Example #1
0
/* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal *
	a, integer *lda, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5;
    char ch__1[2];

    /* Local variables */
    integer j, jb, nb, nn;
    logical upper;
    logical nounit;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DTRTRI computes the inverse of a real upper or lower triangular */
/*  matrix A. */

/*  This is the Level 3 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the triangular matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of the array A contains */
/*          the upper triangular matrix, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of the array A contains */
/*          the lower triangular matrix, and the strictly upper */
/*          triangular part of A is not referenced.  If DIAG = 'U', the */
/*          diagonal elements of A are also not referenced and are */
/*          assumed to be 1. */
/*          On exit, the (triangular) inverse of the original matrix, in */
/*          the same storage format. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular */
/*               matrix is singular and its inverse can not be computed. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTRTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
	}
	*info = 0;
    }

/*     Determine the block size for this environment. */

/* Writing concatenation */
    i__2[0] = 1, a__1[0] = uplo;
    i__2[1] = 1, a__1[1] = diag;
    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
    nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	dtrti2_(uplo, diag, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code */

	if (upper) {

/*           Compute inverse of upper triangular matrix */

	    i__1 = *n;
	    i__3 = nb;
	    for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
/* Computing MIN */
		i__4 = nb, i__5 = *n - j + 1;
		jb = min(i__4,i__5);

/*              Compute rows 1:j-1 of current block column */

		i__4 = j - 1;
		dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda);
		i__4 = j - 1;
		dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], 
			lda);

/*              Compute inverse of current diagonal block */

		dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info);
	    }
	} else {

/*           Compute inverse of lower triangular matrix */

	    nn = (*n - 1) / nb * nb + 1;
	    i__3 = -nb;
	    for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) {
/* Computing MIN */
		i__1 = nb, i__4 = *n - j + 1;
		jb = min(i__1,i__4);
		if (j + jb <= *n) {

/*                 Compute rows j+jb:n of current block column */

		    i__1 = *n - j - jb + 1;
		    dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, 
			    &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j 
			    + jb + j * a_dim1], lda);
		    i__1 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, 
			     &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * 
			    a_dim1], lda);
		}

/*              Compute inverse of current diagonal block */

		dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info);
	    }
	}
    }

    return 0;

/*     End of DTRTRI */

} /* dtrtri_ */
Example #2
0
/* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal *
	a, integer *lda, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DTRTRI computes the inverse of a real upper or lower triangular   
    matrix A.   

    This is the Level 3 BLAS version of the algorithm.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the triangular matrix A.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of the array A contains   
            the upper triangular matrix, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of the array A contains   
            the lower triangular matrix, and the strictly upper   
            triangular part of A is not referenced.  If DIAG = 'U', the   
            diagonal elements of A are also not referenced and are   
            assumed to be 1.   
            On exit, the (triangular) inverse of the original matrix, in   
            the same storage format.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            > 0: if INFO = i, A(i,i) is exactly zero.  The triangular   
                 matrix is singular and its inverse can not be computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__2 = 2;
    static doublereal c_b18 = 1.;
    static doublereal c_b22 = -1.;
    
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5;
    char ch__1[2];
    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
    /* Local variables */
    static integer j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dtrsm_(
	    char *, char *, char *, char *, integer *, integer *, doublereal *
	    , doublereal *, integer *, doublereal *, integer *);
    static logical upper;
    extern /* Subroutine */ int dtrti2_(char *, char *, integer *, doublereal 
	    *, integer *, integer *);
    static integer jb, nb, nn;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static logical nounit;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTRTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (a_ref(*info, *info) == 0.) {
		return 0;
	    }
/* L10: */
	}
	*info = 0;
    }

/*     Determine the block size for this environment.   

   Writing concatenation */
    i__2[0] = 1, a__1[0] = uplo;
    i__2[1] = 1, a__1[1] = diag;
    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
    nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)2);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	dtrti2_(uplo, diag, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code */

	if (upper) {

/*           Compute inverse of upper triangular matrix */

	    i__1 = *n;
	    i__3 = nb;
	    for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
/* Computing MIN */
		i__4 = nb, i__5 = *n - j + 1;
		jb = min(i__4,i__5);

/*              Compute rows 1:j-1 of current block column */

		i__4 = j - 1;
		dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b18, &a[a_offset], lda, &a_ref(1, j), lda);
		i__4 = j - 1;
		dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b22, &a_ref(j, j), lda, &a_ref(1, j), lda);

/*              Compute inverse of current diagonal block */

		dtrti2_("Upper", diag, &jb, &a_ref(j, j), lda, info);
/* L20: */
	    }
	} else {

/*           Compute inverse of lower triangular matrix */

	    nn = (*n - 1) / nb * nb + 1;
	    i__3 = -nb;
	    for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) {
/* Computing MIN */
		i__1 = nb, i__4 = *n - j + 1;
		jb = min(i__1,i__4);
		if (j + jb <= *n) {

/*                 Compute rows j+jb:n of current block column */

		    i__1 = *n - j - jb + 1;
		    dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, 
			    &c_b18, &a_ref(j + jb, j + jb), lda, &a_ref(j + 
			    jb, j), lda);
		    i__1 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb,
			     &c_b22, &a_ref(j, j), lda, &a_ref(j + jb, j), 
			    lda);
		}

/*              Compute inverse of current diagonal block */

		dtrti2_("Lower", diag, &jb, &a_ref(j, j), lda, info);
/* L30: */
	    }
	}
    }

    return 0;

/*     End of DTRTRI */

} /* dtrtri_ */