	
		return NULL;	
	}
    pydata->func = func;
    pydata->jacf = jacf;
	
	initial_npy = PyArray_FROMANY(initial, NPY_DOUBLE, 0, 0, NPY_INOUT_ARRAY);
	measurements_npy = PyArray_FROMANY(measurements, NPY_DOUBLE, 0, 0, NPY_IN_ARRAY);
	
	if(!initial_npy || !measurements_npy){
		// Cannot create array
		PyErr_SetString(PyExc_RuntimeError,
						"Error in creating arrays from input data.");	
		//Py_XDECREF(initial_npy);
		//Py_XDECREF(measurements_npy);
		return NULL;
	}
	
    c_initial = (double *)PyArray_DATA(initial_npy);
	c_measurements = (double *)PyArray_DATA(measurements_npy);
	m = PyArray_SIZE(initial_npy);
	n = PyArray_SIZE(measurements_npy);
	
	npy_intp dims[2] = {m, m};
	covar = PyArray_SimpleNew(2, dims, NPY_DOUBLE);
	c_covar = PyArray_DATA(covar);
	
	
	if (lower){
		lower_npy = PyArray_FROMANY(lower, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
		c_lower = PyArray_DATA(lower_npy);
		// TODO check dims
	}
    if (upper){
		upper_npy = PyArray_FROMANY(upper, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
        c_upper = PyArray_DATA(upper_npy);
		// TODO check dims
	}

	if (opts) {
		opts_npy = PyArray_FROMANY(opts, PyArray_DOUBLE, 0, 0, NPY_IN_ARRAY);
        c_opts = PyArray_DATA(opts_npy);
		// TODO check dims
    }
    
    // call function to do the fitting
	
    if (!bounds) {
        if (jacobian) {
            run_iter =  dlevmar_der(_pylm_func_callback, _pylm_jacf_callback,
                                    c_initial, c_measurements, m, n,
									max_iter, c_opts, c_info, NULL, c_covar, pydata);
        } else {
            run_iter =  dlevmar_dif(_pylm_func_callback, c_initial, c_measurements,
                                    m, n, max_iter, c_opts, c_info, NULL, c_covar, pydata);
        }
    } else {
        if (jacobian) {
            run_iter =  dlevmar_bc_der(_pylm_func_callback, _pylm_jacf_callback,
                                       c_initial, c_measurements, m, n,
                                       c_lower, c_upper,
                                       max_iter, c_opts, c_info, NULL, c_covar, pydata);
        } else {
            run_iter =  dlevmar_bc_dif(_pylm_func_callback, c_initial, c_measurements,
                                       m, n, c_lower, c_upper,
                                       max_iter, c_opts, c_info, NULL, c_covar, pydata);
        }
    }

    // convert results back into python
	
    if (run_iter > 0) {
		npy_intp dims[1] = {m};
		retval = PyArray_SimpleNewFromData(1, dims, PyArray_DOUBLE, c_initial);
    } else {
        retval = Py_None;
        Py_INCREF(Py_None);
    }

	if (pydata) {
        PyMem_Free(pydata);
    }	
	
    // convert additional information into python
    info = Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
                         "initial_e2", c_info[0],
                         "estimate_e2", c_info[1],
                         "estimate_Jt", c_info[2],
                         "estimate_Dp2", c_info[3],
                         "estimate_mu", c_info[4],
                         "iterations", c_info[5],
                         "termination", c_info[6],
                         "function_evaluations", c_info[7],
                         "jacobian_evaluations", c_info[8]);
	
	//Py_XDECREF(measurements_npy);
	//Py_XDECREF(initial_npy);
	//Py_XDECREF(lower_npy);
	//Py_XDECREF(upper_npy);
	//Py_XDECREF(opts_npy);

	return Py_BuildValue("(OOiO)", retval, covar, run_iter, info, NULL);
}
Example #8
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *Prhs[])
{
register int i;
register double *pdbl;
mxArray **prhs=(mxArray **)&Prhs[0], *At, *Ct;
struct mexdata mdata;
int len, status;
double *p, *p0, *ret, *x;
int m, n, havejac, Arows, Crows, itmax, nopts, mintype, nextra;
double opts[LM_OPTS_SZ]={LM_INIT_MU, LM_STOP_THRESH, LM_STOP_THRESH, LM_STOP_THRESH, LM_DIFF_DELTA};
double info[LM_INFO_SZ];
double *lb=NULL, *ub=NULL, *A=NULL, *b=NULL, *wghts=NULL, *C=NULL, *d=NULL, *covar=NULL;

  /* parse input args; start by checking their number */
  if((nrhs<5))
    matlabFmtdErrMsgTxt("levmar: at least 5 input arguments required (got %d).", nrhs);
  if(nlhs>4)
    matlabFmtdErrMsgTxt("levmar: too many output arguments (max. 4, got %d).", nlhs);
  else if(nlhs<2)
    matlabFmtdErrMsgTxt("levmar: too few output arguments (min. 2, got %d).", nlhs);
    
  /* note that in order to accommodate optional args, prhs & nrhs are adjusted accordingly below */

  /** func **/
  /* first argument must be a string , i.e. a char row vector */
  if(mxIsChar(prhs[0])!=1)
    mexErrMsgTxt("levmar: first argument must be a string.");
  if(mxGetM(prhs[0])!=1)
    mexErrMsgTxt("levmar: first argument must be a string (i.e. char row vector).");
  /* store supplied name */
  len=mxGetN(prhs[0])+1;
  mdata.fname=mxCalloc(len, sizeof(char));
  status=mxGetString(prhs[0], mdata.fname, len);
  if(status!=0)
    mexErrMsgTxt("levmar: not enough space. String is truncated.");

  /** jac (optional) **/
  /* check whether second argument is a string */
  if(mxIsChar(prhs[1])==1){
    if(mxGetM(prhs[1])!=1)
      mexErrMsgTxt("levmar: second argument must be a string (i.e. row vector).");
    /* store supplied name */
    len=mxGetN(prhs[1])+1;
    mdata.jacname=mxCalloc(len, sizeof(char));
    status=mxGetString(prhs[1], mdata.jacname, len);
    if(status!=0)
      mexErrMsgTxt("levmar: not enough space. String is truncated.");
    havejac=1;

    ++prhs;
    --nrhs;
  }
  else{
    mdata.jacname=NULL;
    havejac=0;
  }

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: %s analytic Jacobian\n", havejac? "with" : "no");
#endif /* DEBUG */

/* CHECK 
if(!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) || !(mxGetM(prhs[1])==1 && mxGetN(prhs[1])==1))
*/

  /** p0 **/
  /* the second required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) || !(mxGetM(prhs[1])==1 || mxGetN(prhs[1])==1))
    mexErrMsgTxt("levmar: p0 must be a real vector.");
  p0=mxGetPr(prhs[1]);
  /* determine if we have a row or column vector and retrieve its 
   * size, i.e. the number of parameters
   */
  if(mxGetM(prhs[1])==1){
    m=mxGetN(prhs[1]);
    mdata.isrow_p0=1;
  }
  else{
    m=mxGetM(prhs[1]);
    mdata.isrow_p0=0;
  }
  /* copy input parameter vector to avoid destroying it */
  p=mxMalloc(m*sizeof(double));
  for(i=0; i<m; ++i)
    p[i]=p0[i];
    
  /** x **/
  /* the third required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) || !(mxGetM(prhs[2])==1 || mxGetN(prhs[2])==1))
    mexErrMsgTxt("levmar: x must be a real vector.");
  x=mxGetPr(prhs[2]);
  n=__MAX__(mxGetM(prhs[2]), mxGetN(prhs[2]));

  /** itmax **/
  /* the fourth required argument must be a scalar */
  if(!mxIsDouble(prhs[3]) || mxIsComplex(prhs[3]) || mxGetM(prhs[3])!=1 || mxGetN(prhs[3])!=1)
    mexErrMsgTxt("levmar: itmax must be a scalar.");
  itmax=(int)mxGetScalar(prhs[3]);
    
  /** opts **/
  /* the fifth required argument must be a real row or column vector */
  if(!mxIsDouble(prhs[4]) || mxIsComplex(prhs[4]) || (!(mxGetM(prhs[4])==1 || mxGetN(prhs[4])==1) &&
                                                      !(mxGetM(prhs[4])==0 && mxGetN(prhs[4])==0)))
    mexErrMsgTxt("levmar: opts must be a real vector.");
  pdbl=mxGetPr(prhs[4]);
  nopts=__MAX__(mxGetM(prhs[4]), mxGetN(prhs[4]));
  if(nopts!=0){ /* if opts==[], nothing needs to be done and the defaults are used */
    if(nopts>LM_OPTS_SZ)
      matlabFmtdErrMsgTxt("levmar: opts must have at most %d elements, got %d.", LM_OPTS_SZ, nopts);
    else if(nopts<((havejac)? LM_OPTS_SZ-1 : LM_OPTS_SZ))
      matlabFmtdWarnMsgTxt("levmar: only the %d first elements of opts specified, remaining set to defaults.", nopts);
    for(i=0; i<nopts; ++i)
      opts[i]=pdbl[i];
  }
#ifdef DEBUG
  else{
    fflush(stderr);
    fprintf(stderr, "LEVMAR: empty options vector, using defaults\n");
  }
#endif /* DEBUG */

  /** mintype (optional) **/
  /* check whether sixth argument is a string */
  if(nrhs>=6 && mxIsChar(prhs[5])==1 && mxGetM(prhs[5])==1){
    char *minhowto;

    /* examine supplied name */
    len=mxGetN(prhs[5])+1;
    minhowto=mxCalloc(len, sizeof(char));
    status=mxGetString(prhs[5], minhowto, len);
    if(status!=0)
      mexErrMsgTxt("levmar: not enough space. String is truncated.");

    for(i=0; minhowto[i]; ++i)
      minhowto[i]=tolower(minhowto[i]);
    if(!strncmp(minhowto, "unc", 3)) mintype=MIN_UNCONSTRAINED;
    else if(!strncmp(minhowto, "bc", 2)) mintype=MIN_CONSTRAINED_BC;
    else if(!strncmp(minhowto, "lec", 3)) mintype=MIN_CONSTRAINED_LEC;
    else if(!strncmp(minhowto, "blec", 4)) mintype=MIN_CONSTRAINED_BLEC;
    else if(!strncmp(minhowto, "bleic", 5)) mintype=MIN_CONSTRAINED_BLEIC;
    else if(!strncmp(minhowto, "blic", 4)) mintype=MIN_CONSTRAINED_BLIC;
    else if(!strncmp(minhowto, "leic", 4)) mintype=MIN_CONSTRAINED_LEIC;
    else if(!strncmp(minhowto, "lic", 3)) mintype=MIN_CONSTRAINED_BLIC;
    else matlabFmtdErrMsgTxt("levmar: unknown minimization type '%s'.", minhowto);

    mxFree(minhowto);

    ++prhs;
    --nrhs;
  }
  else
    mintype=MIN_UNCONSTRAINED;

  if(mintype==MIN_UNCONSTRAINED) goto extraargs;

  /* arguments below this point are optional and their presence depends
   * upon the minimization type determined above
   */
  /** lb, ub **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_BC || mintype==MIN_CONSTRAINED_BLEC || mintype==MIN_CONSTRAINED_BLIC || mintype==MIN_CONSTRAINED_BLEIC)){
    /* check if the next two arguments are real row or column vectors */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && (mxGetM(prhs[5])==1 || mxGetN(prhs[5])==1)){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=__MAX__(mxGetM(prhs[5]), mxGetN(prhs[5])))!=m)
          matlabFmtdErrMsgTxt("levmar: lb must have %d elements, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=m)
          matlabFmtdErrMsgTxt("levmar: ub must have %d elements, got %d.", m, i);

        lb=mxGetPr(prhs[5]);
        ub=mxGetPr(prhs[6]);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /** A, b **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_LEC || mintype==MIN_CONSTRAINED_BLEC || mintype==MIN_CONSTRAINED_LEIC || mintype==MIN_CONSTRAINED_BLEIC)){
    /* check if the next two arguments are a real matrix and a real row or column vector */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && mxGetM(prhs[5])>=1 && mxGetN(prhs[5])>=1){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=mxGetN(prhs[5]))!=m)
          matlabFmtdErrMsgTxt("levmar: A must have %d columns, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=(Arows=mxGetM(prhs[5])))
          matlabFmtdErrMsgTxt("levmar: b must have %d elements, got %d.", Arows, i);

        At=prhs[5];
        b=mxGetPr(prhs[6]);
        A=getTranspose(At);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /* wghts */
  /* check if we have a weights vector */
  if(nrhs>=6 && mintype==MIN_CONSTRAINED_BLEC){ /* only check if we have seen both box & linear constraints */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && (mxGetM(prhs[5])==1 || mxGetN(prhs[5])==1)){
      if(__MAX__(mxGetM(prhs[5]), mxGetN(prhs[5]))==m){
        wghts=mxGetPr(prhs[5]);

        ++prhs;
        --nrhs;
      }
    }
  }

  /** C, d **/
  if(nrhs>=7 && (mintype==MIN_CONSTRAINED_BLEIC || mintype==MIN_CONSTRAINED_BLIC || mintype==MIN_CONSTRAINED_LEIC || mintype==MIN_CONSTRAINED_LIC)){
    /* check if the next two arguments are a real matrix and a real row or column vector */
    if(mxIsDouble(prhs[5]) && !mxIsComplex(prhs[5]) && mxGetM(prhs[5])>=1 && mxGetN(prhs[5])>=1){
      if(mxIsDouble(prhs[6]) && !mxIsComplex(prhs[6]) && (mxGetM(prhs[6])==1 || mxGetN(prhs[6])==1)){
        if((i=mxGetN(prhs[5]))!=m)
          matlabFmtdErrMsgTxt("levmar: C must have %d columns, got %d.", m, i);
        if((i=__MAX__(mxGetM(prhs[6]), mxGetN(prhs[6])))!=(Crows=mxGetM(prhs[5])))
          matlabFmtdErrMsgTxt("levmar: d must have %d elements, got %d.", Crows, i);

        Ct=prhs[5];
        d=mxGetPr(prhs[6]);
        C=getTranspose(Ct);

        prhs+=2;
        nrhs-=2;
      }
    }
  }

  /* arguments below this point are assumed to be extra arguments passed
   * to every invocation of the fitting function and its Jacobian
   */

extraargs:
  /* handle any extra args and allocate memory for
   * passing the current parameter estimate to matlab
   */
  nextra=nrhs-5;
  mdata.nrhs=nextra+1;
  mdata.rhs=(mxArray **)mxMalloc(mdata.nrhs*sizeof(mxArray *));
  for(i=0; i<nextra; ++i)
    mdata.rhs[i+1]=(mxArray *)prhs[nrhs-nextra+i]; /* discard 'const' modifier */
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: %d extra args\n", nextra);
#endif /* DEBUG */

  if(mdata.isrow_p0){ /* row vector */
    mdata.rhs[0]=mxCreateDoubleMatrix(1, m, mxREAL);
    /*
    mxSetM(mdata.rhs[0], 1);
    mxSetN(mdata.rhs[0], m);
    */
  }
  else{ /* column vector */
    mdata.rhs[0]=mxCreateDoubleMatrix(m, 1, mxREAL);
    /*
    mxSetM(mdata.rhs[0], m);
    mxSetN(mdata.rhs[0], 1);
    */
  }

  /* ensure that the supplied function & Jacobian are as expected */
  if(checkFuncAndJacobian(p, m, n, havejac, &mdata)){
    status=LM_ERROR;
    goto cleanup;
  }

  if(nlhs>3) /* covariance output required */
    covar=mxMalloc(m*m*sizeof(double));

  /* invoke levmar */
  switch(mintype){
    case MIN_UNCONSTRAINED: /* no constraints */
      if(havejac)
        status=dlevmar_der(func, jacfunc, p, x, m, n, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_dif(func,          p, x, m, n, itmax, opts, info, NULL, covar, (void *)&mdata);
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_der()/dlevmar_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BC: /* box constraints */
      if(havejac)
        status=dlevmar_bc_der(func, jacfunc, p, x, m, n, lb, ub, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bc_dif(func,          p, x, m, n, lb, ub, itmax, opts, info, NULL, covar, (void *)&mdata);
#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_bc_der()/dlevmar_bc_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LEC:  /* linear equation constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_lec_der(func, jacfunc, p, x, m, n, A, b, Arows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_lec_dif(func,          p, x, m, n, A, b, Arows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_lec_der()/dlevmar_lec_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLEC: /* box & linear equation constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_blec_der(func, jacfunc, p, x, m, n, lb, ub, A, b, Arows, wghts, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_blec_dif(func,          p, x, m, n, lb, ub, A, b, Arows, wghts, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box & linear constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_blec_der()/dlevmar_blec_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLEIC: /* box, linear equation & inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, lb, ub, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, lb, ub, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box, linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_bleic_der()/dlevmar_bleic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_BLIC: /* box, linear inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no box & linear inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_blic_der()/dlevmar_blic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LEIC: /* linear equation & inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, NULL, NULL, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, NULL, NULL, A, b, Arows, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_leic_der()/dlevmar_leic_dif()\n");
#endif /* DEBUG */
    break;
    case MIN_CONSTRAINED_LIC: /* linear inequalities constraints */
#ifdef HAVE_LAPACK
      if(havejac)
        status=dlevmar_bleic_der(func, jacfunc, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
      else
        status=dlevmar_bleic_dif(func, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, Crows, itmax, opts, info, NULL, covar, (void *)&mdata);
#else
      mexErrMsgTxt("levmar: no linear equation & inequality constraints support, HAVE_LAPACK was not defined during MEX-file compilation.");
#endif /* HAVE_LAPACK */

#ifdef DEBUG
  fflush(stderr);
  fprintf(stderr, "LEVMAR: calling dlevmar_lic_der()/dlevmar_lic_dif()\n");
#endif /* DEBUG */
    break;
    default:
      mexErrMsgTxt("levmar: unexpected internal error.");
  }

#ifdef DEBUG
  fflush(stderr);
  printf("LEVMAR: minimization returned %d in %g iter, reason %g\n\tSolution: ", status, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\n\tMinimization info:\n\t");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");
#endif /* DEBUG */

  /* copy back return results */
  /** ret **/
  plhs[0]=mxCreateDoubleMatrix(1, 1, mxREAL);
  ret=mxGetPr(plhs[0]);
  ret[0]=(double)status;

  /** popt **/
  plhs[1]=(mdata.isrow_p0==1)? mxCreateDoubleMatrix(1, m, mxREAL) : mxCreateDoubleMatrix(m, 1, mxREAL);
  pdbl=mxGetPr(plhs[1]);
  for(i=0; i<m; ++i)
    pdbl[i]=p[i];

  /** info **/
  if(nlhs>2){
    plhs[2]=mxCreateDoubleMatrix(1, LM_INFO_SZ, mxREAL);
    pdbl=mxGetPr(plhs[2]);
    for(i=0; i<LM_INFO_SZ; ++i)
      pdbl[i]=info[i];
  }

  /** covar **/
  if(nlhs>3){
    plhs[3]=mxCreateDoubleMatrix(m, m, mxREAL);
    pdbl=mxGetPr(plhs[3]);
    for(i=0; i<m*m; ++i) /* covariance matrices are symmetric, thus no need to transpose! */
      pdbl[i]=covar[i];
  }

cleanup:
  /* cleanup */
  mxDestroyArray(mdata.rhs[0]);
  if(A) mxFree(A);
  if(C) mxFree(C);

  mxFree(mdata.fname);
  if(havejac) mxFree(mdata.jacname);
  mxFree(p);
  mxFree(mdata.rhs);
  if(covar) mxFree(covar);

  if(status==LM_ERROR)
    mexWarnMsgTxt("levmar: optimization returned with an error!");
}
Example #9
0
double stfnum::lmFit( const Vector_double& data, double dt,
                   const stfnum::storedFunc& fitFunc, const Vector_double& opts,
                   bool use_scaling,
                   Vector_double& p, std::string& info, int& warning )
{
    // Basic range checking:
    if (fitFunc.pInfo.size()!=p.size()) {
        std::string msg("Error in stfnum::lmFit()\n"
                "function parameters (p_fit) and parameters entered (p) have different sizes");
        throw std::runtime_error(msg);
    }
    if ( opts.size() != 6 ) {
        std::string msg("Error in stfnum::lmFit()\n"
                "wrong number of options");
        throw std::runtime_error(msg);
    }

    bool constrained = false;
    std::vector< double > constrains_lm_lb( fitFunc.pInfo.size() );
    std::vector< double > constrains_lm_ub( fitFunc.pInfo.size() );

    bool can_scale = use_scaling;
    
    for ( unsigned n_p=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        if ( fitFunc.pInfo[n_p].constrained ) {
            constrained = true;
            constrains_lm_lb[n_p] = fitFunc.pInfo[n_p].constr_lb;
            constrains_lm_ub[n_p] = fitFunc.pInfo[n_p].constr_ub;
        } else {
            constrains_lm_lb[n_p] = -DBL_MAX;
            constrains_lm_ub[n_p] = DBL_MAX;
        }
        if ( can_scale ) {
            if (fitFunc.pInfo[n_p].scale == stfnum::noscale) {
                can_scale = false;
            }
        }
    }

    // Store the functions at global scope:
    saveFunc(fitFunc.func);
    saveJac(fitFunc.jac);

    double info_id[LM_INFO_SZ];
    Vector_double data_ptr(data);
    Vector_double xyscale(4);
    if (can_scale) {
        xyscale = get_scale(data_ptr, dt);
    }
    
    // The parameters need to be separated into two parts:
    // Those that are to be fitted and those that the client wants
    // to keep constant. Since there is no native support to
    // do so in Lourakis' routines, the workaround is a little
    // tricky, making (ab)use of the *void pointer:

    // number of parameters that need to be fitted:
    int n_fitted=0;
    for ( unsigned n_p=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        n_fitted += fitFunc.pInfo[n_p].toFit;
    }
    // parameters that need to be fitted:
    Vector_double p_toFit(n_fitted);
    std::deque<bool> p_fit_bool( fitFunc.pInfo.size() );
    // parameters that are held constant:
    Vector_double p_const( fitFunc.pInfo.size()-n_fitted );
    for ( unsigned n_p=0, n_c=0, n_f=0; n_p < fitFunc.pInfo.size(); ++n_p ) {
        if (fitFunc.pInfo[n_p].toFit) {
            p_toFit[n_f++] = p[n_p];
            if (can_scale) {
                p_toFit[n_f-1] = fitFunc.pInfo[n_p].scale(p_toFit[n_f-1], xyscale[0],
                                                          xyscale[1], xyscale[2], xyscale[3]);
            }
        } else {
            p_const[n_c++] = p[n_p];
            if (can_scale) {
                p_const[n_c-1] = fitFunc.pInfo[n_p].scale(p_const[n_c-1], xyscale[0],
                                                          xyscale[1], xyscale[2], xyscale[3]);
            }
        }
        p_fit_bool[n_p] = fitFunc.pInfo[n_p].toFit;
    }
    // size * dt_new = 1 -> dt_new = 1.0/size
    double dt_finfo = dt;
    if (can_scale)
        dt_finfo = 1.0/data_ptr.size();

    fitInfo fInfo( p_fit_bool, p_const, dt_finfo );

    // make l-value of opts:
    Vector_double opts_l(5);
    for (std::size_t n=0; n < 4; ++n) opts_l[n] = opts[n];
    opts_l[4] = -1e-6;
    int it = 0;
    if (p_toFit.size()!=0 && data_ptr.size()!=0) {
        double old_info_id[LM_INFO_SZ];

        // initialize with initial parameter guess:
        Vector_double old_p_toFit(p_toFit);

#ifdef _DEBUG
        std::ostringstream optsMsg;
        optsMsg << "\nopts: ";
        for (std::size_t n_p=0; n_p < opts.size(); ++n_p)
            optsMsg << opts[n_p] << "\t";
        optsMsg << "\n" << "data_ptr[" << data_ptr.size()-1 << "]=" << data_ptr[data_ptr.size()-1] << "\n";
        optsMsg << "constrains_lm_lb: ";
        for (std::size_t n_p=0; n_p < constrains_lm_lb.size(); ++n_p) 
            optsMsg << constrains_lm_lb[n_p] << "\t";
        optsMsg << "\n" << "constrains_lm_ub: ";
        for (std::size_t n_p=0; n_p < constrains_lm_ub.size(); ++n_p) 
            optsMsg << constrains_lm_ub[n_p] << "\t";
        optsMsg << "\n\n";
        std::cout << optsMsg;
#endif

        while ( 1 ) {
#ifdef _DEBUG
            std::ostringstream paramMsg;
            paramMsg << "Pass: "******"\t";
            paramMsg << "p_toFit: ";
            for (std::size_t n_p=0; n_p < p_toFit.size(); ++n_p)
                paramMsg << p_toFit[n_p] << "\t";
            paramMsg << "\n";
            std::cout << paramMsg.str().c_str();
#endif

            if ( !fitFunc.hasJac ) {
                if ( !constrained ) {
                    dlevmar_dif( c_func_lour, &p_toFit[0], &data_ptr[0], n_fitted, 
                            (int)data.size(), (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );
                } else {
                    dlevmar_bc_dif( c_func_lour, &p_toFit[0], &data_ptr[0], n_fitted, 
                            (int)data.size(), &constrains_lm_lb[0], &constrains_lm_ub[0], NULL,
                            (int)opts[4], &opts_l[0], info_id, NULL, NULL, &fInfo );
                }
            } else {
                if ( !constrained ) {
                    dlevmar_der( c_func_lour, c_jac_lour, &p_toFit[0], &data_ptr[0], 
                            n_fitted, (int)data.size(), (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );                
                } else {
                    dlevmar_bc_der( c_func_lour,  c_jac_lour, &p_toFit[0], 
                            &data_ptr[0], n_fitted, (int)data.size(), &constrains_lm_lb[0], 
                            &constrains_lm_ub[0], NULL, (int)opts[4], &opts_l[0], info_id,
                            NULL, NULL, &fInfo );
                }
            }
            it++;
            if ( info_id[1] != info_id[1] ) {
                // restore previous parameters if new chisqr is NaN:
                p_toFit = old_p_toFit;
            } else {
                double dchisqr = (info_id[0] - info_id[1]) / info_id[1]; // (old chisqr - new chisqr) / new_chisqr
            
                if ( dchisqr < 0 ) {
                    // restore previous results and exit if new chisqr is larger:
                    for ( int n_i = 0; n_i < LM_INFO_SZ; ++n_i )  info_id[n_i] = old_info_id[n_i];
                    p_toFit = old_p_toFit;
                    break;
                }
                if ( dchisqr < 1e-5 ) {
                    // Keep current results and exit if change in chisqr is below threshold
                    break;
                }
                // otherwise, store results and continue iterating:
                for ( int n_i = 0; n_i < LM_INFO_SZ; ++n_i ) old_info_id[n_i] = info_id[n_i];
                old_p_toFit = p_toFit;
            }
            if ( it >= opts[5] )
                // Exit if maximal number of iterations is reached
                break;
            // decrease initial step size for next iteration:
            opts_l[0] *= 1e-4;
        }
    } else {
        std::runtime_error e("Array of size zero in lmFit");
        throw e;
    }

    // copy back the fitted parameters to p:
    for ( unsigned n_p=0, n_f=0, n_c=0; n_p<fitFunc.pInfo.size(); ++n_p ) {
        if (fitFunc.pInfo[n_p].toFit) {
            p[n_p] = p_toFit[n_f++];
        } else {
            p[n_p] = p_const[n_c++];
        }
        if (can_scale) {
            p[n_p] = fitFunc.pInfo[n_p].unscale(p[n_p], xyscale[0],
                                                xyscale[1], xyscale[2], xyscale[3]);
        }
    }
    
    std::ostringstream str_info;
    str_info << "Passes: " << it;
    str_info << "\nIterations during last pass: "******"\nStopping reason during last pass:"******"\nStopped by small gradient of squared error.";
         warning = 0;
         break;
     case 2:
         str_info << "\nStopped by small rel. parameter change.";
         warning = 0;
         break;
     case 3:
         str_info << "\nReached max. number of iterations. Restart\n"
                  << "with smarter initial parameters and / or with\n"
                  << "increased initial scaling factor and / or with\n"
                  << "increased max. number of iterations.";
         warning = 3;
         break;
     case 4:
         str_info << "\nSingular matrix. Restart from current parameters\n"
                  << "with increased initial scaling factor.";
         warning = 4;
         break;
     case 5:
         str_info << "\nNo further error reduction is possible.\n"
                  << "Restart with increased initial scaling factor.";
         warning = 5;
         break;
     case 6:
         str_info << "\nStopped by small squared error.";
         warning = 0;
         break;
     case 7:
         str_info << "\nStopped by invalid (i.e. NaN or Inf) \"func\" values.\n";
         str_info << "This is a user error.";
         warning = 7;
         break;
     default:
         str_info << "\nUnknown reason for stopping the fit.";
         warning = -1;
    }
    if (use_scaling && !can_scale) {
        str_info << "\nCouldn't use scaling because one or more "
                 << "of the parameters don't allow it.";
    }
    info=str_info.str();
    return info_id[1];
}
Example #10
0
Numeric LMSubspaceOptimizer::optimize( const VariablePtrVec & vars,
		const FactorPtrVec & factors, NumericVec & xval,
		Numeric & deltaFval, const bool printdbg ) {

//	// box-constrained minimization
//	extern int dlevmar_bc_der(
//	   void (*func)(double *p, double *hx, int m, int n, void *adata),
//	   void (*jacf)(double *p, double *j, int m, int n, void *adata),
//	   double *p, double *x, int m, int n, double *lb, double *ub, double *dscl,
//	   int itmax, double *opts, double *info, double *work, double *covar,
//	   void *adata);

//#define USE_LEVMAR
#ifdef USE_LEVMAR
	const Clock::time_point starttime = Clock::now();

//	initstate.assign( xval.begin(), xval.end() );
	LMSSOpt::AuxData aux( vars, factors, f, pgtemp );

	const int m = vars.size();
	const int n = std::max( factors.size(), (size_t) m );

	initeval.resize( n );
	finaleval.resize( n );

//	double lb[ m ];
//	double ub[ m ];
//
//	for ( size_t i = 0; i < vars.size(); ++i ) {
//		NumericInterval dom = vars[i]->getDomain().interval();
//		lb[i] = ( dom.lower() <= -DBL_MAX ? DBL_MAX : dom.lower() );
//		ub[i] = ( dom.upper() >= DBL_MAX ? DBL_MAX : dom.upper() );
//	}

	double * dscl = NULL;

	double opts[ LM_OPTS_SZ ];
//	double * opts = NULL;

	double info[ LM_INFO_SZ ];
	double * work = new double[ LM_BC_DER_WORKSZ( m, n ) ];

	double * covar = NULL;

	if ( printdbg ) {
		std::cout << "LM SS opt m=" << m << ", n=" << n << " (" << vars.size()
				<< " vars, " << factors.size() << " factors)" << std::endl;
	}

//	LMSSOpt::evalFunc( xval.data(), initeval.data(), m, n, &aux );
//	const Numeric ival = NumericVecOps::dot( initeval, initeval ) / 2.0;
	Numeric ferr = 0.0;
	const Numeric ival = f.evalFactors( factors, ferr );

	opts[0] = 1e-3; 	// initial \mu scale factor
	opts[1] = 1e-15;	// stopping thresh. for ||J^T e||_inf
	opts[2] = 1e-15;	// stopping thresh. for ||Dp||_2
	opts[3] = ftol; 	// stopping thresh. for ||e||_2

//	int niters = dlevmar_bc_der(
//			&LMSSOpt::evalFunc,
//			&LMSSOpt::evalJacf,
//			xval.data(), NULL, xval.size(), n, lb, ub,
//			NULL, maxiters, opts, info, work, covar, &aux );

	int niters = dlevmar_der(
			&LMSSOpt::evalFunc,
			&LMSSOpt::evalJacf,
			xval.data(), NULL, xval.size(), n,
			maxiters, opts, info, work, covar, &aux );

	// sanitize values to be within the domain of this variable (note that they
	// are sanitized in quickAssign(), so just copy them out after)
	LMSSOpt::quickAssignVals( aux, m, xval.data() );
	for ( size_t i = 0; i < vars.size(); ++i ) {
		xval[i] = vars[i]->eval();
	}

//	LMSSOpt::evalFunc( xval.data(), finaleval.data(), m, n, &aux );
//	const Numeric fval = NumericVecOps::dot( finaleval, finaleval ) / 2.0;

	Numeric fval = f.evalFactors( factors, ferr );

//	Numeric asdf = 0;
//	for ( size_t i = 0; i < factors.size(); ++i ) {
//		asdf += factors[i]->evalNoCache();
//		std::cout << i << ": f " << factors[i]->getID() << " diff " <<
//				( finaleval[i]*finaleval[i]/2.0 - factors[i]->eval() ) << " ("
//				<< factors[i]->eval() << ")" << std::endl;
//	}
//	std::cout << "asdf: " << asdf << std::endl;
//
//	std::cout << "f.eval " << f.eval() << std::endl;
//	Numeric ferr = 0.0;
//	std::cout << "f fact eval " << f.evalFactors( factors, ferr ) << std::endl;
//
//	std::cout << "xval: " << xval << std::endl;

//	double err[n];
//	dlevmar_chkjac( &LMSSOpt::evalFunc, &LMSSOpt::evalJacf, xval.data(), m, n,
//			&aux, err );
//
//	for ( size_t i = 0; i < m; ++i ) {
//		if ( err[i] < 0.5 ) {
//			std::cout << i << ": var " << vars[i]->getID() << " has jac err "
//					<< err[i] << std::endl;
//		}
//	}

	delete work;

	deltaFval = ( fval - ival);
	const Duration dur = ( Clock::now() - starttime );

	if ( printdbg ) {
		std::cout << "LM SS opt returned " << fval << " (init " << ival
				<< ", diff " << deltaFval << ") after " << niters <<
				" iterations in " << dur.count() << " seconds" << std::endl;

		std::cout << "LM SS opt info -- termination: " << info[6] <<
				", #fevals: " << info[7] << ", #jevals: " << info[8] <<
				", #linsolves" << info[9] << std::endl;
	}

//	if ( deltaFval > 0 ) {
//		fval = ival;
//		xval.assign( initstate.begin(), initstate.end() );
//		deltaFval = 0;
//		std::cout << "LM SS made no progress -- returning initial state" << std::endl;
//	}

	return fval;

#else // USE_LEVMAR

	std::cout << "ERROR: Cannot use LM subspace optimizer without levmar.h." <<
			" Rebuild with -DUSE_LEVMAR and link to liblevmar." << std::endl;

	std::exit( -1 );

	return 0;
#endif // USE_LEVMAR
}