static unsigned long __alloc_dma_pages(unsigned int pages)
{
	unsigned long ret = 0, flags;
	int i, count = 0;

	if (dma_initialized == 0)
		dma_alloc_init(_ramend - DMA_UNCACHED_REGION, _ramend);

	spin_lock_irqsave(&dma_page_lock, flags);

	for (i = 0; i < dma_pages;) {
		if (test_bit(i++, dma_page) == 0) {
			if (++count == pages) {
				while (count--)
					__set_bit(--i, dma_page);

				ret = dma_base + (i << PAGE_SHIFT);
				break;
			}
		} else
			count = 0;
	}
	spin_unlock_irqrestore(&dma_page_lock, flags);
	return ret;
}
Example #2
0
__EXPORT int nsh_archinitialize(void)
{
	/* the interruption subsystem is not initialized when stm32_boardinitialize() is called */
	stm32_gpiosetevent(GPIO_FORCE_BOOTLOADER, true, false, false, _bootloader_force_pin_callback);

	/* configure power supply control/sense pins */
	stm32_configgpio(GPIO_VDD_5V_SENSORS_EN);

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);
	led_off(LED_BLUE);

	/* Configure SPI-based devices */

	spi1 = up_spiinitialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\n");
		up_ledon(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
	up_udelay(20);

	return OK;
}
Example #3
0
static unsigned long __alloc_dma_pages(unsigned int pages)
{
	unsigned long ret = 0, flags;
	unsigned long start;

	if (dma_initialized == 0)
		dma_alloc_init(_ramend - DMA_UNCACHED_REGION, _ramend);

	spin_lock_irqsave(&dma_page_lock, flags);

	start = bitmap_find_next_zero_area(dma_page, dma_pages, 0, pages, 0);
	if (start < dma_pages) {
		ret = dma_base + (start << PAGE_SHIFT);
		bitmap_set(dma_page, start, pages);
	}
	spin_unlock_irqrestore(&dma_page_lock, flags);
	return ret;
}
Example #4
0
__EXPORT int nsh_archinitialize(void)
{
	int result;

	message("\n");

	/* configure always-on ADC pins */
	stm32_configgpio(GPIO_ADC1_IN1);
	stm32_configgpio(GPIO_ADC1_IN2);
	stm32_configgpio(GPIO_ADC1_IN3);
	stm32_configgpio(GPIO_ADC1_IN10);


	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial BUZZER state */
	drv_buzzer_start();
	buzzer_off(BUZZER_EXT);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);
	led_off(LED_BLUE);
	led_off(LED_GREEN);
	led_off(LED_EXT1);
	led_off(LED_EXT2);



	/* Configure SPI-based devices */

	message("[boot] Initializing SPI port 1\n");
	spi1 = up_spiinitialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\r\n");
		led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, SPIDEV_WIRELESS, false);
	SPI_SELECT(spi1, SPIDEV_MS5611, false);
	up_udelay(20);

	message("[boot] Successfully initialized SPI port 1\r\n");

	message("[boot] Initializing SPI port 2\n");
	spi2 = up_spiinitialize(2);

	if (!spi2) {
		message("[boot] FAILED to initialize SPI port 2\r\n");
		led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI2 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi2, 10000000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, SPIDEV_MPU6000, false);

	message("[boot] Successfully initialized SPI port 2\n");

	/* Get the SPI port for the microSD slot */

	message("[boot] Initializing SPI port 3\n");
	spi3 = up_spiinitialize(3);

	if (!spi3) {
		message("[boot] FAILED to initialize SPI port 3\n");
		led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI3 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi3, 10000000);
	SPI_SETBITS(spi3, 8);
	SPI_SETMODE(spi3, SPIDEV_MODE3);
	SPI_SELECT(spi3, SPIDEV_MMCSD, false);
	SPI_SELECT(spi3, SPIDEV_FLASH, false);

	message("[boot] Successfully initialized SPI port 3\n");

	/* Now bind the SPI interface to the MMCSD driver */
	result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3);

	if (result != OK) {
		message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\n");
		led_on(LED_AMBER);
		return -ENODEV;
	}

	message("[boot] Successfully bound SPI port 3 to the MMCSD driver\n");

	return OK;
}
Example #5
0
__EXPORT int nsh_archinitialize(void)
{

	/* configure ADC pins */
	stm32_configgpio(GPIO_ADC1_IN2);	/* BATT_VOLTAGE_SENS */
	stm32_configgpio(GPIO_ADC1_IN3);	/* BATT_CURRENT_SENS */
	stm32_configgpio(GPIO_ADC1_IN4);	/* VDD_5V_SENS */
	stm32_configgpio(GPIO_ADC1_IN11);	/* BATT2_VOLTAGE_SENS */
	stm32_configgpio(GPIO_ADC1_IN13);	/* BATT2_CURRENT_SENS */

	/* configure power supply control/sense pins */
	stm32_configgpio(GPIO_VDD_3V3_PERIPH_EN);
	stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN);
	stm32_configgpio(GPIO_VDD_5V_PERIPH_EN);
	stm32_configgpio(GPIO_VDD_5V_HIPOWER_EN);

	stm32_configgpio(GPIO_VDD_BRICK_VALID);
	stm32_configgpio(GPIO_VDD_BRICK2_VALID);

	stm32_configgpio(GPIO_VDD_5V_PERIPH_OC);
	stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC);
	stm32_configgpio(GPIO_VBUS_VALID);

//	stm32_configgpio(GPIO_SBUS_INV);
//	stm32_configgpio(GPIO_8266_GPIO0);
//	stm32_configgpio(GPIO_SPEKTRUM_PWR_EN);
//	stm32_configgpio(GPIO_8266_PD);
//	stm32_configgpio(GPIO_8266_RST);
//	stm32_configgpio(GPIO_BTN_SAFETY_FMU);

	/* configure the GPIO pins to outputs and keep them low */
	stm32_configgpio(GPIO_GPIO0_OUTPUT);
	stm32_configgpio(GPIO_GPIO1_OUTPUT);
	stm32_configgpio(GPIO_GPIO2_OUTPUT);
	stm32_configgpio(GPIO_GPIO3_OUTPUT);
	stm32_configgpio(GPIO_GPIO4_OUTPUT);
	stm32_configgpio(GPIO_GPIO5_OUTPUT);

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);

	/* Configure SPI-based devices */

	spi1 = up_spiinitialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\n");
		up_ledon(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, PX4_SPIDEV_ICM, false);
	SPI_SELECT(spi1, PX4_SPIDEV_BARO, false);
	SPI_SELECT(spi1, PX4_SPIDEV_LIS, false);
	SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
	SPI_SELECT(spi1, PX4_SPIDEV_EEPROM, false);
	up_udelay(20);

	/* Get the SPI port for the FRAM */

	spi2 = up_spiinitialize(2);

	if (!spi2) {
		message("[boot] FAILED to initialize SPI port 2\n");
		up_ledon(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max)
	 * and de-assert the known chip selects. */

	// XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated
	SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, SPIDEV_FLASH, false);

	
	/* Configure SPI 5-based devices */

	spi5 = up_spiinitialize(PX4_SPI_EXT0);

	if (!spi5) {
		message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT0);
		up_ledon(LED_RED);
		return -ENODEV;
	}

	/* Default SPI5 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi5, 10000000);
	SPI_SETBITS(spi5, 8);
	SPI_SETMODE(spi5, SPIDEV_MODE3);
	SPI_SELECT(spi5, PX4_SPIDEV_EXT0, false);

	/* Configure SPI 6-based devices */

	spi6 = up_spiinitialize(PX4_SPI_EXT1);

	if (!spi6) {
		message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT1);
		up_ledon(LED_RED);
		return -ENODEV;
	}

	/* Default SPI6 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi6, 10000000);
	SPI_SETBITS(spi6, 8);
	SPI_SETMODE(spi6, SPIDEV_MODE3);
	SPI_SELECT(spi6, PX4_SPIDEV_EXT1, false);

#ifdef CONFIG_MMCSD
	/* First, get an instance of the SDIO interface */

	sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO);

	if (!sdio) {
		message("[boot] Failed to initialize SDIO slot %d\n",
			CONFIG_NSH_MMCSDSLOTNO);
		return -ENODEV;
	}

	/* Now bind the SDIO interface to the MMC/SD driver */
	int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio);

	if (ret != OK) {
		message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret);
		return ret;
	}

	/* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */
	sdio_mediachange(sdio, true);

#endif

	return OK;
}
Example #6
0
__EXPORT int nsh_archinitialize(void)
{

	/* configure ADC pins */
	stm32_configgpio(GPIO_ADC1_IN2);	/* BATT_VOLTAGE_SENS */
	stm32_configgpio(GPIO_ADC1_IN3);	/* BATT_CURRENT_SENS */
	stm32_configgpio(GPIO_ADC1_IN4);	/* VDD_5V_SENS */
	stm32_configgpio(GPIO_ADC1_IN13);	/* FMU_AUX_ADC_1 */
	stm32_configgpio(GPIO_ADC1_IN14);	/* FMU_AUX_ADC_2 */
	stm32_configgpio(GPIO_ADC1_IN15);	/* PRESSURE_SENS */

	/* configure power supply control/sense pins */
	stm32_configgpio(GPIO_VDD_5V_PERIPH_EN);
	stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN);
	stm32_configgpio(GPIO_VDD_BRICK_VALID);
	stm32_configgpio(GPIO_VDD_SERVO_VALID);
	stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC);
	stm32_configgpio(GPIO_VDD_5V_PERIPH_OC);

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);

	/* Configure SPI-based devices */

	spi1 = up_spiinitialize(1);

	if (!spi1) {
		syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 1\n");
		board_led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false);
	SPI_SELECT(spi1, PX4_SPIDEV_BARO, false);
	SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
	up_udelay(20);

	syslog(LOG_INFO, "[boot] Initialized SPI port 1 (SENSORS)\n");

	/* Get the SPI port for the FRAM */

	spi2 = up_spiinitialize(2);

	if (!spi2) {
		syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 2\n");
		board_led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max)
	 * and de-assert the known chip selects. */

	// XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated
	SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, SPIDEV_FLASH, false);

	syslog(LOG_INFO, "[boot] Initialized SPI port 2 (RAMTRON FRAM)\n");

	spi4 = up_spiinitialize(4);

	/* Default SPI4 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi4, 10000000);
	SPI_SETBITS(spi4, 8);
	SPI_SETMODE(spi4, SPIDEV_MODE3);
	SPI_SELECT(spi4, PX4_SPIDEV_EXT0, false);
	SPI_SELECT(spi4, PX4_SPIDEV_EXT1, false);

	syslog(LOG_INFO, "[boot] Initialized SPI port 4\n");

#ifdef CONFIG_MMCSD
	/* First, get an instance of the SDIO interface */

	sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO);

	if (!sdio) {
		syslog(LOG_ERR, "[boot] Failed to initialize SDIO slot %d\n",
		       CONFIG_NSH_MMCSDSLOTNO);
		return -ENODEV;
	}

	/* Now bind the SDIO interface to the MMC/SD driver */
	int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio);

	if (ret != OK) {
		syslog(LOG_ERR, "[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret);
		return ret;
	}

	/* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */
	sdio_mediachange(sdio, true);

	syslog(LOG_INFO, "[boot] Initialized SDIO\n");
#endif

	return OK;
}
Example #7
0
void board_init_r(gd_t *new_gd, ulong dest_addr)
{
	extern void malloc_bin_reloc (void);
#ifndef CONFIG_ENV_IS_NOWHERE
	extern char * env_name_spec;
#endif
	char *s;
	bd_t *bd;

	gd = new_gd;
	bd = gd->bd;

	gd->flags |= GD_FLG_RELOC;
	gd->reloc_off = dest_addr - CONFIG_SYS_MONITOR_BASE;

	/* Enable the MMU so that we can keep u-boot simple */
	mmu_init_r(dest_addr);

	board_early_init_r();

	monitor_flash_len = _edata - _text;

#if defined(CONFIG_NEEDS_MANUAL_RELOC)
	/*
	 * We have to relocate the command table manually
	 */
	fixup_cmdtable(&__u_boot_cmd_start,
		(ulong)(&__u_boot_cmd_end - &__u_boot_cmd_start));
#endif /* defined(CONFIG_NEEDS_MANUAL_RELOC) */

	/* there are some other pointer constants we must deal with */
#ifndef CONFIG_ENV_IS_NOWHERE
	env_name_spec += gd->reloc_off;
#endif

	timer_init();

	/* The malloc area is right below the monitor image in RAM */
	mem_malloc_init(CONFIG_SYS_MONITOR_BASE + gd->reloc_off -
			CONFIG_SYS_MALLOC_LEN, CONFIG_SYS_MALLOC_LEN);
	malloc_bin_reloc();
	dma_alloc_init();

	enable_interrupts();

	bd->bi_flashstart = 0;
	bd->bi_flashsize = 0;
	bd->bi_flashoffset = 0;

#ifndef CONFIG_SYS_NO_FLASH
	bd->bi_flashstart = CONFIG_SYS_FLASH_BASE;
	bd->bi_flashsize = flash_init();
	bd->bi_flashoffset = (unsigned long)_edata - (unsigned long)_text;

	if (bd->bi_flashsize)
		display_flash_config();
#endif

	if (bd->bi_dram[0].size)
		display_dram_config();

	gd->bd->bi_boot_params = malloc(CONFIG_SYS_BOOTPARAMS_LEN);
	if (!gd->bd->bi_boot_params)
		puts("WARNING: Cannot allocate space for boot parameters\n");

	/* initialize environment */
	env_relocate();

	bd->bi_ip_addr = getenv_IPaddr ("ipaddr");

	stdio_init();
	jumptable_init();
	console_init_r();

	/* Initialize from environment */
	load_addr = getenv_ulong("loadaddr", 16, load_addr);

#ifdef CONFIG_BITBANGMII
	bb_miiphy_init();
#endif
#if defined(CONFIG_CMD_NET)
	s = getenv("bootfile");
	if (s)
		copy_filename(BootFile, s, sizeof(BootFile));
	puts("Net:   ");
	eth_initialize(gd->bd);
#endif

#ifdef CONFIG_GENERIC_ATMEL_MCI
	mmc_initialize(gd->bd);
#endif
	for (;;) {
		main_loop();
	}
}
Example #8
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: set up stats.
	 */
	averunnable.fscale = FSCALE;

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	kmeminit();

	/*
	 * step 6.5: init the dma allocator, which is backed by pools.
	 */
	dma_alloc_init();

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init anonymous memory system
	 */

	amap_init();		/* init amap module */

	/*
	 * step 9: init uvm_km_page allocator memory.
	 */
	uvm_km_page_init();

	/*
	 * the VM system is now up!  now that malloc is up we can
	 * enable paging of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * reserve some unmapped space for malloc/pool use after free usage
	 */
#ifdef DEADBEEF0
	kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF0);
#endif
#ifdef DEADBEEF1
	kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF1);
#endif
	/*
	 * init anonymous memory systems
	 */
	uvm_anon_init();

#ifndef SMALL_KERNEL
	/*
	 * Switch kernel and kmem_map over to a best-fit allocator,
	 * instead of walking the tree.
	 */
	uvm_map_set_uaddr(kernel_map, &kernel_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kernel_map),
	    vm_map_max(kernel_map)));
	uvm_map_set_uaddr(kmem_map, &kmem_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kmem_map),
	    vm_map_max(kmem_map)));
#endif /* !SMALL_KERNEL */
}
Example #9
0
__EXPORT int nsh_archinitialize(void)
{
	int result;

	message("\r\n");

	/* configure ADC pins */
	stm32_configgpio(GPIO_ADC1_IN10);	/* BATT_VOLTAGE_SENS */
	stm32_configgpio(GPIO_ADC1_IN11);	/* BATT_CURRENT_SENS */
	stm32_configgpio(GPIO_ADC1_IN14);	/* SONAR */

	/* configure power supply control/sense pins */



	stm32_configgpio(GPIO_SBUS_INV);






#ifdef GPIO_RC_OUT
	stm32_configgpio(GPIO_RC_OUT);      /* Serial RC output pin */
	stm32_gpiowrite(GPIO_RC_OUT, 1);    /* set it high to pull RC input up */
#endif

	/* configure the GPIO pins to outputs and keep them low */
	stm32_configgpio(GPIO_GPIO0_OUTPUT);
	stm32_configgpio(GPIO_GPIO1_OUTPUT);
	stm32_configgpio(GPIO_GPIO2_OUTPUT);
	stm32_configgpio(GPIO_GPIO3_OUTPUT);
	stm32_configgpio(GPIO_GPIO4_OUTPUT);
	stm32_configgpio(GPIO_GPIO5_OUTPUT);
	stm32_configgpio(GPIO_GPIO6_OUTPUT);
	stm32_configgpio(GPIO_GPIO7_OUTPUT);
	stm32_configgpio(GPIO_GPIO8_OUTPUT);
	stm32_configgpio(GPIO_GPIO9_OUTPUT);
	stm32_configgpio(GPIO_GPI10_OUTPUT);
	stm32_configgpio(GPIO_GPI11_OUTPUT);
    stm32_configgpio(GPIO_GPI12_OUTPUT);
    stm32_configgpio(GPIO_GPI13_OUTPUT);
    stm32_configgpio(GPIO_GPI14_OUTPUT);

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_RED);
	led_off(LED_GREEN);
	led_off(LED_BLUE);

	/* Configure SPI-based devices */

	message("[boot] Initializing SPI port 1\r\n");
	spi1 = up_spiinitialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\r\n");
		up_ledon(LED_RED);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, SPIDEV_MS5611, false);
	SPI_SELECT(spi1, SPIDEV_EXP_MS5611, false);
	SPI_SELECT(spi1, SPIDEV_EXP_MPU6000, false);
	SPI_SELECT(spi1, SPIDEV_EXP_HMC5983, false);
	up_udelay(20);

	message("[boot] Successfully initialized SPI port 1\r\n");

	message("[boot] Initializing SPI port 2\r\n");
	spi2 = up_spiinitialize(2);

	if (!spi2) {
		message("[boot] FAILED to initialize SPI port 2\r\n");
		up_ledon(LED_RED);
		return -ENODEV;
	}

	/* Default SPI2 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi2, 10000000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, SPIDEV_MPU9250, false);
	SPI_SELECT(spi2, SPIDEV_IMU_MS5611, false);
	SPI_SELECT(spi2, SPIDEV_IMU_MPU6000, false);
	SPI_SELECT(spi2, SPIDEV_IMU_HMC5983, false);

	message("[boot] Successfully initialized SPI port 2\r\n");

	/* Get the SPI port for the microSD slot */

#ifdef CONFIG_MMCSD
	message("[boot] Initializing SPI port 3\r\n");
	spi3 = up_spiinitialize(3);

	if (!spi3) {
		message("[boot] FAILED to initialize SPI port 3\r\n");
		up_ledon(LED_RED);
		return -ENODEV;
	}

	/* Default SPI3 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi3, 10000000);
	SPI_SETBITS(spi3, 8);
	SPI_SETMODE(spi3, SPIDEV_MODE3);
	SPI_SELECT(spi3, SPIDEV_MMCSD, false);
	SPI_SELECT(spi3, SPIDEV_FLASH, false);

	message("[boot] Successfully initialized SPI port 3\r\n");

	/* Now bind the SPI interface to the MMCSD driver */
	result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3);

	if (result != OK) {
		message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\r\n");
		led_on(LED_AMBER);
		return -ENODEV;
	}

	message("[boot] Successfully bound SPI port 3 to the MMCSD driver\r\n");
#endif

	return OK;
}
Example #10
0
int nsh_archinitialize(void)
{
#ifdef CONFIG_MMCSD
  int ret;
#endif

  /* Configure ADC pins */

  stm32_configgpio(GPIO_ADC1_IN2);   /* BATT_VOLTAGE_SENS */
  stm32_configgpio(GPIO_ADC1_IN3);   /* BATT_CURRENT_SENS */
  stm32_configgpio(GPIO_ADC1_IN4);   /* VDD_5V_SENS */
//stm32_configgpio(GPIO_ADC1_IN10);  /* used by VBUS valid */
//stm32_configgpio(GPIO_ADC1_IN11);  /* unused */
//stm32_configgpio(GPIO_ADC1_IN12);  /* used by MPU6000 CS */
  stm32_configgpio(GPIO_ADC1_IN13);  /* FMU_AUX_ADC_1 */
  stm32_configgpio(GPIO_ADC1_IN14);  /* FMU_AUX_ADC_2 */
  stm32_configgpio(GPIO_ADC1_IN15);  /* PRESSURE_SENS */

  /* Configure power supply control/sense pins */

  stm32_configgpio(GPIO_VDD_5V_PERIPH_EN);
  stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN);
  stm32_configgpio(GPIO_VDD_BRICK_VALID);
  stm32_configgpio(GPIO_VDD_SERVO_VALID);
  stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC);
  stm32_configgpio(GPIO_VDD_5V_PERIPH_OC);

  /* Configure the DMA allocator */

  dma_alloc_init();

  /* Configure CPU load estimation */

#ifdef CONFIG_SCHED_INSTRUMENTATION
  cpuload_initialize_once();
#endif

  /* Initial LED state */

  led_off(LED_AMBER);

  /* Configure SPI-based devices */

  spi1 = up_spiinitialize(1);
  if (!spi1)
    {
      message("[boot] FAILED to initialize SPI port 1\n");
      board_led_on(LED_AMBER);
      return -ENODEV;
    }

  /* Default SPI1 to 1MHz and de-assert the known chip selects. */

  SPI_SETFREQUENCY(spi1, 10000000);
  SPI_SETBITS(spi1, 8);
  SPI_SETMODE(spi1, SPIDEV_MODE3);
  SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false);
  SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false);
  SPI_SELECT(spi1, PX4_SPIDEV_BARO, false);
  SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
  up_udelay(20);

  message("[boot] Initialized SPI port 1 (SENSORS)\n");

  /* Get the SPI port for the FRAM */

  spi2 = up_spiinitialize(2);
  if (!spi2)
    {
      message("[boot] FAILED to initialize SPI port 2\n");
      board_led_on(LED_AMBER);
      return -ENODEV;
    }

  /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max)
   * and de-assert the known chip selects.
   */

  // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated

  SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000);
  SPI_SETBITS(spi2, 8);
  SPI_SETMODE(spi2, SPIDEV_MODE3);
  SPI_SELECT(spi2, SPIDEV_FLASH, false);

  message("[boot] Initialized SPI port 2 (RAMTRON FRAM)\n");

#ifdef CONFIG_MMCSD
  /* First, get an instance of the SDIO interface */

  sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO);
  if (!sdio)
    {
      message("[boot] Failed to initialize SDIO slot %d\n",
              CONFIG_NSH_MMCSDSLOTNO);
      return -ENODEV;
    }

  /* Now bind the SDIO interface to the MMC/SD driver */

  ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio);
  if (ret != OK)
    {
      message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret);
      return ret;
    }

  /* Then let's guess and say that there is a card in the slot. There is no
   * card detect GPIO.
   */

  sdio_mediachange(sdio, true);

  message("[boot] Initialized SDIO\n");
#endif

  return OK;
}
Example #11
0
__EXPORT int nsh_archinitialize(void)
{

	/* configure ADC pins */
	stm32_configgpio(GPIO_ADC1_IN10);	/* used by VBUS valid */
	stm32_configgpio(GPIO_ADC1_IN11);	/* J1 breakout */
	stm32_configgpio(GPIO_ADC1_IN12);	/* J1 breakout */
	stm32_configgpio(GPIO_ADC1_IN13);	/* J1 breakout */

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif


	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */
	dma_alloc_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);

	/* Configure Sensors on SPI bus #3 */
	spi3 = up_spiinitialize(3);

	if (!spi3) {
		message("[boot] FAILED to initialize SPI port 3\n");
		board_led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default: 1MHz, 8 bits, Mode 3 */
	SPI_SETFREQUENCY(spi3, 10000000);
	SPI_SETBITS(spi3, 8);
	SPI_SETMODE(spi3, SPIDEV_MODE3);
	SPI_SELECT(spi3, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi3, PX4_SPIDEV_ACCEL_MAG, false);
	SPI_SELECT(spi3, PX4_SPIDEV_BARO, false);
	up_udelay(20);
	message("[boot] Initialized SPI port 3 (SENSORS)\n");

	/* Configure FRAM on SPI bus #4 */
	spi4 = up_spiinitialize(4);

	if (!spi4) {
		message("[boot] FAILED to initialize SPI port 4\n");
		board_led_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default: ~10MHz, 8 bits, Mode 3 */
	SPI_SETFREQUENCY(spi4, 10 * 1000 * 1000);
	SPI_SETBITS(spi4, 8);
	SPI_SETMODE(spi4, SPIDEV_MODE0);
	SPI_SELECT(spi4, SPIDEV_FLASH, false);
	message("[boot] Initialized SPI port 4 (FRAM)\n");

	return OK;
}