Example #1
0
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);

	if (!encoder)
		return;

	NV_DEBUG_KMS(encoder->dev, "\n");

	drm_encoder_cleanup(encoder);
	kfree(nv_encoder);
}
/* destroy encoder */
void xilinx_drm_encoder_destroy(struct drm_encoder *base_encoder)
{
	struct xilinx_drm_encoder *encoder;
	struct drm_encoder_slave *encoder_slave;

	encoder_slave = to_encoder_slave(base_encoder);
	encoder = to_xilinx_encoder(encoder_slave);

	/* make sure encoder is off */
	xilinx_drm_encoder_dpms(base_encoder, DRM_MODE_DPMS_OFF);

	drm_encoder_cleanup(base_encoder);
	put_device(encoder->dev);
}
Example #3
0
int
nv04_tv_create(struct drm_connector *connector, struct dcb_output *entry)
{
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
	struct drm_device *dev = connector->dev;
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
	struct nvkm_i2c_port *port = i2c->find(i2c, entry->i2c_index);
	int type, ret;

	/* Ensure that we can talk to this encoder */
	type = nv04_tv_identify(dev, entry->i2c_index);
	if (type < 0)
		return type;

	/* Allocate the necessary memory */
	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;

	/* Initialize the common members */
	encoder = to_drm_encoder(nv_encoder);

	drm_encoder_init(dev, encoder, &nv04_tv_funcs, DRM_MODE_ENCODER_TVDAC);
	drm_encoder_helper_add(encoder, &nv04_tv_helper_funcs);

	encoder->possible_crtcs = entry->heads;
	encoder->possible_clones = 0;
	nv_encoder->dcb = entry;
	nv_encoder->or = ffs(entry->or) - 1;

	/* Run the slave-specific initialization */
	ret = drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
				   &port->adapter,
				   &nv04_tv_encoder_info[type].dev);
	if (ret < 0)
		goto fail_cleanup;

	/* Attach it to the specified connector. */
	get_slave_funcs(encoder)->create_resources(encoder, connector);
	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;

fail_cleanup:
	drm_encoder_cleanup(encoder);
	kfree(nv_encoder);
	return ret;
}
Example #4
0
int rcar_du_hdmienc_init(struct rcar_du_device *rcdu,
			 struct rcar_du_encoder *renc, struct device_node *np)
{
	struct drm_encoder *encoder = rcar_encoder_to_drm_encoder(renc);
	struct drm_bridge *bridge;
	struct rcar_du_hdmienc *hdmienc;
	int ret;

	hdmienc = devm_kzalloc(rcdu->dev, sizeof(*hdmienc), GFP_KERNEL);
	if (hdmienc == NULL)
		return -ENOMEM;

	/* Locate the DRM bridge from the HDMI encoder DT node. */
	bridge = of_drm_find_bridge(np);
	if (!bridge)
		return -EPROBE_DEFER;

	ret = drm_encoder_init(rcdu->ddev, encoder, &encoder_funcs,
			       DRM_MODE_ENCODER_TMDS, NULL);
	if (ret < 0)
		return ret;

	drm_encoder_helper_add(encoder, &encoder_helper_funcs);

	renc->hdmi = hdmienc;
	hdmienc->renc = renc;

	/* Link the bridge to the encoder. */
	bridge->encoder = encoder;
	encoder->bridge = bridge;

	ret = drm_bridge_attach(rcdu->ddev, bridge);
	if (ret) {
		drm_encoder_cleanup(encoder);
		return ret;
	}

	return 0;
}
Example #5
0
int tilcdc_attach_external_device(struct drm_device *ddev)
{
	struct tilcdc_drm_private *priv = ddev->dev_private;
	struct device_node *remote_node;
	struct drm_bridge *bridge;
	int ret;

	remote_node = tilcdc_get_remote_node(ddev->dev->of_node);
	if (!remote_node)
		return 0;

	bridge = of_drm_find_bridge(remote_node);
	of_node_put(remote_node);
	if (!bridge)
		return -EPROBE_DEFER;

	priv->external_encoder = devm_kzalloc(ddev->dev,
					      sizeof(*priv->external_encoder),
					      GFP_KERNEL);
	if (!priv->external_encoder)
		return -ENOMEM;

	ret = drm_encoder_init(ddev, priv->external_encoder,
			       &tilcdc_external_encoder_funcs,
			       DRM_MODE_ENCODER_NONE, NULL);
	if (ret) {
		dev_err(ddev->dev, "drm_encoder_init() failed %d\n", ret);
		return ret;
	}

	ret = tilcdc_attach_bridge(ddev, bridge);
	if (ret)
		drm_encoder_cleanup(priv->external_encoder);

	return ret;
}
Example #6
0
int vkms_output_init(struct vkms_device *vkmsdev)
{
	struct vkms_output *output = &vkmsdev->output;
	struct drm_device *dev = &vkmsdev->drm;
	struct drm_connector *connector = &output->connector;
	struct drm_encoder *encoder = &output->encoder;
	struct drm_crtc *crtc = &output->crtc;
	struct drm_plane *primary, *cursor = NULL;
	int ret;

	primary = vkms_plane_init(vkmsdev, DRM_PLANE_TYPE_PRIMARY);
	if (IS_ERR(primary))
		return PTR_ERR(primary);

	if (enable_cursor) {
		cursor = vkms_plane_init(vkmsdev, DRM_PLANE_TYPE_CURSOR);
		if (IS_ERR(cursor)) {
			ret = PTR_ERR(cursor);
			goto err_cursor;
		}
	}

	ret = vkms_crtc_init(dev, crtc, primary, cursor);
	if (ret)
		goto err_crtc;

	ret = drm_connector_init(dev, connector, &vkms_connector_funcs,
				 DRM_MODE_CONNECTOR_VIRTUAL);
	if (ret) {
		DRM_ERROR("Failed to init connector\n");
		goto err_connector;
	}

	drm_connector_helper_add(connector, &vkms_conn_helper_funcs);

	ret = drm_connector_register(connector);
	if (ret) {
		DRM_ERROR("Failed to register connector\n");
		goto err_connector_register;
	}

	ret = drm_encoder_init(dev, encoder, &vkms_encoder_funcs,
			       DRM_MODE_ENCODER_VIRTUAL, NULL);
	if (ret) {
		DRM_ERROR("Failed to init encoder\n");
		goto err_encoder;
	}
	encoder->possible_crtcs = 1;

	ret = drm_connector_attach_encoder(connector, encoder);
	if (ret) {
		DRM_ERROR("Failed to attach connector to encoder\n");
		goto err_attach;
	}

	drm_mode_config_reset(dev);

	return 0;

err_attach:
	drm_encoder_cleanup(encoder);

err_encoder:
	drm_connector_unregister(connector);

err_connector_register:
	drm_connector_cleanup(connector);

err_connector:
	drm_crtc_cleanup(crtc);

err_crtc:
	if (enable_cursor)
		drm_plane_cleanup(cursor);

err_cursor:
	drm_plane_cleanup(primary);

	return ret;
}
Example #7
0
static int exynos_dp_bind(struct device *dev, struct device *master, void *data)
{
	struct exynos_dp_device *dp = dev_get_drvdata(dev);
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm_dev = data;
	struct drm_encoder *encoder = &dp->encoder;
	struct resource *res;
	unsigned int irq_flags;
	int pipe, ret = 0;

	dp->dev = &pdev->dev;
	dp->dpms_mode = DRM_MODE_DPMS_OFF;

	dp->video_info = exynos_dp_dt_parse_pdata(&pdev->dev);
	if (IS_ERR(dp->video_info))
		return PTR_ERR(dp->video_info);

	dp->phy = devm_phy_get(dp->dev, "dp");
	if (IS_ERR(dp->phy)) {
		dev_err(dp->dev, "no DP phy configured\n");
		ret = PTR_ERR(dp->phy);
		if (ret) {
			/*
			 * phy itself is not enabled, so we can move forward
			 * assigning NULL to phy pointer.
			 */
			if (ret == -ENOSYS || ret == -ENODEV)
				dp->phy = NULL;
			else
				return ret;
		}
	}

	if (!dp->panel && !dp->ptn_bridge) {
		ret = exynos_dp_dt_parse_panel(dp);
		if (ret)
			return ret;
	}

	dp->clock = devm_clk_get(&pdev->dev, "dp");
	if (IS_ERR(dp->clock)) {
		dev_err(&pdev->dev, "failed to get clock\n");
		return PTR_ERR(dp->clock);
	}

	clk_prepare_enable(dp->clock);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	dp->reg_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(dp->reg_base))
		return PTR_ERR(dp->reg_base);

	dp->hpd_gpio = of_get_named_gpio(dev->of_node, "samsung,hpd-gpio", 0);

	if (gpio_is_valid(dp->hpd_gpio)) {
		/*
		 * Set up the hotplug GPIO from the device tree as an interrupt.
		 * Simply specifying a different interrupt in the device tree
		 * doesn't work since we handle hotplug rather differently when
		 * using a GPIO.  We also need the actual GPIO specifier so
		 * that we can get the current state of the GPIO.
		 */
		ret = devm_gpio_request_one(&pdev->dev, dp->hpd_gpio, GPIOF_IN,
					    "hpd_gpio");
		if (ret) {
			dev_err(&pdev->dev, "failed to get hpd gpio\n");
			return ret;
		}
		dp->irq = gpio_to_irq(dp->hpd_gpio);
		irq_flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
	} else {
		dp->hpd_gpio = -ENODEV;
		dp->irq = platform_get_irq(pdev, 0);
		irq_flags = 0;
	}

	if (dp->irq == -ENXIO) {
		dev_err(&pdev->dev, "failed to get irq\n");
		return -ENODEV;
	}

	INIT_WORK(&dp->hotplug_work, exynos_dp_hotplug);

	ret = devm_request_irq(&pdev->dev, dp->irq, exynos_dp_irq_handler,
			irq_flags, "exynos-dp", dp);
	if (ret) {
		dev_err(&pdev->dev, "failed to request irq\n");
		return ret;
	}
	disable_irq(dp->irq);

	dp->drm_dev = drm_dev;

	pipe = exynos_drm_crtc_get_pipe_from_type(drm_dev,
						  EXYNOS_DISPLAY_TYPE_LCD);
	if (pipe < 0)
		return pipe;

	encoder->possible_crtcs = 1 << pipe;

	DRM_DEBUG_KMS("possible_crtcs = 0x%x\n", encoder->possible_crtcs);

	drm_encoder_init(drm_dev, encoder, &exynos_dp_encoder_funcs,
			 DRM_MODE_ENCODER_TMDS, NULL);

	drm_encoder_helper_add(encoder, &exynos_dp_encoder_helper_funcs);

	ret = exynos_dp_create_connector(encoder);
	if (ret) {
		DRM_ERROR("failed to create connector ret = %d\n", ret);
		drm_encoder_cleanup(encoder);
		return ret;
	}

	return 0;
}
Example #8
0
/* dummy encoder */
static void evdi_enc_destroy(struct drm_encoder *encoder)
{
  drm_encoder_cleanup(encoder);
  kfree(encoder);
}
Example #9
0
static void meson_venc_hdmi_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #10
0
static void panel_encoder_destroy(struct drm_encoder *encoder)
{
	struct panel_encoder *panel_encoder = to_panel_encoder(encoder);
	drm_encoder_cleanup(encoder);
	kfree(panel_encoder);
}
Example #11
0
static void shmob_drm_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #12
0
static void qxl_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #13
0
static void intel_hdmi_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #14
0
void cdv_hdmi_init(struct drm_device *dev,
			struct psb_intel_mode_device *mode_dev, int reg)
{
	struct gma_encoder *gma_encoder;
	struct gma_connector *gma_connector;
	struct drm_connector *connector;
	struct drm_encoder *encoder;
	struct mid_intel_hdmi_priv *hdmi_priv;
	int ddc_bus;

	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);

	if (!gma_encoder)
		return;

	gma_connector = kzalloc(sizeof(struct gma_connector),
				      GFP_KERNEL);

	if (!gma_connector)
		goto err_connector;

	hdmi_priv = kzalloc(sizeof(struct mid_intel_hdmi_priv), GFP_KERNEL);

	if (!hdmi_priv)
		goto err_priv;

	connector = &gma_connector->base;
	connector->polled = DRM_CONNECTOR_POLL_HPD;
	gma_connector->save = cdv_hdmi_save;
	gma_connector->restore = cdv_hdmi_restore;

	encoder = &gma_encoder->base;
	drm_connector_init(dev, connector,
			   &cdv_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_DVID);

	drm_encoder_init(dev, encoder, &psb_intel_lvds_enc_funcs,
			 DRM_MODE_ENCODER_TMDS, NULL);

	gma_connector_attach_encoder(gma_connector, gma_encoder);
	gma_encoder->type = INTEL_OUTPUT_HDMI;
	hdmi_priv->hdmi_reg = reg;
	hdmi_priv->has_hdmi_sink = false;
	gma_encoder->dev_priv = hdmi_priv;

	drm_encoder_helper_add(encoder, &cdv_hdmi_helper_funcs);
	drm_connector_helper_add(connector,
				 &cdv_hdmi_connector_helper_funcs);
	connector->display_info.subpixel_order = SubPixelHorizontalRGB;
	connector->interlace_allowed = false;
	connector->doublescan_allowed = false;

	drm_object_attach_property(&connector->base,
				      dev->mode_config.scaling_mode_property,
				      DRM_MODE_SCALE_FULLSCREEN);

	switch (reg) {
	case SDVOB:
		ddc_bus = GPIOE;
		gma_encoder->ddi_select = DDI0_SELECT;
		break;
	case SDVOC:
		ddc_bus = GPIOD;
		gma_encoder->ddi_select = DDI1_SELECT;
		break;
	default:
		DRM_ERROR("unknown reg 0x%x for HDMI\n", reg);
		goto failed_ddc;
		break;
	}

	gma_encoder->i2c_bus = psb_intel_i2c_create(dev,
				ddc_bus, (reg == SDVOB) ? "HDMIB" : "HDMIC");

	if (!gma_encoder->i2c_bus) {
		dev_err(dev->dev, "No ddc adapter available!\n");
		goto failed_ddc;
	}

	hdmi_priv->hdmi_i2c_adapter = &(gma_encoder->i2c_bus->adapter);
	hdmi_priv->dev = dev;
	drm_connector_register(connector);
	return;

failed_ddc:
	drm_encoder_cleanup(encoder);
	drm_connector_cleanup(connector);
err_priv:
	kfree(gma_connector);
err_connector:
	kfree(gma_encoder);
}
bool intel_dsi_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dsi *intel_dsi;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;
	struct drm_connector *connector;
	struct drm_display_mode *fixed_mode = NULL;
	struct drm_display_mode *downclock_mode = NULL;
	const struct intel_dsi_device *dsi;
	unsigned int i;

	DRM_DEBUG_KMS("\n");

	intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL);
	if (!intel_dsi)
		return false;

	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_dsi);
		return false;
	}

	intel_encoder = &intel_dsi->base;
	encoder = &intel_encoder->base;
	intel_dsi->attached_connector = intel_connector;
	connector = &intel_connector->base;

	drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI);

	/* XXX: very likely not all of these are needed */
	intel_encoder->hot_plug = intel_dsi_hot_plug;
	intel_encoder->compute_config = intel_dsi_compute_config;
	intel_encoder->pre_pll_enable = intel_dsi_pre_pll_enable;
	intel_encoder->pre_enable = intel_dsi_pre_enable;
	intel_encoder->enable = intel_dsi_enable;
	intel_encoder->mode_set = intel_dsi_mode_set;
	intel_encoder->disable = intel_dsi_disable;
	intel_encoder->post_disable = intel_dsi_post_disable;
	intel_encoder->get_hw_state = intel_dsi_get_hw_state;
	intel_encoder->get_config = intel_dsi_get_config;
	intel_encoder->set_drrs_state = intel_dsi_set_drrs_state;

	intel_connector->get_hw_state = intel_connector_get_hw_state;

	/* Initialize panel id based on kernel param.
	 * If no kernel param use panel id from VBT
	 * If no  param and no VBT initialize with
	 * default ASUS panel ID for now */
	if (i915_mipi_panel_id <= 0) {
		/* check if panel id available from VBT */
		if (!dev_priv->vbt.dsi.panel_id) {
			/* default Panasonic panel */
			dev_priv->mipi_panel_id = MIPI_DSI_PANASONIC_VXX09F006A00_PANEL_ID;
		} else
			dev_priv->mipi_panel_id = dev_priv->vbt.dsi.panel_id;
	} else
		dev_priv->mipi_panel_id = i915_mipi_panel_id;

	for (i = 0; i < ARRAY_SIZE(intel_dsi_devices); i++) {
		dsi = &intel_dsi_devices[i];
		if (dsi->panel_id == dev_priv->mipi_panel_id) {
			intel_dsi->dev = *dsi;

			if (dsi->dev_ops->init(&intel_dsi->dev))
				break;
		}
	}

	if (i == ARRAY_SIZE(intel_dsi_devices)) {
		DRM_DEBUG_KMS("no device found\n");
		goto err;
	}

	intel_encoder->type = INTEL_OUTPUT_DSI;
	intel_encoder->crtc_mask = (1 << 0); /* XXX */

	intel_encoder->cloneable = false;
	drm_connector_init(dev, connector, &intel_dsi_connector_funcs,
			   DRM_MODE_CONNECTOR_DSI);

	drm_encoder_helper_add(encoder, &intel_dsi_helper_funcs);
	drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs);

	connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/
	connector->interlace_allowed = false;
	connector->doublescan_allowed = false;

	intel_dsi_add_properties(intel_dsi, connector);
	intel_connector_attach_encoder(intel_connector, intel_encoder);

	drm_sysfs_connector_add(connector);

	fixed_mode = dsi->dev_ops->get_modes(&intel_dsi->dev);
	if (!fixed_mode) {
		DRM_DEBUG_KMS("no fixed mode\n");
		goto err;
	}

	dev_priv->is_mipi = true;
	fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
	if (INTEL_INFO(dev)->gen > 6) {
		downclock_mode = intel_dsi_calc_panel_downclock(dev,
							fixed_mode, connector);
		if (downclock_mode)
			intel_dsi_drrs_init(intel_connector, downclock_mode);
		else
			DRM_DEBUG_KMS("Downclock_mode is not found\n");
	}

	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
	intel_panel_setup_backlight(connector);
	intel_connector->panel.fitting_mode = 0;

	return true;
err:
	drm_encoder_cleanup(&intel_encoder->base);
	kfree(intel_dsi);
	kfree(intel_connector);

	return false;
}
Example #16
0
static void tegra_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	drm_encoder_clear(encoder);
}
Example #17
0
static void dce_virtual_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}
Example #18
0
static void vbox_encoder_destroy(struct drm_encoder *encoder)
{
    LogFunc(("vboxvideo: %d: encoder=%p\n", __LINE__, encoder));
    drm_encoder_cleanup(encoder);
    kfree(encoder);
}
Example #19
0
bool intel_dsi_init(struct drm_device *dev)
{
	struct intel_dsi *intel_dsi;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;
	struct drm_connector *connector;
	struct drm_display_mode *fixed_mode = NULL;
	const struct intel_dsi_device *dsi;
	unsigned int i;

	DRM_DEBUG_KMS("\n");

	intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL);
	if (!intel_dsi)
		return false;

	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_dsi);
		return false;
	}

	intel_encoder = &intel_dsi->base;
	encoder = &intel_encoder->base;
	intel_dsi->attached_connector = intel_connector;

	connector = &intel_connector->base;

	drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI);

	/* XXX: very likely not all of these are needed */
	intel_encoder->hot_plug = intel_dsi_hot_plug;
	intel_encoder->compute_config = intel_dsi_compute_config;
	intel_encoder->pre_pll_enable = intel_dsi_pre_pll_enable;
	intel_encoder->pre_enable = intel_dsi_pre_enable;
	intel_encoder->enable = intel_dsi_enable;
	intel_encoder->mode_set = intel_dsi_mode_set;
	intel_encoder->disable = intel_dsi_disable;
	intel_encoder->post_disable = intel_dsi_post_disable;
	intel_encoder->get_hw_state = intel_dsi_get_hw_state;
	intel_encoder->get_config = intel_dsi_get_config;

	intel_connector->get_hw_state = intel_connector_get_hw_state;

	for (i = 0; i < ARRAY_SIZE(intel_dsi_devices); i++) {
		dsi = &intel_dsi_devices[i];
		intel_dsi->dev = *dsi;

		if (dsi->dev_ops->init(&intel_dsi->dev))
			break;
	}

	if (i == ARRAY_SIZE(intel_dsi_devices)) {
		DRM_DEBUG_KMS("no device found\n");
		goto err;
	}

	intel_encoder->type = INTEL_OUTPUT_DSI;
	intel_encoder->crtc_mask = (1 << 0); /* XXX */

	intel_encoder->cloneable = false;
	drm_connector_init(dev, connector, &intel_dsi_connector_funcs,
			   DRM_MODE_CONNECTOR_DSI);

	drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs);

	connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/
	connector->interlace_allowed = false;
	connector->doublescan_allowed = false;

	intel_connector_attach_encoder(intel_connector, intel_encoder);

	drm_sysfs_connector_add(connector);

	fixed_mode = dsi->dev_ops->get_modes(&intel_dsi->dev);
	if (!fixed_mode) {
		DRM_DEBUG_KMS("no fixed mode\n");
		goto err;
	}

	fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
	intel_panel_init(&intel_connector->panel, fixed_mode);

	return true;

err:
	drm_encoder_cleanup(&intel_encoder->base);
	kfree(intel_dsi);
	kfree(intel_connector);

	return false;
}
bool intel_dsi_init(struct drm_device *dev, int pipe)
#endif
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dsi *intel_dsi;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;
	struct drm_connector *connector;
	struct drm_display_mode *fixed_mode = NULL;
	const struct intel_dsi_device *dsi;
	unsigned int i;
	unsigned int panel_id;
	extern int intel_adc_read_panelid(unsigned int*);

	DRM_DEBUG_KMS("\n");

	intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL);
	if (!intel_dsi)
		return false;

	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_dsi);
		return false;
	}

	intel_encoder = &intel_dsi->base;
	encoder = &intel_encoder->base;
	intel_dsi->attached_connector = intel_connector;
	connector = &intel_connector->base;

	drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI);

	/* XXX: very likely not all of these are needed */
	intel_encoder->hot_plug = intel_dsi_hot_plug;
	intel_encoder->compute_config = intel_dsi_compute_config;
	intel_encoder->pre_pll_enable = intel_dsi_pre_pll_enable;
	intel_encoder->pre_enable = intel_dsi_pre_enable;
	intel_encoder->enable = intel_dsi_enable;
	intel_encoder->mode_set = intel_dsi_mode_set;
	intel_encoder->disable = intel_dsi_disable;
	intel_encoder->post_disable = intel_dsi_post_disable;
	intel_encoder->get_hw_state = intel_dsi_get_hw_state;
	intel_encoder->get_config = intel_dsi_get_config;

	intel_connector->get_hw_state = intel_connector_get_hw_state;

	/* Initialize panel id based on kernel param.
	 * If no kernel param use panel id from VBT
	 * If no  param and no VBT initialize with
	 * default ASUS panel ID for now */
#ifndef BYT_DUAL_MIPI_DSI
	intel_adc_read_panelid(&panel_id);
	i915_mipi_panel_id = panel_id;
#else


       dual_display_status.pipea_status = PIPE_INIT;
       dual_display_status.pipeb_status = PIPE_OFF;
       dual_display_status.call_back = NULL;
       mutex_init(&(dual_display_status.dual_display_mutex));

	if(pipe == 1) {
		i915_mipi_panel_id = MIPI_DSI_TI_DPP3430_PANEL_ID;
#if 0
                dual_display_status.mipia_ori = PIPE_INIT;
		dual_display_status.mipib_ori = PIPE_INIT;
		dual_display_status.pipea_status = PIPE_INIT;
		dual_display_status.pipeb_status = PIPE_INIT;
		dual_display_status.call_back = NULL;
		mutex_init(&(dual_display_status.dual_display_mutex));
#endif 
	} else if (i915_enable_dummy_dsi) {
		i915_mipi_panel_id = MIPI_DSI_DUMMY_PANEL_ID;
	} else {
		intel_adc_read_panelid(&panel_id);
		i915_mipi_panel_id = panel_id;
	}
#endif
	printk("[drm] intel debug panel_id is:%d\n",i915_mipi_panel_id);
	if (i915_mipi_panel_id <= 0) {
		/* check if panel id available from VBT */
		if (!dev_priv->vbt.dsi.panel_id) {
			/* default Panasonic panel */
			dev_priv->mipi_panel_id = MIPI_DSI_PANASONIC_VXX09F006A00_PANEL_ID;
		} else
			dev_priv->mipi_panel_id = dev_priv->vbt.dsi.panel_id;
	} else
		dev_priv->mipi_panel_id = i915_mipi_panel_id;

	/*enable for blade2 panel*/
	//dev_priv->mipi_panel_id = MIPI_DSI_AUO_B101UAN01E_PANEL_ID;
	//dev_priv->mipi_panel_id = MIPI_DSI_CMI_NT51021_PANEL_ID;
	//dev_priv->mipi_panel_id = MIPI_DSI_TI_DPP3430_PANEL_ID;
	for (i = 0; i < ARRAY_SIZE(intel_dsi_devices); i++) {
		dsi = &intel_dsi_devices[i];

		if (dsi->panel_id == dev_priv->mipi_panel_id) {
			intel_dsi->dev = *dsi;
			intel_dsi_dev = &intel_dsi->dev;
			if (dsi->dev_ops->init(&intel_dsi->dev))
				break;
		}
	}

	if (i == ARRAY_SIZE(intel_dsi_devices)) {
		DRM_DEBUG_KMS("no device found\n");
		goto err;
    }


    //specify pipe to the dsi
#ifndef BYT_DUAL_MIPI_DSI
    intel_encoder->type = INTEL_OUTPUT_DSI;
    intel_encoder->crtc_mask = (1 << 0);
#else
    if(pipe ==0){
        intel_encoder->type = INTEL_OUTPUT_DSI;
        intel_encoder->crtc_mask = (1 << 0);         
    } else{
        intel_encoder->type = INTEL_OUTPUT_DSI;
        intel_encoder->crtc_mask = (1 << 1);
    }
#endif

    intel_encoder->cloneable = false;
    drm_connector_init(dev, connector, &intel_dsi_connector_funcs,
            DRM_MODE_CONNECTOR_DSI);

	drm_encoder_helper_add(encoder, &intel_dsi_helper_funcs);
	drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs);

	connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/
	connector->interlace_allowed = false;
	connector->doublescan_allowed = false;

	intel_dsi_add_properties(intel_dsi, connector);
	intel_connector_attach_encoder(intel_connector, intel_encoder);

	drm_sysfs_connector_add(connector);

	fixed_mode = dsi->dev_ops->get_modes(&intel_dsi->dev);
	if (!fixed_mode) {
		DRM_DEBUG_KMS("no fixed mode\n");
		goto err;
	}

//in dual display , mipi 's backlight is useless. it use a bulb to control
#ifndef BYT_DUAL_MIPI_DSI
	dev_priv->is_mipi = true;
#else
	dev_priv->is_mipi = false;
#endif
	fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
	intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
	intel_panel_setup_backlight(connector);
	intel_connector->panel.fitting_mode = 0;

	/* Panel native resolution and desired mode can be different in
	these two cases:
	1. Generic driver specifies scaling reqd flag.
	2. Static driver for Panasonic panel with BYT_CR

	Fixme: Remove static driver's panel ID check as we are planning to
	enable generic driver by default */
	if ((dev_priv->scaling_reqd) ||
		(BYT_CR_CONFIG && (i915_mipi_panel_id ==
		MIPI_DSI_PANASONIC_VXX09F006A00_PANEL_ID)))  {
		intel_connector->panel.fitting_mode = AUTOSCALE;
		DRM_DEBUG_DRIVER("Enabling panel fitter as scaling required flag set\n");
	}

	return true;
err:
	drm_encoder_cleanup(&intel_encoder->base);
	kfree(intel_dsi);
	kfree(intel_connector);

	return false;
}
Example #21
0
static int dw_hdmi_rockchip_bind(struct device *dev, struct device *master,
				 void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct dw_hdmi_plat_data *plat_data;
	const struct of_device_id *match;
	struct drm_device *drm = data;
	struct drm_encoder *encoder;
	struct rockchip_hdmi *hdmi;
	int ret;

	if (!pdev->dev.of_node)
		return -ENODEV;

	hdmi = devm_kzalloc(&pdev->dev, sizeof(*hdmi), GFP_KERNEL);
	if (!hdmi)
		return -ENOMEM;

	match = of_match_node(dw_hdmi_rockchip_dt_ids, pdev->dev.of_node);
	plat_data = devm_kmemdup(&pdev->dev, match->data,
					     sizeof(*plat_data), GFP_KERNEL);
	if (!plat_data)
		return -ENOMEM;

	hdmi->dev = &pdev->dev;
	hdmi->chip_data = plat_data->phy_data;
	plat_data->phy_data = hdmi;
	encoder = &hdmi->encoder;

	encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
	/*
	 * If we failed to find the CRTC(s) which this encoder is
	 * supposed to be connected to, it's because the CRTC has
	 * not been registered yet.  Defer probing, and hope that
	 * the required CRTC is added later.
	 */
	if (encoder->possible_crtcs == 0)
		return -EPROBE_DEFER;

	ret = rockchip_hdmi_parse_dt(hdmi);
	if (ret) {
		DRM_DEV_ERROR(hdmi->dev, "Unable to parse OF data\n");
		return ret;
	}

	ret = clk_prepare_enable(hdmi->vpll_clk);
	if (ret) {
		DRM_DEV_ERROR(hdmi->dev, "Failed to enable HDMI vpll: %d\n",
			      ret);
		return ret;
	}

	hdmi->phy = devm_phy_optional_get(dev, "hdmi");
	if (IS_ERR(hdmi->phy)) {
		ret = PTR_ERR(hdmi->phy);
		if (ret != -EPROBE_DEFER)
			DRM_DEV_ERROR(hdmi->dev, "failed to get phy\n");
		return ret;
	}

	drm_encoder_helper_add(encoder, &dw_hdmi_rockchip_encoder_helper_funcs);
	drm_encoder_init(drm, encoder, &dw_hdmi_rockchip_encoder_funcs,
			 DRM_MODE_ENCODER_TMDS, NULL);

	platform_set_drvdata(pdev, hdmi);

	hdmi->hdmi = dw_hdmi_bind(pdev, encoder, plat_data);

	/*
	 * If dw_hdmi_bind() fails we'll never call dw_hdmi_unbind(),
	 * which would have called the encoder cleanup.  Do it manually.
	 */
	if (IS_ERR(hdmi->hdmi)) {
		ret = PTR_ERR(hdmi->hdmi);
		drm_encoder_cleanup(encoder);
		clk_disable_unprepare(hdmi->vpll_clk);
	}

	return ret;
}
Example #22
0
void rockchip_rgb_fini(struct rockchip_rgb *rgb)
{
	drm_panel_bridge_remove(rgb->bridge);
	drm_encoder_cleanup(&rgb->encoder);
}
Example #23
0
static void cirrus_encoder_destroy(struct drm_encoder *encoder)
{
	struct cirrus_encoder *cirrus_encoder = to_cirrus_encoder(encoder);
	drm_encoder_cleanup(encoder);
	kfree(cirrus_encoder);
}
Example #24
0
struct rockchip_rgb *rockchip_rgb_init(struct device *dev,
				       struct drm_crtc *crtc,
				       struct drm_device *drm_dev)
{
	struct rockchip_rgb *rgb;
	struct drm_encoder *encoder;
	struct device_node *port, *endpoint;
	u32 endpoint_id;
	int ret = 0, child_count = 0;
	struct drm_panel *panel;
	struct drm_bridge *bridge;

	rgb = devm_kzalloc(dev, sizeof(*rgb), GFP_KERNEL);
	if (!rgb)
		return ERR_PTR(-ENOMEM);

	rgb->dev = dev;
	rgb->drm_dev = drm_dev;

	port = of_graph_get_port_by_id(dev->of_node, 0);
	if (!port)
		return ERR_PTR(-EINVAL);

	for_each_child_of_node(port, endpoint) {
		if (of_property_read_u32(endpoint, "reg", &endpoint_id))
			endpoint_id = 0;

		if (rockchip_drm_endpoint_is_subdriver(endpoint) > 0)
			continue;

		child_count++;
		ret = drm_of_find_panel_or_bridge(dev->of_node, 0, endpoint_id,
						  &panel, &bridge);
		if (!ret) {
			of_node_put(endpoint);
			break;
		}
	}

	of_node_put(port);

	/* if the rgb output is not connected to anything, just return */
	if (!child_count)
		return NULL;

	if (ret < 0) {
		if (ret != -EPROBE_DEFER)
			DRM_DEV_ERROR(dev, "failed to find panel or bridge %d\n", ret);
		return ERR_PTR(ret);
	}

	encoder = &rgb->encoder;
	encoder->possible_crtcs = drm_crtc_mask(crtc);

	ret = drm_encoder_init(drm_dev, encoder, &rockchip_rgb_encoder_funcs,
			       DRM_MODE_ENCODER_NONE, NULL);
	if (ret < 0) {
		DRM_DEV_ERROR(drm_dev->dev,
			      "failed to initialize encoder: %d\n", ret);
		return ERR_PTR(ret);
	}

	drm_encoder_helper_add(encoder, &rockchip_rgb_encoder_helper_funcs);

	if (panel) {
		bridge = drm_panel_bridge_add(panel, DRM_MODE_CONNECTOR_LVDS);
		if (IS_ERR(bridge))
			return ERR_CAST(bridge);
	}

	rgb->bridge = bridge;

	ret = drm_bridge_attach(encoder, rgb->bridge, NULL);
	if (ret) {
		DRM_DEV_ERROR(drm_dev->dev,
			      "failed to attach bridge: %d\n", ret);
		goto err_free_encoder;
	}

	return rgb;

err_free_encoder:
	drm_encoder_cleanup(encoder);
	return ERR_PTR(ret);
}
Example #25
0
/* dummy encoder */
void udl_enc_destroy(struct drm_encoder *encoder)
{
    drm_encoder_cleanup(encoder);
    kfree(encoder);
}
Example #26
0
int analogix_dp_bind(struct device *dev, struct drm_device *drm_dev,
		     struct analogix_dp_plat_data *plat_data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct analogix_dp_device *dp;
	struct resource *res;
	unsigned int irq_flags;
	int ret;

	if (!plat_data) {
		dev_err(dev, "Invalided input plat_data\n");
		return -EINVAL;
	}

	dp = devm_kzalloc(dev, sizeof(struct analogix_dp_device), GFP_KERNEL);
	if (!dp)
		return -ENOMEM;

	dev_set_drvdata(dev, dp);

	dp->dev = &pdev->dev;
	dp->dpms_mode = DRM_MODE_DPMS_OFF;

	mutex_init(&dp->panel_lock);
	dp->panel_is_modeset = false;

	/*
	 * platform dp driver need containor_of the plat_data to get
	 * the driver private data, so we need to store the point of
	 * plat_data, not the context of plat_data.
	 */
	dp->plat_data = plat_data;

	ret = analogix_dp_dt_parse_pdata(dp);
	if (ret)
		return ret;

	dp->phy = devm_phy_get(dp->dev, "dp");
	if (IS_ERR(dp->phy)) {
		dev_err(dp->dev, "no DP phy configured\n");
		ret = PTR_ERR(dp->phy);
		if (ret) {
			/*
			 * phy itself is not enabled, so we can move forward
			 * assigning NULL to phy pointer.
			 */
			if (ret == -ENOSYS || ret == -ENODEV)
				dp->phy = NULL;
			else
				return ret;
		}
	}

	dp->clock = devm_clk_get(&pdev->dev, "dp");
	if (IS_ERR(dp->clock)) {
		dev_err(&pdev->dev, "failed to get clock\n");
		return PTR_ERR(dp->clock);
	}

	clk_prepare_enable(dp->clock);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	dp->reg_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(dp->reg_base))
		return PTR_ERR(dp->reg_base);

	dp->force_hpd = of_property_read_bool(dev->of_node, "force-hpd");

	dp->hpd_gpio = of_get_named_gpio(dev->of_node, "hpd-gpios", 0);
	if (!gpio_is_valid(dp->hpd_gpio))
		dp->hpd_gpio = of_get_named_gpio(dev->of_node,
						 "samsung,hpd-gpio", 0);

	if (gpio_is_valid(dp->hpd_gpio)) {
		/*
		 * Set up the hotplug GPIO from the device tree as an interrupt.
		 * Simply specifying a different interrupt in the device tree
		 * doesn't work since we handle hotplug rather differently when
		 * using a GPIO.  We also need the actual GPIO specifier so
		 * that we can get the current state of the GPIO.
		 */
		ret = devm_gpio_request_one(&pdev->dev, dp->hpd_gpio, GPIOF_IN,
					    "hpd_gpio");
		if (ret) {
			dev_err(&pdev->dev, "failed to get hpd gpio\n");
			return ret;
		}
		dp->irq = gpio_to_irq(dp->hpd_gpio);
		irq_flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
	} else {
		dp->hpd_gpio = -ENODEV;
		dp->irq = platform_get_irq(pdev, 0);
		irq_flags = 0;
	}

	if (dp->irq == -ENXIO) {
		dev_err(&pdev->dev, "failed to get irq\n");
		return -ENODEV;
	}

	pm_runtime_enable(dev);

	pm_runtime_get_sync(dev);
	phy_power_on(dp->phy);

	analogix_dp_init_dp(dp);

	ret = devm_request_threaded_irq(&pdev->dev, dp->irq,
					analogix_dp_hardirq,
					analogix_dp_irq_thread,
					irq_flags, "analogix-dp", dp);
	if (ret) {
		dev_err(&pdev->dev, "failed to request irq\n");
		goto err_disable_pm_runtime;
	}
	disable_irq(dp->irq);

	dp->drm_dev = drm_dev;
	dp->encoder = dp->plat_data->encoder;

	dp->aux.name = "DP-AUX";
	dp->aux.transfer = analogix_dpaux_transfer;
	dp->aux.dev = &pdev->dev;

	ret = drm_dp_aux_register(&dp->aux);
	if (ret)
		goto err_disable_pm_runtime;

	ret = analogix_dp_create_bridge(drm_dev, dp);
	if (ret) {
		DRM_ERROR("failed to create bridge (%d)\n", ret);
		drm_encoder_cleanup(dp->encoder);
		goto err_disable_pm_runtime;
	}

	phy_power_off(dp->phy);
	pm_runtime_put(dev);

	return 0;

err_disable_pm_runtime:

	phy_power_off(dp->phy);
	pm_runtime_put(dev);
	pm_runtime_disable(dev);

	return ret;
}
static void cdv_intel_crt_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #28
0
static void rockchip_dp_drm_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}
Example #29
0
static int sun4i_hdmi_bind(struct device *dev, struct device *master,
			   void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = data;
	struct sun4i_drv *drv = drm->dev_private;
	struct sun4i_hdmi *hdmi;
	struct resource *res;
	u32 reg;
	int ret;

	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
	if (!hdmi)
		return -ENOMEM;
	dev_set_drvdata(dev, hdmi);
	hdmi->dev = dev;
	hdmi->drv = drv;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	hdmi->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(hdmi->base)) {
		dev_err(dev, "Couldn't map the HDMI encoder registers\n");
		return PTR_ERR(hdmi->base);
	}

	hdmi->bus_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(hdmi->bus_clk)) {
		dev_err(dev, "Couldn't get the HDMI bus clock\n");
		return PTR_ERR(hdmi->bus_clk);
	}
	clk_prepare_enable(hdmi->bus_clk);

	hdmi->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(hdmi->mod_clk)) {
		dev_err(dev, "Couldn't get the HDMI mod clock\n");
		ret = PTR_ERR(hdmi->mod_clk);
		goto err_disable_bus_clk;
	}
	clk_prepare_enable(hdmi->mod_clk);

	hdmi->pll0_clk = devm_clk_get(dev, "pll-0");
	if (IS_ERR(hdmi->pll0_clk)) {
		dev_err(dev, "Couldn't get the HDMI PLL 0 clock\n");
		ret = PTR_ERR(hdmi->pll0_clk);
		goto err_disable_mod_clk;
	}

	hdmi->pll1_clk = devm_clk_get(dev, "pll-1");
	if (IS_ERR(hdmi->pll1_clk)) {
		dev_err(dev, "Couldn't get the HDMI PLL 1 clock\n");
		ret = PTR_ERR(hdmi->pll1_clk);
		goto err_disable_mod_clk;
	}

	ret = sun4i_tmds_create(hdmi);
	if (ret) {
		dev_err(dev, "Couldn't create the TMDS clock\n");
		goto err_disable_mod_clk;
	}

	writel(SUN4I_HDMI_CTRL_ENABLE, hdmi->base + SUN4I_HDMI_CTRL_REG);

	writel(SUN4I_HDMI_PAD_CTRL0_TXEN | SUN4I_HDMI_PAD_CTRL0_CKEN |
	       SUN4I_HDMI_PAD_CTRL0_PWENG | SUN4I_HDMI_PAD_CTRL0_PWEND |
	       SUN4I_HDMI_PAD_CTRL0_PWENC | SUN4I_HDMI_PAD_CTRL0_LDODEN |
	       SUN4I_HDMI_PAD_CTRL0_LDOCEN | SUN4I_HDMI_PAD_CTRL0_BIASEN,
	       hdmi->base + SUN4I_HDMI_PAD_CTRL0_REG);

	/*
	 * We can't just initialize the register there, we need to
	 * protect the clock bits that have already been read out and
	 * cached by the clock framework.
	 */
	reg = readl(hdmi->base + SUN4I_HDMI_PAD_CTRL1_REG);
	reg &= SUN4I_HDMI_PAD_CTRL1_HALVE_CLK;
	reg |= SUN4I_HDMI_PAD_CTRL1_REG_AMP(6) |
		SUN4I_HDMI_PAD_CTRL1_REG_EMP(2) |
		SUN4I_HDMI_PAD_CTRL1_REG_DENCK |
		SUN4I_HDMI_PAD_CTRL1_REG_DEN |
		SUN4I_HDMI_PAD_CTRL1_EMPCK_OPT |
		SUN4I_HDMI_PAD_CTRL1_EMP_OPT |
		SUN4I_HDMI_PAD_CTRL1_AMPCK_OPT |
		SUN4I_HDMI_PAD_CTRL1_AMP_OPT;
	writel(reg, hdmi->base + SUN4I_HDMI_PAD_CTRL1_REG);

	reg = readl(hdmi->base + SUN4I_HDMI_PLL_CTRL_REG);
	reg &= SUN4I_HDMI_PLL_CTRL_DIV_MASK;
	reg |= SUN4I_HDMI_PLL_CTRL_VCO_S(8) | SUN4I_HDMI_PLL_CTRL_CS(7) |
		SUN4I_HDMI_PLL_CTRL_CP_S(15) | SUN4I_HDMI_PLL_CTRL_S(7) |
		SUN4I_HDMI_PLL_CTRL_VCO_GAIN(4) | SUN4I_HDMI_PLL_CTRL_SDIV2 |
		SUN4I_HDMI_PLL_CTRL_LDO2_EN | SUN4I_HDMI_PLL_CTRL_LDO1_EN |
		SUN4I_HDMI_PLL_CTRL_HV_IS_33 | SUN4I_HDMI_PLL_CTRL_BWS |
		SUN4I_HDMI_PLL_CTRL_PLL_EN;
	writel(reg, hdmi->base + SUN4I_HDMI_PLL_CTRL_REG);

	ret = sun4i_hdmi_i2c_create(dev, hdmi);
	if (ret) {
		dev_err(dev, "Couldn't create the HDMI I2C adapter\n");
		goto err_disable_mod_clk;
	}

	drm_encoder_helper_add(&hdmi->encoder,
			       &sun4i_hdmi_helper_funcs);
	ret = drm_encoder_init(drm,
			       &hdmi->encoder,
			       &sun4i_hdmi_funcs,
			       DRM_MODE_ENCODER_TMDS,
			       NULL);
	if (ret) {
		dev_err(dev, "Couldn't initialise the HDMI encoder\n");
		goto err_del_i2c_adapter;
	}

	hdmi->encoder.possible_crtcs = drm_of_find_possible_crtcs(drm,
								  dev->of_node);
	if (!hdmi->encoder.possible_crtcs) {
		ret = -EPROBE_DEFER;
		goto err_del_i2c_adapter;
	}

#ifdef CONFIG_DRM_SUN4I_HDMI_CEC
	hdmi->cec_adap = cec_pin_allocate_adapter(&sun4i_hdmi_cec_pin_ops,
		hdmi, "sun4i", CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS |
		CEC_CAP_PASSTHROUGH | CEC_CAP_RC);
	ret = PTR_ERR_OR_ZERO(hdmi->cec_adap);
	if (ret < 0)
		goto err_cleanup_connector;
	writel(readl(hdmi->base + SUN4I_HDMI_CEC) & ~SUN4I_HDMI_CEC_TX,
	       hdmi->base + SUN4I_HDMI_CEC);
#endif

	drm_connector_helper_add(&hdmi->connector,
				 &sun4i_hdmi_connector_helper_funcs);
	ret = drm_connector_init(drm, &hdmi->connector,
				 &sun4i_hdmi_connector_funcs,
				 DRM_MODE_CONNECTOR_HDMIA);
	if (ret) {
		dev_err(dev,
			"Couldn't initialise the HDMI connector\n");
		goto err_cleanup_connector;
	}

	/* There is no HPD interrupt, so we need to poll the controller */
	hdmi->connector.polled = DRM_CONNECTOR_POLL_CONNECT |
		DRM_CONNECTOR_POLL_DISCONNECT;

	ret = cec_register_adapter(hdmi->cec_adap, dev);
	if (ret < 0)
		goto err_cleanup_connector;
	drm_mode_connector_attach_encoder(&hdmi->connector, &hdmi->encoder);

	return 0;

err_cleanup_connector:
	cec_delete_adapter(hdmi->cec_adap);
	drm_encoder_cleanup(&hdmi->encoder);
err_del_i2c_adapter:
	i2c_del_adapter(hdmi->i2c);
err_disable_mod_clk:
	clk_disable_unprepare(hdmi->mod_clk);
err_disable_bus_clk:
	clk_disable_unprepare(hdmi->bus_clk);
	return ret;
}
Example #30
0
void cdv_intel_crt_init(struct drm_device *dev,
                        struct psb_intel_mode_device *mode_dev)
{

    struct gma_connector *gma_connector;
    struct gma_encoder *gma_encoder;
    struct drm_connector *connector;
    struct drm_encoder *encoder;

    u32 i2c_reg;

    gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
    if (!gma_encoder)
        return;

    gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
    if (!gma_connector)
        goto failed_connector;

    connector = &gma_connector->base;
    connector->polled = DRM_CONNECTOR_POLL_HPD;
    drm_connector_init(dev, connector,
                       &cdv_intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);

    encoder = &gma_encoder->base;
    drm_encoder_init(dev, encoder,
                     &cdv_intel_crt_enc_funcs, DRM_MODE_ENCODER_DAC, NULL);

    gma_connector_attach_encoder(gma_connector, gma_encoder);

    /* Set up the DDC bus. */
    i2c_reg = GPIOA;
    /* Remove the following code for CDV */
    /*
    if (dev_priv->crt_ddc_bus != 0)
    	i2c_reg = dev_priv->crt_ddc_bus;
    }*/
    gma_encoder->ddc_bus = psb_intel_i2c_create(dev,
                           i2c_reg, "CRTDDC_A");
    if (!gma_encoder->ddc_bus) {
        dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
                   "failed.\n");
        goto failed_ddc;
    }

    gma_encoder->type = INTEL_OUTPUT_ANALOG;
    /*
    psb_intel_output->clone_mask = (1 << INTEL_ANALOG_CLONE_BIT);
    psb_intel_output->crtc_mask = (1 << 0) | (1 << 1);
    */
    connector->interlace_allowed = 0;
    connector->doublescan_allowed = 0;

    drm_encoder_helper_add(encoder, &cdv_intel_crt_helper_funcs);
    drm_connector_helper_add(connector,
                             &cdv_intel_crt_connector_helper_funcs);

    drm_connector_register(connector);

    return;
failed_ddc:
    drm_encoder_cleanup(&gma_encoder->base);
    drm_connector_cleanup(&gma_connector->base);
    kfree(gma_connector);
failed_connector:
    kfree(gma_encoder);
    return;
}