Example #1
0
void hal_uart_dma_receive_block(uint8_t *data, uint16_t size){

	// hal_uart_manual_rts_clear();
	gpio_clear(GPIOB, GPIO_DEBUG_1);

	/*
	 * USART3_RX is on DMA_CHANNEL3
	 */

	// printf("hal_uart_dma_receive_block req size %u\n", size);

	/* Reset DMA channel*/
	dma_channel_reset(DMA1, DMA_CHANNEL3);

	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&USART3_DR);
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, size);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL3);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);
    usart_enable_rx_dma(USART3);
}
Example #2
0
/// Processing done after rx completes.
void process_rx_dma_interrupt(struct spi_periph *periph) {
  struct spi_periph_dma *dma = periph->init_struct;
  struct spi_transaction *trans = periph->trans[periph->trans_extract_idx];

  /* Disable DMA Channel */
  dma_disable_transfer_complete_interrupt(dma->dma, dma->rx_chan);

  /* Disable SPI Rx request */
  spi_disable_rx_dma((uint32_t)periph->reg_addr);

  /* Disable DMA rx channel */
  dma_disable_channel(dma->dma, dma->rx_chan);


  if (dma->rx_extra_dummy_dma) {
    /*
     * We are finished the first part of the receive with real data,
     * but still need to run the dummy to get a transfer complete interrupt
     * after the complete transaction is done.
     */

    /* Reset the flag so this only happens once in a transaction */
    dma->rx_extra_dummy_dma = FALSE;

    /* Use the difference in length between rx and tx */
    uint16_t len_remaining = trans->output_length - trans->input_length;

    spi_configure_dma(dma->dma, dma->rx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->rx_dummy_buf), len_remaining, trans->dss, FALSE);
    dma_set_read_from_peripheral(dma->dma, dma->rx_chan);
    dma_set_priority(dma->dma, dma->rx_chan, DMA_CCR_PL_HIGH);

    /* Enable DMA transfer complete interrupts. */
    dma_enable_transfer_complete_interrupt(dma->dma, dma->rx_chan);
    /* Enable DMA channels */
    dma_enable_channel(dma->dma, dma->rx_chan);
    /* Enable SPI transfers via DMA */
    spi_enable_rx_dma((uint32_t)periph->reg_addr);
  }
  else {
    /*
     * Since the receive DMA is always run until the very end
     * and this interrupt is triggered after the last data word was read,
     * we now know that this transaction is finished.
     */

    /* Run the callback */
    trans->status = SPITransSuccess;
    if (trans->after_cb != 0) {
      trans->after_cb(trans);
    }

    /* AFTER the callback, then unselect the slave if required */
    if (trans->select == SPISelectUnselect || trans->select == SPIUnselect) {
      SpiSlaveUnselect(trans->slave_idx);
    }

    spi_next_transaction(periph);
  }
}
Example #3
0
void baro_init()
{
    gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO14);
    gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ,
            GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO13 | GPIO15);
    gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ,
            GPIO_CNF_OUTPUT_PUSHPULL, GPIO12);
    deselect_slave();

    spi_init_master(SPI2, SPI_CR1_BAUDRATE_FPCLK_DIV_8, SPI_CR1_CPOL,
            SPI_CR1_CPHA, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST);
    spi_enable_ss_output(SPI2);
    spi_enable(SPI2);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL3, SPI2_DR);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
    dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL4, SPI2_DR);
    dma_set_read_from_peripheral(DMA1, DMA_CHANNEL4);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);
    dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4);

    timer_reset(TIM4);
    timer_enable_irq(TIM4, TIM_DIER_UIE);
    timer_set_mode(TIM4, TIM_CR1_CKD_CK_INT,
            TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* 3200 / 16 = 200 Hz */
    timer_set_prescaler(TIM4, 32);
    timer_set_period(TIM4, 5625);

    nvic_set_priority(NVIC_TIM4_IRQ, 16 * 2);
    nvic_set_priority(NVIC_DMA1_CHANNEL4_IRQ, 16 * 2);
    nvic_enable_irq(NVIC_TIM4_IRQ);
    nvic_enable_irq(NVIC_DMA1_CHANNEL4_IRQ);

    read_calibration_data();
}
Example #4
0
/* Receive data using DMA. */
void rx_spi(void *data, uint16_t size){
	if(DmaCleanupNeeded)cleanup_dma_spi();

	/* This byte is sent continuously when rx_spi() receives data. */
	static const uint8_t RxSpiDummyByte = 0x00;

	spi_enable_rx_dma(SPI3);
	
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_disable_channel(DMA1, DMA_CHANNEL2);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t) data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL2, size);
	dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL2);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
	dma_enable_channel(DMA1, DMA_CHANNEL2);

	/* The SPI peripheral is driven by transmitted bytes, so dummy bytes
	 * must be sent in order to receive data. This is accomplished with DMA
	 * by simply not incrementing the memory address. */
	dma_channel_reset(DMA1, DMA_CHANNEL3);
	dma_disable_channel(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) &RxSpiDummyByte);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, size);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
	dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);
	
	spi_enable_tx_dma(SPI3);
	spi_enable(SPI3);
	DmaCleanupNeeded = true;
}
void dma_request_setup(void)
{
    dma_channel_reset(DMA1, DMA_CHANNEL5);

    nvic_enable_irq(NVIC_DMA1_CHANNEL4_5_IRQ);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t) &USART2_RDR);
    dma_set_read_from_peripheral(DMA1, DMA_CHANNEL5);

    dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_8BIT);

    dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_VERY_HIGH);

    dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL5);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5);

    dma_disable_transfer_error_interrupt(DMA1, DMA_CHANNEL5);
    dma_disable_half_transfer_interrupt(DMA1, DMA_CHANNEL5);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5);
}
Example #6
0
void acq_init()
{
	/* Initialize amplifier control GPIO */
	gpio_mode_setup(BANK_AMP, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_AMP);
	gpio_clear(BANK_AMP, GPIO_AMP);
	gpio_mode_setup(BANK_LED, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_LED);
	gpio_clear(BANK_LED, GPIO_LED);

	/* Initialize SPI GPIOs */
	gpio_mode_setup(BANK_CS, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_CS);
	gpio_mode_setup(BANK_SCLK, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_SCLK);
	gpio_mode_setup(BANK_DOUT, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_DOUT);

	gpio_set_af(BANK_CS, GPIO_AF6, GPIO_CS);
	gpio_set_af(BANK_SCLK, GPIO_AF6, GPIO_SCLK);
	gpio_set_af(BANK_DOUT, GPIO_AF6, GPIO_DOUT);

	rcc_periph_clock_enable(RCC_SPI3);

	acq_spi_init(SPI_C1);

	rcc_periph_clock_enable(RCC_DMA1);
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_disable_channel(DMA1, DMA_CHANNEL2);

	dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&SPI_DR(SPI_C1));
	dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)&acq_channel.buff);
	dma_set_number_of_data(DMA1, DMA_CHANNEL2, BUFFER_SIZE);

	dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_MEDIUM);

	dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
	dma_enable_circular_mode(DMA1, DMA_CHANNEL2);

	nvic_set_priority(NVIC_DMA1_CHANNEL2_IRQ, PRIO_ACQ);
}
Example #7
0
/* Simultaneously transmit and receive data using DMA. */
void rxtx_spi(void *rxdata, const void *txdata, uint16_t size){
	if(DmaCleanupNeeded)cleanup_dma_spi();

	spi_enable_rx_dma(SPI3);
	
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_disable_channel(DMA1, DMA_CHANNEL2);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t) rxdata);
	dma_set_number_of_data(DMA1, DMA_CHANNEL2, size);
	dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL2);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
	dma_enable_channel(DMA1, DMA_CHANNEL2);

	dma_channel_reset(DMA1, DMA_CHANNEL3);
	dma_disable_channel(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) txdata);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, size);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);
	
	spi_enable_tx_dma(SPI3);
	spi_enable(SPI3);

	DmaCleanupNeeded = true;
}
Example #8
0
/**
 * Start a new transaction with DMA.
 */
static void spi_start_dma_transaction(struct spi_periph* periph, struct spi_transaction* trans)
{
  struct spi_periph_dma *dma;
  uint8_t sig = 0x00;

  /* Store local copy to notify of the results */
  trans->status = SPITransRunning;
  periph->status = SPIRunning;

  dma = periph->init_struct;

  /*
   * Check if we need to reconfigure the spi peripheral for this transaction
   */
  sig = get_transaction_signature(trans);
  if (sig != dma->comm_sig) {
    /* A different config is required in this transaction... */
    set_comm_from_transaction(&(dma->comm), trans);

    /* remember the new conf signature */
    dma->comm_sig = sig;

    /* apply the new configuration */
    spi_disable((uint32_t)periph->reg_addr);
    spi_init_master((uint32_t)periph->reg_addr, dma->comm.br, dma->comm.cpol,
                    dma->comm.cpha, dma->comm.dff, dma->comm.lsbfirst);
    spi_enable_software_slave_management((uint32_t)periph->reg_addr);
    spi_set_nss_high((uint32_t)periph->reg_addr);
    spi_enable((uint32_t)periph->reg_addr);
  }

  /*
   * Select the slave after reconfiguration of the peripheral
   */
  if (trans->select == SPISelectUnselect || trans->select == SPISelect) {
    SpiSlaveSelect(trans->slave_idx);
  }

  /* Run the callback AFTER selecting the slave */
  if (trans->before_cb != 0) {
    trans->before_cb(trans);
  }

  /*
   * Receive DMA channel configuration ----------------------------------------
   *
   * We always run the receive DMA until the very end!
   * This is done so we can use the transfer complete interrupt
   * of the RX DMA to signal the end of the transaction.
   *
   * If we want to receive less than we transmit, a dummy buffer
   * for the rx DMA is used after for the remaining data.
   *
   * In the transmit only case (input_length == 0),
   * the dummy is used right from the start.
   */
  if (trans->input_length == 0) {
    /* run the dummy rx dma for the complete transaction length */
    spi_configure_dma(dma->dma, dma->rx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->rx_dummy_buf), trans->output_length, trans->dss, FALSE);
  } else {
    /* run the real rx dma for input_length */
    spi_configure_dma(dma->dma, dma->rx_chan, (uint32_t)dma->spidr,
                      (uint32_t)trans->input_buf, trans->input_length, trans->dss, TRUE);
    /* use dummy rx dma for the rest */
    if (trans->output_length > trans->input_length) {
      /* Enable use of second dma transfer with dummy buffer (cleared in ISR) */
      dma->rx_extra_dummy_dma = TRUE;
    }
  }
  dma_set_read_from_peripheral(dma->dma, dma->rx_chan);
  dma_set_priority(dma->dma, dma->rx_chan, DMA_CCR_PL_VERY_HIGH);


  /*
   * Transmit DMA channel configuration ---------------------------------------
   *
   * We always run the transmit DMA!
   * To receive data, the clock must run, so something has to be transmitted.
   * If needed, use a dummy DMA transmitting zeros for the remaining length.
   *
   * In the reveive only case (output_length == 0),
   * the dummy is used right from the start.
   */
  if (trans->output_length == 0) {
    spi_configure_dma(dma->dma, dma->tx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->tx_dummy_buf), trans->input_length, trans->dss, FALSE);
  } else {
    spi_configure_dma(dma->dma, dma->tx_chan, (uint32_t)dma->spidr,
                      (uint32_t)trans->output_buf, trans->output_length, trans->dss, TRUE);
    if (trans->input_length > trans->output_length) {
      /* Enable use of second dma transfer with dummy buffer (cleared in ISR) */
      dma->tx_extra_dummy_dma = TRUE;
    }
  }
  dma_set_read_from_memory(dma->dma, dma->tx_chan);
  dma_set_priority(dma->dma, dma->tx_chan, DMA_CCR_PL_MEDIUM);


  /* Enable DMA transfer complete interrupts. */
  dma_enable_transfer_complete_interrupt(dma->dma, dma->rx_chan);
  dma_enable_transfer_complete_interrupt(dma->dma, dma->tx_chan);

  /* Enable DMA channels */
  dma_enable_channel(dma->dma, dma->rx_chan);
  dma_enable_channel(dma->dma, dma->tx_chan);

  /* Enable SPI transfers via DMA */
  spi_enable_rx_dma((uint32_t)periph->reg_addr);
  spi_enable_tx_dma((uint32_t)periph->reg_addr);
}
Example #9
0
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len)
#endif
{
/* Check for 0 length in both tx and rx */
    if ((rx_len < 1) && (tx_len < 1)) {
/* return -1 as error */
        return -1;
    }

/* Reset DMA channels*/
    dma_channel_reset(DMA1, DMA_CHANNEL4);
    dma_channel_reset(DMA1, DMA_CHANNEL5);

/* Reset SPI data and status registers.
 * Here we assume that the SPI peripheral is NOT
 * busy any longer, i.e. the last activity was verified
 * complete elsewhere in the program.
 */
    volatile uint8_t temp_data __attribute__ ((unused));
    while (SPI_SR(SPI2) & (SPI_SR_RXNE | SPI_SR_OVR)) {
        temp_data = SPI_DR(SPI2);
    }

/* Reset status flag appropriately (both 0 case caught above) */
    transceive_status = NONE;
    if (rx_len < 1) {
        transceive_status = ONE;
    }
    if (tx_len < 1) {
        transceive_status = ONE;
    }

/* Set up rx dma, note it has higher priority to avoid overrun */
    if (rx_len > 0) {
        dma_set_peripheral_address(DMA1, DMA_CHANNEL4, (uint32_t)&SPI2_DR);
        dma_set_memory_address(DMA1, DMA_CHANNEL4, (uint32_t)rx_buf);
        dma_set_number_of_data(DMA1, DMA_CHANNEL4, rx_len);
        dma_set_read_from_peripheral(DMA1, DMA_CHANNEL4);
        dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4);
#if USE_16BIT_TRANSFERS
        dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_16BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_16BIT);
#else
        dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);
#endif
        dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH);
    }

/* Set up tx dma */
    if (tx_len > 0) {
        dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t)&SPI2_DR);
        dma_set_memory_address(DMA1, DMA_CHANNEL5, (uint32_t)tx_buf);
        dma_set_number_of_data(DMA1, DMA_CHANNEL5, tx_len);
        dma_set_read_from_memory(DMA1, DMA_CHANNEL5);
        dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5);
#if USE_16BIT_TRANSFERS
        dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_16BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_16BIT);
#else
        dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_8BIT);
#endif
        dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_HIGH);
    }

/* Enable dma transfer complete interrupts */
    if (rx_len > 0) {
        dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4);
    }
    if (tx_len > 0) {
        dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5);
    }

/* Activate dma channels */
    if (rx_len > 0) {
        dma_enable_channel(DMA1, DMA_CHANNEL4);
    }
    if (tx_len > 0) {
        dma_enable_channel(DMA1, DMA_CHANNEL5);
    }

/* Enable the spi transfer via dma
 * This will immediately start the transmission,
 * after which when the receive is complete, the
 * receive dma will activate
 */
    if (rx_len > 0) {
        spi_enable_rx_dma(SPI2);
    }
    if (tx_len > 0) {
        spi_enable_tx_dma(SPI2);
    }

    return 0;
}
Example #10
0
int main(void)
{
	/* Exactly 20 bytes including '0' at the end.
	   We want to transfer 32bit * 5 so it should fit */
	char s1[20] = "Hello STM MEM2MEM\r\n";
	char s2[20];

        rcc_clock_setup_in_hse_16mhz_out_72mhz();
	gpio_setup();
	usart_setup();

	gpio_clear(GPIOB, GPIO7);	/* LED1 on */
	gpio_set(GPIOB, GPIO6);		/* LED2 off */

	my_usart_print_string(USART1, "s1 ");
	my_usart_print_string(USART1, s1);

	rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA1EN);

	/* MEM2MEM mode for channel 1. */
	dma_enable_mem2mem_mode(DMA1, DMA_CHANNEL1);

	/* Highest priority. */
	dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR1_PL_VERY_HIGH);

	/* 32Bit wide transfer for source and destination. */
	dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR1_MSIZE_32BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR1_PSIZE_32BIT);

	/* After each 32Bit we have to increase the addres because we use RAM. */
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1);
	dma_enable_peripheral_increment_mode(DMA1, DMA_CHANNEL1);

	/* We define the source as peripheral. */
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1);

	/* We want to transfer string s1. */
	dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (u32) &s1);

	/* Destination should be string s2. */
	dma_set_memory_address(DMA1, DMA_CHANNEL1, (u32) &s2);

	/* Set number of DATA to transfer.
	   Remember that this means not necessary bytes but MSIZE or PSIZE
	   depending from your source device. */
	dma_set_number_of_data(DMA1, DMA_CHANNEL1, 5); 

	/* Start DMA transfer. */
	dma_enable_channel(DMA1, DMA_CHANNEL1);

	/* TODO: write a function to get the interrupt flags. */
	while(!(DMA_ISR(DMA1) & 0x0000001))
	{
	}

	dma_disable_channel(DMA1, DMA_CHANNEL1);

	/* String s1 should now already be transferred to s2. */
	my_usart_print_string(USART1, "s2 ");
	my_usart_print_string(USART1, s2);

	gpio_clear(GPIOB, GPIO6);	/* LED2 on */
	while(1); /* Halt. */

	return 0;
}
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len)
#endif
{	

	/* Check for 0 length in both tx and rx */
	if ((rx_len < 1) && (tx_len < 1)) {
		/* return -1 as error */
		return -1;
	}

	/* Reset DMA channels*/
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_channel_reset(DMA1, DMA_CHANNEL3);

	/* Reset SPI data and status registers.
	 * Here we assume that the SPI peripheral is NOT
	 * busy any longer, i.e. the last activity was verified
	 * complete elsewhere in the program.
	 */
	volatile uint8_t temp_data __attribute__ ((unused));
	while (SPI_SR(SPI1) & (SPI_SR_RXNE | SPI_SR_OVR)) {
		temp_data = SPI_DR(SPI1);
	}

	/* Reset status flag appropriately (both 0 case caught above) */
	transceive_status = NONE;
	if (rx_len < 1) {
		transceive_status = ONE;
	}

	/* Determine tx length case to change behaviour
	 * If tx_len >= rx_len, then normal case, run both DMAs with normal settings
	 * If rx_len == 0, just don't run the rx DMA at all
	 * If tx_len == 0, use a dummy buf and set the tx dma to transfer the same
	 *    amount as the rx_len, to ensure everything is clocked in
	 * If 0 < tx_len < rx_len, first do a normal case, then on the tx finished
	 *    interrupt, set up a new dummyy buf tx dma transfer for the remaining
	 *    required clock cycles (handled in tx dma complete interrupt)
	 */
	if ((tx_len > 0) && (tx_len < rx_len)) {
		rx_buf_remainder = rx_len - tx_len;
	}

	/* Set up rx dma, note it has higher priority to avoid overrun */
	if (rx_len > 0) {
		dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)rx_buf);
		dma_set_number_of_data(DMA1, DMA_CHANNEL2, rx_len);
		dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
		dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH);
	}

	/* Set up tx dma (must always run tx to get clock signal) */
	if (tx_len > 0) {
		/* Here we have a regular tx transfer */
		dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf);
		dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len);
		dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
		dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	} else {
		/* Here we aren't transmitting any real data, use the dummy buffer
		 * and set the length to the rx_len to get all rx data in, while
		 * not incrementing the memory pointer
		 */
		dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)(&dummy_tx_buf)); // Change here
		dma_set_number_of_data(DMA1, DMA_CHANNEL3, rx_len); // Change here
		dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
		dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); // Change here
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	}

	/* Enable dma transfer complete interrupts */
	if (rx_len > 0) {
		dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2);
	}
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);

	/* Activate dma channels */
	if (rx_len > 0) {
		dma_enable_channel(DMA1, DMA_CHANNEL2);
	}
	dma_enable_channel(DMA1, DMA_CHANNEL3);

	/* Enable the spi transfer via dma
	 * This will immediately start the transmission,
	 * after which when the receive is complete, the
	 * receive dma will activate
	 */
	if (rx_len > 0) {
    	spi_enable_rx_dma(SPI1);
    }
    spi_enable_tx_dma(SPI1);

    return 0;
}
Example #12
0
void accel_highg_init()
{
    uint8_t channel_array[16];

    gpio_set_mode(GPIOB, GPIO_MODE_INPUT,
            GPIO_CNF_INPUT_ANALOG, GPIO0 | GPIO1 | GPIO2);

    adc_set_dual_mode(ADC_CR1_DUALMOD_RSM);

    /* ADC1 + ADC2 dual mode */
    adc_set_dual_mode(ADC_CR1_DUALMOD_ISM);

    adc_enable_external_trigger_injected(ADC1, ADC_CR2_JEXTSEL_TIM1_TRGO);
    adc_enable_external_trigger_injected(ADC3, ADC_CR2_JEXTSEL_TIM1_TRGO);

    adc_enable_dma(ADC1);
    adc_enable_dma(ADC3);

    adc_power_on(ADC1);
    adc_power_on(ADC2);
    adc_power_on(ADC3);

    adc_stab_sleep();

    adc_reset_calibration(ADC1);
    adc_reset_calibration(ADC2);
    adc_reset_calibration(ADC3);
    adc_calibration(ADC1);
    adc_calibration(ADC2);
    adc_calibration(ADC3);

    memset(channel_array, 0, sizeof(channel_array));
    channel_array[0] = 10;
    adc_set_injected_sequence(ADC1, 1, channel_array);
    channel_array[0] = 11;
    adc_set_injected_sequence(ADC2, 1, channel_array);
    channel_array[0] = 12;
    adc_set_injected_sequence(ADC3, 1, channel_array);

    timer_reset(TIM1);
    timer_enable_irq(TIM1, TIM_DIER_UIE);
    timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT,
            TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* 500Hz */
    timer_set_prescaler(TIM1, 64);
    timer_set_period(TIM1, 2250);

    /* Generate TRGO */
    timer_set_master_mode(TIM1, TIM_CR2_MMS_UPDATE);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t) &ADC1_DR);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL5);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_32BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_32BIT);
    dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_HIGH);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL6, (uint32_t) &ADC3_DR);
    dma_set_read_from_peripheral(DMA1, DMA_CHANNEL6);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL6);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL6, DMA_CCR_PSIZE_16BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL6, DMA_CCR_MSIZE_16BIT);
    dma_set_priority(DMA1, DMA_CHANNEL6, DMA_CCR_PL_HIGH);

    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL6);
}
Example #13
0
/**
 * Initialize analog to digital converter
 */
void adc_init(adc_callback_t half_transfer_callback,
	      adc_callback_t transfer_complete_callback)
{
	/* Reset adc_state. */
	adc_state.dma_transfer_error_counter = 0;
	adc_state.half_transfer_callback = half_transfer_callback;
	adc_state.transfer_complete_callback = transfer_complete_callback;

	/* Initialize peripheral clocks. */
	rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA1EN);
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN);
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN);
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC2EN);

	/* Initialize the ADC input GPIO. */
	/* WARNING: this code is written to work with strip. On the strip
	 * hardware we are lucky and all the ADC channels are on the same bank
	 * so we can initialize all of them in one go. This code will need to be
	 * changed/improved if we ever have to support hardware that has the
	 * ADC's spread over more then one bank.
	 */
	gpio_set_mode(ADC_BANK, GPIO_MODE_INPUT,
		      GPIO_CNF_INPUT_ANALOG, ADC_PORT_U_VOLTAGE |
		      ADC_PORT_V_VOLTAGE |
		      ADC_PORT_W_VOLTAGE |
		      ADC_PORT_V_BATT |
		      ADC_PORT_CURRENT);

	/* Configure DMA for data aquisition. */
	/* Channel 1 reacts to: ADC1, TIM2_CH3 and TIM4_CH1 */
	dma_channel_reset(DMA1, DMA_CHANNEL1);

	dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t)&ADC1_DR);
	dma_set_memory_address(DMA1, DMA_CHANNEL1,
			       (uint32_t)adc_state.raw_data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL1, ADC_RAW_SAMPLE_COUNT/2);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1);
	dma_enable_circular_mode(DMA1, DMA_CHANNEL1);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_32BIT);
	dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_32BIT);
	dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR_PL_VERY_HIGH);

	dma_enable_half_transfer_interrupt(DMA1, DMA_CHANNEL1);
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1);
	dma_enable_transfer_error_interrupt(DMA1, DMA_CHANNEL1);

	dma_enable_channel(DMA1, DMA_CHANNEL1);

	/* Configure interrupts in NVIC. */
	nvic_set_priority(NVIC_DMA1_CHANNEL1_IRQ, 0);
	nvic_enable_irq(NVIC_DMA1_CHANNEL1_IRQ);

	/* Disable ADC's. */
	adc_off(ADC1);
	adc_off(ADC2);

	/* Enable dualmode. */
	adc_set_dual_mode(ADC_CR1_DUALMOD_RSM); /* Dualmode regular only. */

	/* Configure the adc channels. */
	adc_config(ADC1, adc1_channel_array);
	adc_config(ADC2, adc2_channel_array);

	/* Start converting. */
	adc_start_conversion_regular(ADC1);
}