/* Subroutine */ int derrpo_(char *path, integer *nunit) { /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublereal a[16] /* was [4][4] */, b[4]; integer i__, j; doublereal w[12], x[4]; char c2[2]; doublereal r1[4], r2[4], af[16] /* was [4][4] */; integer iw[4], info; doublereal anrm, rcond; extern /* Subroutine */ int dpbtf2_(char *, integer *, integer *, doublereal *, integer *, integer *), dpotf2_(char *, integer *, doublereal *, integer *, integer *), alaesm_( char *, logical *, integer *), dpbcon_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *); extern logical lsamen_(integer *, char *, char *); extern /* Subroutine */ int dpbequ_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dpbrfs_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dpbtrf_(char *, integer *, integer *, doublereal *, integer *, integer *), dpocon_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), dppcon_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), dpoequ_(integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dpbtrs_(char *, integer * , integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dporfs_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dpotrf_(char *, integer *, doublereal *, integer *, integer *), dpotri_( char *, integer *, doublereal *, integer *, integer *), dppequ_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dpprfs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dpptrf_(char *, integer *, doublereal *, integer *), dpptri_(char *, integer *, doublereal *, integer *), dpotrs_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dpptrs_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DERRPO tests the error exits for the DOUBLE PRECISION routines */ /* for symmetric positive definite matrices. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { a[i__ + (j << 2) - 5] = 1. / (doublereal) (i__ + j); af[i__ + (j << 2) - 5] = 1. / (doublereal) (i__ + j); /* L10: */ } b[j - 1] = 0.; r1[j - 1] = 0.; r2[j - 1] = 0.; w[j - 1] = 0.; x[j - 1] = 0.; iw[j - 1] = j; /* L20: */ } infoc_1.ok = TRUE_; if (lsamen_(&c__2, c2, "PO")) { /* Test error exits of the routines that use the Cholesky */ /* decomposition of a symmetric positive definite matrix. */ /* DPOTRF */ s_copy(srnamc_1.srnamt, "DPOTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpotrf_("/", &c__0, a, &c__1, &info); chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpotrf_("U", &c_n1, a, &c__1, &info); chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpotrf_("U", &c__2, a, &c__1, &info); chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPOTF2 */ s_copy(srnamc_1.srnamt, "DPOTF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpotf2_("/", &c__0, a, &c__1, &info); chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpotf2_("U", &c_n1, a, &c__1, &info); chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpotf2_("U", &c__2, a, &c__1, &info); chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPOTRI */ s_copy(srnamc_1.srnamt, "DPOTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpotri_("/", &c__0, a, &c__1, &info); chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpotri_("U", &c_n1, a, &c__1, &info); chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpotri_("U", &c__2, a, &c__1, &info); chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPOTRS */ s_copy(srnamc_1.srnamt, "DPOTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info); chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info); chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPORFS */ s_copy(srnamc_1.srnamt, "DPORFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 11; dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, r1, r2, w, iw, &info); chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPOCON */ s_copy(srnamc_1.srnamt, "DPOCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPOEQU */ s_copy(srnamc_1.srnamt, "DPOEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } else if (lsamen_(&c__2, c2, "PP")) { /* Test error exits of the routines that use the Cholesky */ /* decomposition of a symmetric positive definite packed matrix. */ /* DPPTRF */ s_copy(srnamc_1.srnamt, "DPPTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpptrf_("/", &c__0, a, &info); chkxer_("DPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpptrf_("U", &c_n1, a, &info); chkxer_("DPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPPTRI */ s_copy(srnamc_1.srnamt, "DPPTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpptri_("/", &c__0, a, &info); chkxer_("DPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpptri_("U", &c_n1, a, &info); chkxer_("DPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPPTRS */ s_copy(srnamc_1.srnamt, "DPPTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpptrs_("/", &c__0, &c__0, a, b, &c__1, &info); chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info); chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info); chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; dpptrs_("U", &c__2, &c__1, a, b, &c__1, &info); chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPPRFS */ s_copy(srnamc_1.srnamt, "DPPRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, & info); chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, & info); chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, & info); chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, iw, & info); chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; dpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, iw, & info); chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPPCON */ s_copy(srnamc_1.srnamt, "DPPCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dppcon_("/", &c__0, a, &anrm, &rcond, w, iw, &info); chkxer_("DPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dppcon_("U", &c_n1, a, &anrm, &rcond, w, iw, &info); chkxer_("DPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPPEQU */ s_copy(srnamc_1.srnamt, "DPPEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dppequ_("/", &c__0, a, r1, &rcond, &anrm, &info); chkxer_("DPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info); chkxer_("DPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } else if (lsamen_(&c__2, c2, "PB")) { /* Test error exits of the routines that use the Cholesky */ /* decomposition of a symmetric positive definite band matrix. */ /* DPBTRF */ s_copy(srnamc_1.srnamt, "DPBTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbtrf_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbtrf_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbtrf_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dpbtrf_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPBTF2 */ s_copy(srnamc_1.srnamt, "DPBTF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbtf2_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbtf2_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbtf2_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dpbtf2_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPBTRS */ s_copy(srnamc_1.srnamt, "DPBTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; dpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; dpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info); chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPBRFS */ s_copy(srnamc_1.srnamt, "DPBRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; dpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; dpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; dpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, & c__2, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; dpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, & c__1, r1, r2, w, iw, &info); chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPBCON */ s_copy(srnamc_1.srnamt, "DPBCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DPBEQU */ s_copy(srnamc_1.srnamt, "DPBEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; dpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of DERRPO */ } /* derrpo_ */
/* Subroutine */ int dchkeq_(doublereal *thresh, integer *nout) { /* Format strings */ static char fmt_9999[] = "(1x,\002All tests for \002,a3,\002 routines pa" "ssed the threshold\002)"; static char fmt_9998[] = "(\002 DGEEQU failed test with value \002,d10" ".3,\002 exceeding\002,\002 threshold \002,d10.3)"; static char fmt_9997[] = "(\002 DGBEQU failed test with value \002,d10" ".3,\002 exceeding\002,\002 threshold \002,d10.3)"; static char fmt_9996[] = "(\002 DPOEQU failed test with value \002,d10" ".3,\002 exceeding\002,\002 threshold \002,d10.3)"; static char fmt_9995[] = "(\002 DPPEQU failed test with value \002,d10" ".3,\002 exceeding\002,\002 threshold \002,d10.3)"; static char fmt_9994[] = "(\002 DPBEQU failed test with value \002,d10" ".3,\002 exceeding\002,\002 threshold \002,d10.3)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8; doublereal d__1, d__2, d__3; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double pow_di(doublereal *, integer *); integer pow_ii(integer *, integer *), s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ doublereal a[25] /* was [5][5] */, c__[5]; integer i__, j, m, n; doublereal r__[5], ab[65] /* was [13][5] */, ap[15]; integer kl; logical ok; integer ku; doublereal eps, pow[11]; integer info; char path[3]; doublereal norm, rpow[11], ccond, rcond, rcmin, rcmax, ratio; extern doublereal dlamch_(char *); extern /* Subroutine */ int dgbequ_(integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dgeequ_( integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *) , dpbequ_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dpoequ_(integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dppequ_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer * ); doublereal reslts[5]; /* Fortran I/O blocks */ static cilist io___25 = { 0, 0, 0, 0, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___27 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___28 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9994, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKEQ tests DGEEQU, DGBEQU, DPOEQU, DPPEQU and DPBEQU */ /* Arguments */ /* ========= */ /* THRESH (input) DOUBLE PRECISION */ /* Threshold for testing routines. Should be between 2 and 10. */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "EQ", (ftnlen)2, (ftnlen)2); eps = dlamch_("P"); for (i__ = 1; i__ <= 5; ++i__) { reslts[i__ - 1] = 0.; /* L10: */ } for (i__ = 1; i__ <= 11; ++i__) { i__1 = i__ - 1; pow[i__ - 1] = pow_di(&c_b7, &i__1); rpow[i__ - 1] = 1. / pow[i__ - 1]; /* L20: */ } /* Test DGEEQU */ for (n = 0; n <= 5; ++n) { for (m = 0; m <= 5; ++m) { for (j = 1; j <= 5; ++j) { for (i__ = 1; i__ <= 5; ++i__) { if (i__ <= m && j <= n) { i__1 = i__ + j; a[i__ + j * 5 - 6] = pow[i__ + j] * pow_ii(&c_n1, & i__1); } else { a[i__ + j * 5 - 6] = 0.; } /* L30: */ } /* L40: */ } dgeequ_(&m, &n, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info); if (info != 0) { reslts[0] = 1.; } else { if (n != 0 && m != 0) { /* Computing MAX */ d__2 = reslts[0], d__3 = (d__1 = (rcond - rpow[m - 1]) / rpow[m - 1], abs(d__1)); reslts[0] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[0], d__3 = (d__1 = (ccond - rpow[n - 1]) / rpow[n - 1], abs(d__1)); reslts[0] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[0], d__3 = (d__1 = (norm - pow[n + m]) / pow[n + m], abs(d__1)); reslts[0] = max(d__2,d__3); i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = reslts[0], d__3 = (d__1 = (r__[i__ - 1] - rpow[ i__ + n]) / rpow[i__ + n], abs(d__1)); reslts[0] = max(d__2,d__3); /* L50: */ } i__1 = n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__2 = reslts[0], d__3 = (d__1 = (c__[j - 1] - pow[n - j]) / pow[n - j], abs(d__1)); reslts[0] = max(d__2,d__3); /* L60: */ } } } /* L70: */ } /* L80: */ } /* Test with zero rows and columns */ for (j = 1; j <= 5; ++j) { a[j * 5 - 2] = 0.; /* L90: */ } dgeequ_(&c__5, &c__5, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info); if (info != 4) { reslts[0] = 1.; } for (j = 1; j <= 5; ++j) { a[j * 5 - 2] = 1.; /* L100: */ } for (i__ = 1; i__ <= 5; ++i__) { a[i__ + 14] = 0.; /* L110: */ } dgeequ_(&c__5, &c__5, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info); if (info != 9) { reslts[0] = 1.; } reslts[0] /= eps; /* Test DGBEQU */ for (n = 0; n <= 5; ++n) { for (m = 0; m <= 5; ++m) { /* Computing MAX */ i__2 = m - 1; i__1 = max(i__2,0); for (kl = 0; kl <= i__1; ++kl) { /* Computing MAX */ i__3 = n - 1; i__2 = max(i__3,0); for (ku = 0; ku <= i__2; ++ku) { for (j = 1; j <= 5; ++j) { for (i__ = 1; i__ <= 13; ++i__) { ab[i__ + j * 13 - 14] = 0.; /* L120: */ } /* L130: */ } i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { /* Computing MIN */ i__5 = m, i__6 = j + kl; /* Computing MAX */ i__7 = 1, i__8 = j - ku; if (i__ <= min(i__5,i__6) && i__ >= max(i__7,i__8) && j <= n) { i__5 = i__ + j; ab[ku + 1 + i__ - j + j * 13 - 14] = pow[i__ + j] * pow_ii(&c_n1, &i__5); } /* L140: */ } /* L150: */ } dgbequ_(&m, &n, &kl, &ku, ab, &c__13, r__, c__, &rcond, & ccond, &norm, &info); if (info != 0) { if (! (n + kl < m && info == n + kl + 1 || m + ku < n && info == (m << 1) + ku + 1)) { reslts[1] = 1.; } } else { if (n != 0 && m != 0) { rcmin = r__[0]; rcmax = r__[0]; i__3 = m; for (i__ = 1; i__ <= i__3; ++i__) { /* Computing MIN */ d__1 = rcmin, d__2 = r__[i__ - 1]; rcmin = min(d__1,d__2); /* Computing MAX */ d__1 = rcmax, d__2 = r__[i__ - 1]; rcmax = max(d__1,d__2); /* L160: */ } ratio = rcmin / rcmax; /* Computing MAX */ d__2 = reslts[1], d__3 = (d__1 = (rcond - ratio) / ratio, abs(d__1)); reslts[1] = max(d__2,d__3); rcmin = c__[0]; rcmax = c__[0]; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ d__1 = rcmin, d__2 = c__[j - 1]; rcmin = min(d__1,d__2); /* Computing MAX */ d__1 = rcmax, d__2 = c__[j - 1]; rcmax = max(d__1,d__2); /* L170: */ } ratio = rcmin / rcmax; /* Computing MAX */ d__2 = reslts[1], d__3 = (d__1 = (ccond - ratio) / ratio, abs(d__1)); reslts[1] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[1], d__3 = (d__1 = (norm - pow[n + m]) / pow[n + m], abs(d__1)); reslts[1] = max(d__2,d__3); i__3 = m; for (i__ = 1; i__ <= i__3; ++i__) { rcmax = 0.; i__4 = n; for (j = 1; j <= i__4; ++j) { if (i__ <= j + kl && i__ >= j - ku) { ratio = (d__1 = r__[i__ - 1] * pow[ i__ + j] * c__[j - 1], abs( d__1)); rcmax = max(rcmax,ratio); } /* L180: */ } /* Computing MAX */ d__2 = reslts[1], d__3 = (d__1 = 1. - rcmax, abs(d__1)); reslts[1] = max(d__2,d__3); /* L190: */ } i__3 = n; for (j = 1; j <= i__3; ++j) { rcmax = 0.; i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { if (i__ <= j + kl && i__ >= j - ku) { ratio = (d__1 = r__[i__ - 1] * pow[ i__ + j] * c__[j - 1], abs( d__1)); rcmax = max(rcmax,ratio); } /* L200: */ } /* Computing MAX */ d__2 = reslts[1], d__3 = (d__1 = 1. - rcmax, abs(d__1)); reslts[1] = max(d__2,d__3); /* L210: */ } } } /* L220: */ } /* L230: */ } /* L240: */ } /* L250: */ } reslts[1] /= eps; /* Test DPOEQU */ for (n = 0; n <= 5; ++n) { for (i__ = 1; i__ <= 5; ++i__) { for (j = 1; j <= 5; ++j) { if (i__ <= n && j == i__) { i__1 = i__ + j; a[i__ + j * 5 - 6] = pow[i__ + j] * pow_ii(&c_n1, &i__1); } else { a[i__ + j * 5 - 6] = 0.; } /* L260: */ } /* L270: */ } dpoequ_(&n, a, &c__5, r__, &rcond, &norm, &info); if (info != 0) { reslts[2] = 1.; } else { if (n != 0) { /* Computing MAX */ d__2 = reslts[2], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[ n - 1], abs(d__1)); reslts[2] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[2], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n * 2], abs(d__1)); reslts[2] = max(d__2,d__3); i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = reslts[2], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__] ) / rpow[i__], abs(d__1)); reslts[2] = max(d__2,d__3); /* L280: */ } } } /* L290: */ } a[18] = -1.; dpoequ_(&c__5, a, &c__5, r__, &rcond, &norm, &info); if (info != 4) { reslts[2] = 1.; } reslts[2] /= eps; /* Test DPPEQU */ for (n = 0; n <= 5; ++n) { /* Upper triangular packed storage */ i__1 = n * (n + 1) / 2; for (i__ = 1; i__ <= i__1; ++i__) { ap[i__ - 1] = 0.; /* L300: */ } i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { ap[i__ * (i__ + 1) / 2 - 1] = pow[i__ * 2]; /* L310: */ } dppequ_("U", &n, ap, r__, &rcond, &norm, &info); if (info != 0) { reslts[3] = 1.; } else { if (n != 0) { /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[ n - 1], abs(d__1)); reslts[3] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n * 2], abs(d__1)); reslts[3] = max(d__2,d__3); i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__] ) / rpow[i__], abs(d__1)); reslts[3] = max(d__2,d__3); /* L320: */ } } } /* Lower triangular packed storage */ i__1 = n * (n + 1) / 2; for (i__ = 1; i__ <= i__1; ++i__) { ap[i__ - 1] = 0.; /* L330: */ } j = 1; i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { ap[j - 1] = pow[i__ * 2]; j += n - i__ + 1; /* L340: */ } dppequ_("L", &n, ap, r__, &rcond, &norm, &info); if (info != 0) { reslts[3] = 1.; } else { if (n != 0) { /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[ n - 1], abs(d__1)); reslts[3] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n * 2], abs(d__1)); reslts[3] = max(d__2,d__3); i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = reslts[3], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__] ) / rpow[i__], abs(d__1)); reslts[3] = max(d__2,d__3); /* L350: */ } } } /* L360: */ } i__ = 13; ap[i__ - 1] = -1.; dppequ_("L", &c__5, ap, r__, &rcond, &norm, &info); if (info != 4) { reslts[3] = 1.; } reslts[3] /= eps; /* Test DPBEQU */ for (n = 0; n <= 5; ++n) { /* Computing MAX */ i__2 = n - 1; i__1 = max(i__2,0); for (kl = 0; kl <= i__1; ++kl) { /* Test upper triangular storage */ for (j = 1; j <= 5; ++j) { for (i__ = 1; i__ <= 13; ++i__) { ab[i__ + j * 13 - 14] = 0.; /* L370: */ } /* L380: */ } i__2 = n; for (j = 1; j <= i__2; ++j) { ab[kl + 1 + j * 13 - 14] = pow[j * 2]; /* L390: */ } dpbequ_("U", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info); if (info != 0) { reslts[4] = 1.; } else { if (n != 0) { /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[n - 1], abs(d__1)); reslts[4] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n * 2], abs(d__1)); reslts[4] = max(d__2,d__3); i__2 = n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (r__[i__ - 1] - rpow[ i__]) / rpow[i__], abs(d__1)); reslts[4] = max(d__2,d__3); /* L400: */ } } } if (n != 0) { /* Computing MAX */ i__2 = n - 1; ab[kl + 1 + max(i__2,1) * 13 - 14] = -1.; dpbequ_("U", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info); /* Computing MAX */ i__2 = n - 1; if (info != max(i__2,1)) { reslts[4] = 1.; } } /* Test lower triangular storage */ for (j = 1; j <= 5; ++j) { for (i__ = 1; i__ <= 13; ++i__) { ab[i__ + j * 13 - 14] = 0.; /* L410: */ } /* L420: */ } i__2 = n; for (j = 1; j <= i__2; ++j) { ab[j * 13 - 13] = pow[j * 2]; /* L430: */ } dpbequ_("L", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info); if (info != 0) { reslts[4] = 1.; } else { if (n != 0) { /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[n - 1], abs(d__1)); reslts[4] = max(d__2,d__3); /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n * 2], abs(d__1)); reslts[4] = max(d__2,d__3); i__2 = n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = reslts[4], d__3 = (d__1 = (r__[i__ - 1] - rpow[ i__]) / rpow[i__], abs(d__1)); reslts[4] = max(d__2,d__3); /* L440: */ } } } if (n != 0) { /* Computing MAX */ i__2 = n - 1; ab[max(i__2,1) * 13 - 13] = -1.; dpbequ_("L", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info); /* Computing MAX */ i__2 = n - 1; if (info != max(i__2,1)) { reslts[4] = 1.; } } /* L450: */ } /* L460: */ } reslts[4] /= eps; ok = reslts[0] <= *thresh && reslts[1] <= *thresh && reslts[2] <= *thresh && reslts[3] <= *thresh && reslts[4] <= *thresh; io___25.ciunit = *nout; s_wsle(&io___25); e_wsle(); if (ok) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); } else { if (reslts[0] > *thresh) { io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, (char *)&reslts[0], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); } if (reslts[1] > *thresh) { io___28.ciunit = *nout; s_wsfe(&io___28); do_fio(&c__1, (char *)&reslts[1], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); } if (reslts[2] > *thresh) { io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, (char *)&reslts[2], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); } if (reslts[3] > *thresh) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, (char *)&reslts[3], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); } if (reslts[4] > *thresh) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&reslts[4], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); } } return 0; /* End of DCHKEQ */ } /* dchkeq_ */
/* Subroutine */ int dppsvx_(char *fact, char *uplo, integer *n, integer * nrhs, doublereal *ap, doublereal *afp, char *equed, doublereal *s, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal * rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer * iwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix stored in packed format and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided. Description =========== The following steps are performed: 1. If FACT = 'E', real scaling factors are computed to equilibrate the system: diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by diag(S)*A*diag(S) and B by diag(S)*B. 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after equilibration if FACT = 'E') as A = U**T* U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. 3. If the leading i-by-i principal minor is not positive definite, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 4. The system of equations is solved for X using the factored form of A. 5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it. 6. If equilibration was used, the matrix X is premultiplied by diag(S) so that it solves the original system before equilibration. Arguments ========= FACT (input) CHARACTER*1 Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored. = 'F': On entry, AFP contains the factored form of A. If EQUED = 'Y', the matrix A has been equilibrated with scaling factors given by S. AP and AFP will not be modified. = 'N': The matrix A will be copied to AFP and factored. = 'E': The matrix A will be equilibrated if necessary, then copied to AFP and factored. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array, except if FACT = 'F' and EQUED = 'Y', then A must contain the equilibrated matrix diag(S)*A*diag(S). The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below for further details. A is not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by diag(S)*A*diag(S). AFP (input or output) DOUBLE PRECISION array, dimension (N*(N+1)/2) If FACT = 'F', then AFP is an input argument and on entry contains the triangular factor U or L from the Cholesky factorization A = U'*U or A = L*L', in the same storage format as A. If EQUED .ne. 'N', then AFP is the factored form of the equilibrated matrix A. If FACT = 'N', then AFP is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization A = U'*U or A = L*L' of the original matrix A. If FACT = 'E', then AFP is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization A = U'*U or A = L*L' of the equilibrated matrix A (see the description of AP for the form of the equilibrated matrix). EQUED (input or output) CHARACTER*1 Specifies the form of equilibration that was done. = 'N': No equilibration (always true if FACT = 'N'). = 'Y': Equilibration was done, i.e., A has been replaced by diag(S) * A * diag(S). EQUED is an input argument if FACT = 'F'; otherwise, it is an output argument. S (input or output) DOUBLE PRECISION array, dimension (N) The scale factors for A; not accessed if EQUED = 'N'. S is an input argument if FACT = 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED = 'Y', each element of S must be positive. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', B is overwritten by diag(S) * B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to the original system of equations. Note that if EQUED = 'Y', A and B are modified on exit, and the solution to the equilibrated system is inv(diag(S))*X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). RCOND (output) DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A after equilibration (if done). If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0. FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) DOUBLE PRECISION array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. RCOND = 0 is returned. = N+1: U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest. Further Details =============== The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the symmetric matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ static doublereal amax, smin, smax; static integer i__, j; extern logical lsame_(char *, char *); static doublereal scond, anorm; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static logical equil, rcequ; extern doublereal dlamch_(char *); static logical nofact; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); static doublereal bignum; extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *); extern /* Subroutine */ int dppcon_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), dlaqsp_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, char *); static integer infequ; extern /* Subroutine */ int dppequ_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dpprfs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dpptrf_(char *, integer *, doublereal *, integer *); static doublereal smlnum; extern /* Subroutine */ int dpptrs_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *); #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] --ap; --afp; --s; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (nofact || equil) { *(unsigned char *)equed = 'N'; rcequ = FALSE_; } else { rcequ = lsame_(equed, "Y"); smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; } /* Test the input parameters. */ if (! nofact && ! equil && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (lsame_(fact, "F") && ! (rcequ || lsame_( equed, "N"))) { *info = -7; } else { if (rcequ) { smin = bignum; smax = 0.; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ d__1 = smin, d__2 = s[j]; smin = min(d__1,d__2); /* Computing MAX */ d__1 = smax, d__2 = s[j]; smax = max(d__1,d__2); /* L10: */ } if (smin <= 0.) { *info = -8; } else if (*n > 0) { scond = max(smin,smlnum) / min(smax,bignum); } else { scond = 1.; } } if (*info == 0) { if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } } } if (*info != 0) { i__1 = -(*info); xerbla_("DPPSVX", &i__1); return 0; } if (equil) { /* Compute row and column scalings to equilibrate the matrix A. */ dppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ); if (infequ == 0) { /* Equilibrate the matrix. */ dlaqsp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed); rcequ = lsame_(equed, "Y"); } } /* Scale the right-hand side. */ if (rcequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b_ref(i__, j) = s[i__] * b_ref(i__, j); /* L20: */ } /* L30: */ } } if (nofact || equil) { /* Compute the Cholesky factorization A = U'*U or A = L*L'. */ i__1 = *n * (*n + 1) / 2; dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1); dpptrf_(uplo, n, &afp[1], info); /* Return if INFO is non-zero. */ if (*info != 0) { if (*info > 0) { *rcond = 0.; } return 0; } } /* Compute the norm of the matrix A. */ anorm = dlansp_("I", uplo, n, &ap[1], &work[1]); /* Compute the reciprocal of the condition number of A. */ dppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &iwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < dlamch_("Epsilon")) { *info = *n + 1; } /* Compute the solution matrix X. */ dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); dpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solution and compute error bounds and backward error estimates for it. */ dpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info); /* Transform the solution matrix X to a solution of the original system. */ if (rcequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { x_ref(i__, j) = s[i__] * x_ref(i__, j); /* L40: */ } /* L50: */ } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] /= scond; /* L60: */ } } return 0; /* End of DPPSVX */ } /* dppsvx_ */
/* Subroutine */ int ddrvpp_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char packs[1*2] = "C" "R"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1," "\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Local variables */ integer i__, k, n, k1, in, kl, ku, nt, lda, npp; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; char dist[1], uplo[1], type__[1]; integer nrun, ifact; integer nfail, iseed[4], nfact; char equed[1]; doublereal roldc, rcond, scond; integer nimat; doublereal anorm; logical equil; integer iuplo, izero, nerrs; logical zerot; char xtype[1]; logical prefac; doublereal rcondc; logical nofact; char packit[1]; integer iequed; doublereal cndnum; doublereal ainvnm; doublereal result[6]; /* Fortran I/O blocks */ static cilist io___49 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVPP tests the driver routines DPPSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* ASAV (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* BSAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrvx_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); npp = n * (n + 1) / 2; *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L130; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L130; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; *(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1] ; /* Set up parameters with DLATB4 and generate a test matrix */ /* with DLATMS. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); rcondc = 1. / cndnum; s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L120; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L50: */ } } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ dcopy_(&npp, &a[1], &c__1, &asav[1], &c__1); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L100; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by DPPSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ dcopy_(&npp, &asav[1], &c__1, &afac[1], &c__1); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ dppequ_(uplo, &n, &afac[1], &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ dlaqsp_(uplo, &n, &afac[1], &s[1], &scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in DGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = dlansp_("1", uplo, &n, &afac[1], &rwork[1] ); /* Factor the matrix A. */ dpptrf_(uplo, &n, &afac[1], &info); /* Form the inverse of A. */ dcopy_(&npp, &afac[1], &c__1, &a[1], &c__1); dpptri_(uplo, &n, &a[1], &info); /* Compute the 1-norm condition number of A. */ ainvnm = dlansp_("1", uplo, &n, &a[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ dcopy_(&npp, &asav[1], &c__1, &a[1], &c__1); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen) 6); dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test DPPSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ dcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DPPSV ", (ftnlen)32, ( ftnlen)6); dppsv_(uplo, &n, nrhs, &afac[1], &x[1], &lda, & info); /* Check error code from DPPSV . */ if (info != izero) { alaerh_(path, "DPPSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ dppt01_(uplo, &n, &a[1], &afac[1], &rwork[1], result); /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); dppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[ 1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, "DPPSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test DPPSVX --- */ if (! prefac && npp > 0) { dlaset_("Full", &npp, &c__1, &c_b60, &c_b60, & afac[1], &npp); } dlaset_("Full", &n, nrhs, &c_b60, &c_b60, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ dlaqsp_(uplo, &n, &a[1], &s[1], &scond, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DPPSVX. */ s_copy(srnamc_1.srnamt, "DPPSVX", (ftnlen)32, (ftnlen) 6); dppsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, & rwork[1], &rwork[*nrhs + 1], &work[1], &iwork[ 1], &info); /* Check the error code from DPPSVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DPPSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dppt01_(uplo, &n, &a[1], &afac[1], &rwork[(* nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dppt02_(uplo, &n, nrhs, &asav[1], &x[1], &lda, & work[1], &lda, &rwork[(*nrhs << 1) + 1], & result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dppt05_(uplo, &n, nrhs, &asav[1], &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], & rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DPPSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "DPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, "DPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; L90: L100: ; } /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DDRVPP */ } /* ddrvpp_ */