void AppStage_ComputeTrackerPoses::render()
{
    switch (m_menuState)
    {
    case eMenuState::inactive:
        break;
    case eMenuState::pendingControllerListRequest:
    case eMenuState::pendingControllerStartRequest:
    case eMenuState::pendingTrackerListRequest:
    case eMenuState::pendingTrackerStartRequest:
        break;
    case eMenuState::failedControllerListRequest:
    case eMenuState::failedControllerStartRequest:
    case eMenuState::failedTrackerListRequest:
    case eMenuState::failedTrackerStartRequest:
        break;
    case eMenuState::verifyTrackers:
        {
            render_tracker_video();
        } break;
    case eMenuState::calibrateWithMat:
        m_pCalibrateWithMat->render();
        break;
    case eMenuState::testTracking:
        {
            // Draw the chaperone origin axes
            drawTransformedAxes(glm::mat4(1.0f), 100.f);

            // Draw the frustum for each tracking camera.
            // The frustums are defined in PSMove tracking space.
            // We need to transform them into chaperone space to display them along side the HMD.
            for (t_tracker_state_map_iterator tracker_iter = m_trackerViews.begin(); tracker_iter != m_trackerViews.end(); ++tracker_iter)
            {
                const ClientTrackerView *trackerView = tracker_iter->second.trackerView;
                const PSMovePose trackerPose = trackerView->getTrackerPose();
                const glm::mat4 trackerMat4 = psmove_pose_to_glm_mat4(trackerPose);

                PSMoveFrustum frustum = trackerView->getTrackerFrustum();

				// use color depending on tracking status
				glm::vec3 color= does_tracker_see_any_controller(trackerView) ? k_psmove_frustum_color : k_psmove_frustum_color_no_track;

				drawTextAtWorldPosition(glm::mat4(1.f), psmove_position_to_glm_vec3(trackerPose.Position), "#%d", trackerView->getTrackerId());
                drawTransformedFrustum(glm::mat4(1.f), &frustum, color);

                drawTransformedAxes(trackerMat4, 20.f);
            }

            // Draw the psmove model
			for (t_controller_state_map_iterator controller_iter = m_controllerViews.begin(); controller_iter != m_controllerViews.end(); ++controller_iter)
            {
				const ClientControllerView *controllerView = controller_iter->second.controllerView;
				const PSMoveTrackingColorType trackingColorType= controller_iter->second.trackingColorType;

                PSMovePose controllerPose = controllerView->GetPose();
                glm::mat4 controllerMat4 = psmove_pose_to_glm_mat4(controllerPose);

				if (m_controllerViews.size() > 1)
				{
					drawTextAtWorldPosition(glm::mat4(1.f), psmove_position_to_glm_vec3(controllerPose.Position), "#%d", controllerView->GetControllerID());
				}
                drawController(controllerView, controllerMat4, trackingColorType);
                drawTransformedAxes(controllerMat4, 10.f);

				// Draw the acceleration and velocity arrows
				{
					const PSMovePhysicsData &physicsData = controllerView->GetPhysicsData();
					const glm::mat4 originMat4= glm::translate(glm::mat4(1.f), psmove_position_to_glm_vec3(controllerPose.Position));
					const glm::vec3 vel_endpoint = psmove_float_vector3_to_glm_vec3(physicsData.VelocityCmPerSec);
					const glm::vec3 acc_endpoint = psmove_float_vector3_to_glm_vec3(physicsData.AccelerationCmPerSecSqr)*k_centimeters_to_meters;
					
					const float vel= glm::length(vel_endpoint);
					if (vel > k_positional_epsilon)
					{
						drawArrow(originMat4, glm::vec3(0.f), vel_endpoint, 0.1f, glm::vec3(0.f, 1.f, 1.f));
						//drawTextAtWorldPosition(originMat4, vel_endpoint, "v=%.2fcm/s", vel);
					}

					const float acc = glm::length(acc_endpoint);
					if (acc > k_positional_epsilon)
					{
						drawArrow(originMat4, glm::vec3(0.f), acc_endpoint, 0.1f, glm::vec3(1.f, 1.f, 0.f));
						//drawTextAtWorldPosition(originMat4, acc_endpoint, "a=%.2fm/s^2", acc);
					}
				}
            }

        } break;
	case eMenuState::showTrackerVideo:
		{
			render_tracker_video();
		} break;
    case eMenuState::calibrateStepFailed:
        break;
    default:
        assert(0 && "unreachable");
    }
}
void AppStage_ComputeTrackerPoses::render()
{
    switch (m_menuState)
    {
    case eMenuState::inactive:
        break;
    case eMenuState::pendingControllerListRequest:
    case eMenuState::pendingControllerStartRequest:
    case eMenuState::pendingTrackerListRequest:
    case eMenuState::pendingTrackerStartRequest:
        break;
    case eMenuState::failedControllerListRequest:
    case eMenuState::failedControllerStartRequest:
    case eMenuState::failedTrackerListRequest:
    case eMenuState::failedTrackerStartRequest:
        break;
    case eMenuState::verifyHMD:
        {
            if (m_hmdView != nullptr)
            {
                PSMovePose pose = m_hmdView->getDisplayHmdPose();
                glm::quat orientation(pose.Orientation.w, pose.Orientation.x, pose.Orientation.y, pose.Orientation.z);
                glm::vec3 position(pose.Position.x, pose.Position.y, pose.Position.z);

                glm::mat4 rot = glm::mat4_cast(orientation);
                glm::mat4 trans = glm::translate(glm::mat4(1.0f), position);
                glm::mat4 transform = trans * rot;

                drawDK2Model(transform);
                drawTransformedAxes(transform, 10.f);
            }

            {
                PSMoveVolume volume;

                if (m_app->getOpenVRContext()->getHMDTrackingVolume(volume))
                {
                    drawTransformedVolume(glm::mat4(1.f), &volume, glm::vec3(0.f, 1.f, 1.f));
                }
            }
        } break;
    case eMenuState::verifyTrackers:
        {
            render_tracker_video();
        } break;
    case eMenuState::selectCalibrationType:
        break;
    case eMenuState::calibrateWithHMD:
        m_pCalibrateWithHMD->render();
        break;
    case eMenuState::calibrateWithMat:
        m_pCalibrateWithMat->render();
        break;
    case eMenuState::testTracking:
        {
            // Draw the origin axes
            drawTransformedAxes(glm::mat4(1.0f), 100.f);

            // Draw the HMD and tracking volume
            if (m_hmdView != nullptr)
            {
                // Compute a transform that goes from HMD tracking space to PSMove tracking space
                PSMovePose hmd_pose_at_origin = m_app->getOpenVRContext()->getHMDPoseAtPSMoveTrackingSpaceOrigin();
                glm::mat4 tracking_space_transform = psmove_pose_to_glm_mat4(hmd_pose_at_origin);
                glm::mat4 tracking_space_inv_transform = glm::inverse(tracking_space_transform);

                // Put the HMD transform in PSMove tracking space
                PSMovePose hmd_pose = m_hmdView->getDisplayHmdPose();
                glm::mat4 hmd_transform = tracking_space_inv_transform * psmove_pose_to_glm_mat4(hmd_pose);

                drawDK2Model(hmd_transform);
                drawTransformedAxes(hmd_transform, 10.f);

                PSMoveVolume volume;
                if (m_app->getOpenVRContext()->getHMDTrackingVolume(volume))
                {
                    drawTransformedVolume(tracking_space_inv_transform, &volume, glm::vec3(0.f, 1.f, 1.f));
                }
            }

            // Draw the frustum for each tracking camera
            for (t_tracker_state_map_iterator iter = m_trackerViews.begin(); iter != m_trackerViews.end(); ++iter)
            {
                const ClientTrackerView *trackerView = iter->second.trackerView;

                {
                    PSMoveFrustum frustum = trackerView->getTrackerFrustum();

                    drawFrustum(&frustum, k_psmove_frustum_color);
                }

                {
                    PSMovePose pose = trackerView->getTrackerPose();
                    glm::mat4 cameraTransform = psmove_pose_to_glm_mat4(pose);

                    drawTransformedAxes(cameraTransform, 20.f);
                }
            }

            // Draw the psmove model
            {
                PSMovePose pose = m_controllerView->GetPSMoveView().GetPose();
                glm::mat4 worldTransform = psmove_pose_to_glm_mat4(pose);

                drawPSMoveModel(worldTransform, glm::vec3(1.f, 1.f, 1.f));
                drawTransformedAxes(worldTransform, 10.f);
            }

        } break;
    case eMenuState::calibrateStepFailed:
        break;
    default:
        assert(0 && "unreachable");
    }
}
void AppStage_MagnetometerCalibration::render()
{
    const float modelScale = 18.f;
    glm::mat4 scaleAndRotateModelX90= 
        glm::rotate(
            glm::scale(glm::mat4(1.f), glm::vec3(modelScale, modelScale, modelScale)),
            90.f, glm::vec3(1.f, 0.f, 0.f));  
    
    PSMoveIntVector3 rawSampleExtents = (m_maxSampleExtent - m_minSampleExtent).unsafe_divide(2);

    glm::vec3 boxMin = psmove_float_vector3_to_glm_vec3(m_minSampleExtent.castToFloatVector3());
    glm::vec3 boxMax = psmove_float_vector3_to_glm_vec3(m_maxSampleExtent.castToFloatVector3());
    glm::vec3 boxCenter = (boxMax + boxMin) * 0.5f;
    glm::vec3 boxExtents = (boxMax - boxMin) * 0.5f;

    glm::mat4 recenterMatrix = 
        glm::translate(glm::mat4(1.f), -eigen_vector3f_to_glm_vec3(m_sampleFitEllipsoid.center));

    switch (m_menuState)
    {
    case eCalibrationMenuState::waitingForStreamStartResponse:
        {
        } break;
    case eCalibrationMenuState::failedStreamStart:
    case eCalibrationMenuState::failedBadCalibration:
        {
        } break;
    case eCalibrationMenuState::measureBExtents:
        {

            float r= clampf01(static_cast<float>(m_led_color_r) / 255.f);
            float g= clampf01(static_cast<float>(m_led_color_g) / 255.f);
            float basis= clampf01(static_cast<float>(m_led_color_b) / 255.f);

            // Draw the psmove model in the middle
            drawPSMoveModel(scaleAndRotateModelX90, glm::vec3(r, g, basis));

            // Draw the sample point cloud around the origin
            drawPointCloud(
                recenterMatrix,
                glm::vec3(1.f, 1.f, 1.f),
                reinterpret_cast<float *>(&m_alignedSamples->magnetometerEigenSamples[0]),
                m_sampleCount);

            // Draw the sample bounding box
            // Label the min and max corners with the min and max magnetometer readings
            drawTransformedBox(recenterMatrix, boxMin, boxMax, glm::vec3(1.f, 1.f, 1.f));
            drawTextAtWorldPosition(recenterMatrix, boxMin, "%d,%d,%d",
                                    m_minSampleExtent.i, m_minSampleExtent.j, m_minSampleExtent.k);
            drawTextAtWorldPosition(recenterMatrix, boxMax, "%d,%d,%d",
                                    m_maxSampleExtent.i, m_maxSampleExtent.j, m_maxSampleExtent.k);

            // Draw and label the extent axes
            drawTransformedAxes(glm::mat4(1.f), boxExtents.x, boxExtents.y, boxExtents.z);
            drawTextAtWorldPosition(glm::mat4(1.f), glm::vec3(boxExtents.x, 0.f, 0.f), "%d", rawSampleExtents.i);
            drawTextAtWorldPosition(glm::mat4(1.f), glm::vec3(0.f, boxExtents.y, 0.f), "%d", rawSampleExtents.j);
            drawTextAtWorldPosition(glm::mat4(1.f), glm::vec3(0.f, 0.f, boxExtents.z), "%d", rawSampleExtents.k);

            // Draw the best fit ellipsoid
            {
                glm::mat3 basis = eigen_matrix3f_to_glm_mat3(m_sampleFitEllipsoid.basis);
                glm::vec3 center = eigen_vector3f_to_glm_vec3(m_sampleFitEllipsoid.center);
                glm::vec3 extents = eigen_vector3f_to_glm_vec3(m_sampleFitEllipsoid.extents);

                drawEllipsoid(
                    recenterMatrix,
                    glm::vec3(0.f, 0.4f, 1.f),
                    basis, center, extents);
                drawTextAtWorldPosition(
                    recenterMatrix,
                    center - basis[0]*extents.x,
                    "E:%.1f", m_sampleFitEllipsoid.error);
            }

            // Draw the current magnetometer direction
            {
                glm::vec3 m_start= boxCenter;
                glm::vec3 m_end= psmove_float_vector3_to_glm_vec3(m_lastMagnetometer.castToFloatVector3());

                drawArrow(recenterMatrix, m_start, m_end, 0.1f, glm::vec3(1.f, 0.f, 0.f));
                drawTextAtWorldPosition(recenterMatrix, m_end, "M");
            }
        } break;
    case eCalibrationMenuState::waitForGravityAlignment:
        {
            drawPSMoveModel(scaleAndRotateModelX90, glm::vec3(1.f, 1.f, 1.f));

            // Draw the current direction of gravity
            {
                const float renderScale = 200.f;
                glm::mat4 renderScaleMatrix = 
                    glm::scale(glm::mat4(1.f), glm::vec3(renderScale, renderScale, renderScale));
                glm::vec3 g= psmove_float_vector3_to_glm_vec3(m_lastAccelerometer);

                drawArrow(
                    renderScaleMatrix,
                    glm::vec3(), g, 
                    0.1f, 
                    glm::vec3(0.f, 1.f, 0.f));
                drawTextAtWorldPosition(renderScaleMatrix, g, "G");
            }
        } break;
    case eCalibrationMenuState::measureBDirection:
        {
            drawPSMoveModel(scaleAndRotateModelX90, glm::vec3(1.f, 1.f, 1.f));

            // Draw the current magnetometer direction
            {
                glm::vec3 m_start = boxCenter;
                glm::vec3 m_end = psmove_float_vector3_to_glm_vec3(m_lastMagnetometer.castToFloatVector3());

                drawArrow(recenterMatrix, m_start, m_end, 0.1f, glm::vec3(1.f, 0.f, 0.f));
                drawTextAtWorldPosition(recenterMatrix, m_end, "M");
            }

        } break;
    case eCalibrationMenuState::waitForSetCalibrationResponse:
        {
        } break;
    case eCalibrationMenuState::failedSetCalibration:
        {
        } break;
    case eCalibrationMenuState::complete:
        {
            // Get the orientation of the controller in world space (OpenGL Coordinate System)            
            glm::quat q= psmove_quaternion_to_glm_quat(m_controllerView->GetPSMoveView().GetOrientation());
            glm::mat4 worldSpaceOrientation= glm::mat4_cast(q);
            glm::mat4 worldTransform = glm::scale(worldSpaceOrientation, glm::vec3(modelScale, modelScale, modelScale));

            drawPSMoveModel(worldTransform, glm::vec3(1.f, 1.f, 1.f));
            drawTransformedAxes(glm::mat4(1.f), 200.f);
        } break;
    case eCalibrationMenuState::pendingExit:
        {
        } break;
    default:
        assert(0 && "unreachable");
    }
}
void AppStage_GyroscopeCalibration::render()
{
    const float bigModelScale = 10.f;
    glm::mat4 scaleAndRotateModelX90= 
        glm::rotate(
            glm::scale(glm::mat4(1.f), glm::vec3(bigModelScale, bigModelScale, bigModelScale)),
            90.f, glm::vec3(1.f, 0.f, 0.f));  

    switch (m_menuState)
    {
	case eCalibrationMenuState::pendingTrackingSpaceSettings:
    case eCalibrationMenuState::waitingForStreamStartResponse:
    case eCalibrationMenuState::failedStreamStart:
	case eCalibrationMenuState::failedTrackingSpaceSettings:
        {
        } break;
    case eCalibrationMenuState::waitForStable:
        {
            drawController(m_controllerView, scaleAndRotateModelX90);

            // Draw the current direction of gravity
            {
                const float renderScale = 200.f;
                glm::mat4 renderScaleMatrix = 
                    glm::scale(glm::mat4(1.f), glm::vec3(renderScale, renderScale, renderScale));
                glm::vec3 g= -psm_vector3f_to_glm_vec3(m_lastCalibratedAccelerometer);

                drawArrow(
                    renderScaleMatrix,
                    glm::vec3(), g, 
                    0.1f, 
                    glm::vec3(0.f, 1.f, 0.f));
                drawTextAtWorldPosition(renderScaleMatrix, g, "G");
            }
        } break;
    case eCalibrationMenuState::measureBiasAndDrift:
        {
            drawController(m_controllerView, scaleAndRotateModelX90);
        } break;
    case eCalibrationMenuState::measureComplete:
        {
            drawController(m_controllerView, scaleAndRotateModelX90);
        } break;
    case eCalibrationMenuState::test:
        {
            // Get the orientation of the controller in world space (OpenGL Coordinate System)  
			PSMQuatf controllerQuat;
			if (PSM_GetControllerOrientation(m_controllerView->ControllerID, &controllerQuat) == PSMResult_Success)
			{
				glm::quat q= psm_quatf_to_glm_quat(controllerQuat);
				glm::mat4 worldSpaceOrientation= glm::mat4_cast(q);
				glm::mat4 worldTransform = glm::scale(worldSpaceOrientation, glm::vec3(1.f));

				drawController(m_controllerView, worldTransform);
				drawTransformedAxes(worldSpaceOrientation, 200.f);
				drawTransformedAxes(glm::mat4(1.f), 200.f);
			}
        } break;
    default:
        assert(0 && "unreachable");
    }
}