static uint16 getNumFromCharArr(char * str, uint8 len)
{
	uint16 cData = 0;
	for (uint8 i = 1; i < len; i++)
	{
		cData += (str[i] - 48) * e10((len - i) - 1);
	}
}
Example #2
0
// Test face for (almost) convexeness. Allows certain convexity before
// complaining.
// For every two consecutive edges calculate the normal. If it differs too
// much from the average face normal complain.
bool Foam::combineFaces::convexFace
(
    const scalar minConcaveCos,
    const pointField& points,
    const face& f
)
{
    // Get outwards pointing normal of f.
    vector n = f.normal(points);
    n /= mag(n);

    // Get edge from f[0] to f[size-1];
    vector ePrev(points[f.first()] - points[f.last()]);
    scalar magEPrev = mag(ePrev);
    ePrev /= magEPrev + VSMALL;

    forAll(f, fp0)
    {
        // Get vertex after fp
        label fp1 = f.fcIndex(fp0);

        // Normalized vector between two consecutive points
        vector e10(points[f[fp1]] - points[f[fp0]]);
        scalar magE10 = mag(e10);
        e10 /= magE10 + VSMALL;

        if (magEPrev > SMALL && magE10 > SMALL)
        {
            vector edgeNormal = ePrev ^ e10;

            if ((edgeNormal & n) < 0)
            {
                // Concave. Check angle.
                if ((ePrev & e10) < minConcaveCos)
                {
                    return false;
                }
            }
        }

        ePrev = e10;
        magEPrev = magE10;
    }
Example #3
0
int ie10(int a) {
    int i;
    for (i=0;e10(i)<=a;i++)
        ;
    return i-1;
}
Example #4
0
main() {

	Citygraph g;
	Cityvertex v[6];

	Map<String,Vptr> m;

	m["SFRAN"] = &v[0];
	v[0].id = "SFRAN";

	m["LA"] = &v[1];
	v[1].id = "LA";

	m["CHGO"] = &v[2];
	v[2].id = "CHGO";

	m["DLLS"] = &v[3];
	v[3].id = "DLLS";

	m["BOST"] = &v[4];
	v[4].id = "BOST";

	m["NYC"] = &v[5];
	v[5].id = "NYC";

	Cityedge e0(m["CHGO"], m["BOST"], 0);
	Cityedge e1(m["SFRAN"], m["LA"], 1);
	Cityedge e2(m["LA"], m["SFRAN"], 2);
	Cityedge e3(m["SFRAN"], m["CHGO"], 3);
	Cityedge e4(m["SFRAN"], m["NYC"], 4);
	Cityedge e5(m["SFRAN"], m["BOST"], 5);
	Cityedge e6(m["BOST"], m["SFRAN"], 6);
	Cityedge e7(m["NYC"], m["SFRAN"], 7);
	Cityedge e8(m["CHGO"], m["SFRAN"], 8);
	Cityedge e9(m["DLLS"], m["NYC"], 9);
	Cityedge e10(m["BOST"], m["LA"], 10);

	g.insert(&e0);
	g.insert(&e1);
	g.insert(&e2);
	g.insert(&e3);
	g.insert(&e4);
	g.insert(&e5);
	g.insert(&e6);
	g.insert(&e7);
	g.insert(&e8);
	g.insert(&e9);
	g.insert(&e10);

	Set_of_p<Cityvertex> vpset;
	vpset.insert(m["SFRAN"]);
	vpset.insert(m["LA"]);
	vpset.insert(m["BOST"]);
	vpset.insert(m["NYC"]);
	vpset.insert(m["CHGO"]);

	Citygraph g2 = g.induced_graph(vpset);
		//create the subgraph of these Vertices and appropriate Edges

	// Now let's verify what is in the newly-created subgraph

	for (int i = 0; i < 6; i++) 
		cout << v[i].id << ": " << g2.contains(&v[i]) << "\n" << flush;

	cout << "e with id " << e0.id << ": "<< g2.contains(&e0)<< "\n"<< flush;
	cout << "e with id " << e1.id << ": "<< g2.contains(&e1)<< "\n"<< flush;
	cout << "e with id " << e2.id << ": "<< g2.contains(&e2)<< "\n"<< flush;
	cout << "e with id " << e3.id << ": "<< g2.contains(&e3)<< "\n"<< flush;
	cout << "e with id " << e4.id << ": "<< g2.contains(&e4)<< "\n"<< flush;
	cout << "e with id " << e5.id << ": "<< g2.contains(&e5)<< "\n"<< flush;
	cout << "e with id " << e6.id << ": "<< g2.contains(&e6)<< "\n"<< flush;
	cout << "e with id " << e7.id << ": "<< g2.contains(&e7)<< "\n"<< flush;
	cout << "e with id " << e8.id << ": "<< g2.contains(&e8)<< "\n"<< flush;
	cout << "e with id " << e9.id << ": "<< g2.contains(&e9)<< "\n"<< flush;
	cout << "e with id " << e10.id << ": "<< g2.contains(&e10)<< "\n"<< flush;

	return(0);
	}
Example #5
0
int phypp_main(int argc, char* argv[]) {
    if (argc < 2) {
        print("usage: make_shifts <ob_filter> [options]");
        return 0;
    }

    vec1u exclude;
    std::string helper;

    read_args(argc-1, argv+1, arg_list(exclude, helper));

    if (helper.empty()) {
        error("please provide the name of (one of) the helper target you used to "
            "calibrate the shifts (helper=...)");
        return 1;
    }

    helper = tolower(helper);

    std::string scis = argv[1];

    vec1d cent_ra, cent_dec;
    file::read_table("centroid_helper.txt", 0, cent_ra, cent_dec);

    vec1u ids = uindgen(cent_ra.size())+1;
    vec1u idex = where(is_any_of(ids, exclude));
    inplace_remove(ids, idex);
    inplace_remove(cent_ra, idex);
    inplace_remove(cent_dec, idex);

    std::ofstream cmb("combine.sof");

    vec1d shx, shy;

    vec1d x0, y0;
    bool first_line = true;
    uint_t nexp = 0;

    for (uint_t i : range(ids)) {
        std::string dir = scis+align_right(strn(ids[i]), 2, '0')+"/";
        print(dir);

        vec1s files = dir+file::list_files(dir+"sci_reconstructed*-sci.fits");
        inplace_sort(files);

        // Find out which exposures contain the helper target from which the
        // shifts were calibrated
        vec1u ignore;
        for (uint_t k : range(files)) {
            std::string f = files[k];
            fits::generic_file fcubes(f);

            vec1s arms(24);
            bool badfile = false;
            for (uint_t u : range(24)) {
                if (!fcubes.read_keyword("ESO OCS ARM"+strn(u+1)+" NAME", arms[u])) {
                    note("ignoring invalid file '", f, "'");
                    note("missing keyword 'ESO OCS ARM"+strn(u+1)+" NAME'");
                    ignore.push_back(k);
                    badfile = true;
                    break;
                }
            }

            if (badfile) continue;

            arms = tolower(trim(arms));

            vec1u ida = where(arms == helper);
            if (ida.empty()) {
                ignore.push_back(k);
            } else if (x0.empty()) {
                // Get astrometry of IFUs from first exposure
                // NB: assumes the rotation is the same for all exposures,
                // which is anyway what kmos_combine does later on.
                fcubes.reach_hdu(ida[0]+1);
                fits::wcs astro(fcubes.read_header());
                fits::ad2xy(astro, cent_ra, cent_dec, x0, y0);
            }
        }

        inplace_remove(files, ignore);

        if (files.empty()) {
            warning("folder ", dir, " does not contain any usable file");
            continue;
        }

        for (std::string f : files) {
            cmb << f << " COMMAND_LINE\n";
            ++nexp;
        }

        double dox = x0[0] - x0[i], doy = y0[0] - y0[i];

        if (first_line) {
            // Ommit first line which has, by definition, no offset
            first_line = false;
        } else {
            shx.push_back(dox);
            shy.push_back(doy);
        }

        if (file::exists(dir+"helpers/shifts.txt")) {
            vec1d tx, ty;
            file::read_table(dir+"helpers/shifts.txt", 0, tx, ty);
            for (uint_t j : range(tx)) {
                shx.push_back(dox+tx[j]);
                shy.push_back(doy+ty[j]);
            }
        }
    }

    note("found ", nexp, " exposures");

    cmb.close();

    auto truncate_decimals = vectorize_lambda([](double v, uint_t nd) {
        return long(v*e10(nd))/e10(nd);
    });

    shx = truncate_decimals(shx, 2);
    shy = truncate_decimals(shy, 2);

    file::write_table("shifts.txt", 10, shx, shy);

    return 0;
}
Example #6
0
DemoMesh::DemoMesh(const char* const name, dFloat* const elevation, int size, dFloat cellSize, dFloat texelsDensity, int tileSize)
	:DemoMeshInterface()
	,dList<DemoSubMesh>()
	,m_uv(NULL)
	,m_vertex(NULL)
	,m_normal(NULL)
	,m_optimizedOpaqueDiplayList(0)		
	,m_optimizedTransparentDiplayList(0)
{
	dFloat* elevationMap[4096];
	dVector* normalMap[4096];
	dFloat* const normalsPtr = new dFloat [size * size * 4];
//	dVector* const normals = new dVector [size * size];
	dVector* const normals = (dVector*)normalsPtr;

	for (int i = 0; i < size; i ++) {
		elevationMap[i] = &elevation[i * size];
		normalMap[i] = &normals[i * size];
	}

	memset (normals, 0, (size * size) * sizeof (dVector));
	for (int z = 0; z < size - 1; z ++) {
		for (int x = 0; x < size - 1; x ++) {
			dVector p0 ((x + 0) * cellSize, elevationMap[z + 0][x + 0], (z + 0) * cellSize);
			dVector p1 ((x + 1) * cellSize, elevationMap[z + 0][x + 1], (z + 0) * cellSize);
			dVector p2 ((x + 1) * cellSize, elevationMap[z + 1][x + 1], (z + 1) * cellSize);
			dVector p3 ((x + 0) * cellSize, elevationMap[z + 1][x + 0], (z + 1) * cellSize);

			dVector e10 (p1 - p0);
			dVector e20 (p2 - p0);
			dVector n0 (e20.CrossProduct(e10));
			n0 = n0.Scale ( 1.0f / dSqrt (n0.DotProduct3(n0)));
			normalMap [z + 0][x + 0] += n0;
			normalMap [z + 0][x + 1] += n0;
			normalMap [z + 1][x + 1] += n0;

			dVector e30 (p3 - p0);
			dVector n1 (e30.CrossProduct(e20));
			n1 = n1.Scale ( 1.0f / dSqrt (n1.DotProduct3(n1)));
			normalMap [z + 0][x + 0] += n1;
			normalMap [z + 1][x + 0] += n1;
			normalMap [z + 1][x + 1] += n1;
		}
	}

	for (int i = 0; i < size * size; i ++) {
		normals[i] = normals[i].Scale (1.0f / dSqrt (normals[i].DotProduct3(normals[i])));
	}
	
	AllocVertexData (size * size);

	dFloat* const vertex = m_vertex;
	dFloat* const normal = m_normal;
	dFloat* const uv = m_uv;

	int index0 = 0;
	for (int z = 0; z < size; z ++) {
		for (int x = 0; x < size; x ++) {
			vertex[index0 * 3 + 0] = x * cellSize;
			vertex[index0 * 3 + 1] = elevationMap[z][x];
			vertex[index0 * 3 + 2] = z * cellSize;

			normal[index0 * 3 + 0] = normalMap[z][x].m_x;
			normal[index0 * 3 + 1] = normalMap[z][x].m_y;
			normal[index0 * 3 + 2] = normalMap[z][x].m_z;

			uv[index0 * 2 + 0] = x * texelsDensity;
			uv[index0 * 2 + 1] = z * texelsDensity;
			index0 ++;
		}
	}

	int segmentsCount = (size - 1) / tileSize;
	for (int z0 = 0; z0 < segmentsCount; z0 ++) {
		int z = z0 * tileSize;
		for (int x0 = 0; x0 < segmentsCount; x0 ++ ) {
			int x = x0 * tileSize;

			DemoSubMesh* const tile = AddSubMesh();
			tile->AllocIndexData (tileSize * tileSize * 6);
			unsigned* const indexes = tile->m_indexes;

			//strcpy (tile->m_textureName, "grassanddirt.tga");
			tile->m_textureName = "grassanddirt.tga";
			tile->m_textureHandle = LoadTexture(tile->m_textureName.GetStr());

			int index1 = 0;
			int x1 = x + tileSize;
			int z1 = z + tileSize;
			for (int z2 = z; z2 < z1; z2 ++) {
				for (int x2 = x; x2 < x1; x2 ++) {
					int i0 = x2 + 0 + (z2 + 0) * size;
					int i1 = x2 + 1 + (z2 + 0) * size;
					int i2 = x2 + 1 + (z2 + 1) * size;
					int i3 = x2 + 0 + (z2 + 1) * size;

					indexes[index1 + 0] = i0;
					indexes[index1 + 1] = i2;
					indexes[index1 + 2] = i1;

					indexes[index1 + 3] = i0;
					indexes[index1 + 4] = i3;
					indexes[index1 + 5] = i2;
					index1 += 6;
				}
			}
		}
	}
	delete[] normalsPtr; 
	OptimizeForRender();
}
Example #7
0
int json_cpp_tests() {
	json::Value e1(json::load_file("test.json"));
	json::Value e2(e1);
	json::Value e3;
	json::Value e4(json::load_string("{\"foo\": true, \"bar\": \"test\"}"));

	ASSERT_TRUE(e1.is_object(), "e1 is not an object");
	ASSERT_TRUE(e2.is_object(), "e2 is not an object");
	ASSERT_TRUE(e3.is_undefined(), "e3 has a defined value");
	ASSERT_TRUE(e4.is_object(), "e4 is not an object");

	ASSERT_EQ(e1.size(), 1, "e1 has too many properties");
	ASSERT_EQ(e2.size(), 1, "e2 has too many properties");
	ASSERT_EQ(e4.size(), 2, "e4 does not have 2 elements");

	ASSERT_TRUE(e1.get("web-app").is_object(), "e1[0].web-app is not an object");
	ASSERT_EQ(e1.get("web-app").get("servlet").at(0).get("servlet-class").as_string(), "org.cofax.cds.CDSServlet", "property has incorrect value");
	ASSERT_EQ(e1["web-app"]["servlet"][0]["servlet-class"].as_string(), "org.cofax.cds.CDSServlet", "property has incorrect value");

	ASSERT_EQ(e4["foo"].as_boolean(), true, "property has incorrect value");

	// verify iterator results (note that they can be returned in any order)
	json::Iterator i(e1.get("web-app"));
	std::set<std::string> iteratorResults;
	for ( int ii = 0; ii < 3; ++ii ) {
		ASSERT_FALSE(i.key().empty(), "iterator returned a null value");
		iteratorResults.insert(i.key());
		i.next();
	}
	ASSERT_FALSE(i.valid(), "iterator has more values than expected");
	ASSERT_EQ(iteratorResults.size(), 3, "iterator did not return enough values");

	json::Value e5(json::Value(12.34));
	ASSERT_TRUE(e5.is_number(), "e5 is not a number after assignment");
	ASSERT_EQ(e5.as_real(), 12.34, "e5 has incorrect value after assignment");

	json::Value e6(json::Value(true));
	ASSERT_TRUE(e6.is_boolean(), "e6 is not a boolean after assignment");
	ASSERT_EQ(e6.as_boolean(), true, "e6 has incorrect value after assignment");

	json::Value e7(json::Value("foobar"));
	ASSERT_TRUE(e7.is_string(), "e7 is not a string after assignment");
	ASSERT_EQ(e7.as_string(), "foobar", "e7 has incorrect value after assignment");

	json::Value e8(json::object());
	ASSERT_TRUE(e8.is_object(), "e8 is not an object after assignment");

	json::Value e9(json::null());
	ASSERT_TRUE(e9.is_null(), "e9 is not null after assignment");

	json::Value e10(json::array());
	ASSERT_TRUE(e10.is_array(), "e10 is not an array after index assignment");

	e10.set_at(0, json::Value("foobar"));
	ASSERT_EQ(e10.size(), 1, "e10 has incorrect number of elements after assignment");
	ASSERT_EQ(e10[0].as_string(), "foobar", "e10[0] has incorrect value after assignment");

	e10.set_at(1, json::Value("foobar"));
	ASSERT_TRUE(e10.is_array(), "e10 is not an array after index assignment");
	ASSERT_EQ(e10.size(), 2, "e10 has incorrect number of elements after assignment");
	ASSERT_EQ(e10[1].as_string(), "foobar", "e10[0] has incorrect value after assignment");

	e10.set_at(0, json::Value("barfoo"));
	ASSERT_TRUE(e10.is_array(), "e10 is not an array after index assignment");
	ASSERT_EQ(e10.size(), 2, "e10 has incorrect number of elements after assignment");
	ASSERT_EQ(e10[0].as_string(), "barfoo", "e10[0] has incorrect value after assignment");

	e10.set_at(100, json::null());
	ASSERT_TRUE(e10.is_array(), "e10 is not an array after index assignment");
	ASSERT_EQ(e10.size(), 2, "e10 has incorrect number of elements after assignment");

	e10.insert_at(1, json::Value("new"));
	ASSERT_EQ(e10.size(), 3, "e10 has incorrect size after insert");
	ASSERT_EQ(e10[1].as_string(), "new", "e10[1] has incorrect value after insert");
	ASSERT_EQ(e10[2].as_string(), "foobar", "e10[2] has incorrect value after insert");

	e10.del_at(0);
	ASSERT_EQ(e10.size(), 2, "e10 has incorrect size after delete");
	ASSERT_EQ(e10[1].as_string(), "foobar", "e10[1] has incorrect value after delete");

	e10.clear();
	ASSERT_EQ(e10.size(), 0, "e10 has incorrect number of elements after clear");

	json::Value e11(json::object());
	ASSERT_TRUE(e11.is_object(), "e11 is not an object after property assignment");

	e11.set_key("foo", json::Value("test"));
	ASSERT_EQ(e11.size(), 1, "e11 has incorrect number of properties after assignment");
	ASSERT_EQ(e11["foo"].as_string(), "test", "e11.foo has incorrect value after assignment");

	e11.set_key("foo", json::Value("again"));
	ASSERT_TRUE(e11.is_object(), "e11 is not an object after property assignment");
	ASSERT_EQ(e11.size(), 1, "e11 has incorrect number of properties after assignment");
	ASSERT_EQ(e11["foo"].as_string(), "again", "e11.foo has incorrect value after assignment");

	e11.set_key("bar", json::Value("test"));
	ASSERT_TRUE(e11.is_object(), "e11 is not an object after property assignment");
	ASSERT_EQ(e11.size(), 2, "e11 has incorrect number of properties after assignment");
	ASSERT_EQ(e11["bar"].as_string(), "test", "e11.foo has incorrect value after assignment");

	e11.clear();
	ASSERT_EQ(e11.size(), 0, "e11 has incorrect number of properties after clear");

	json::Value e12(json::object());
	e12.set_key("foo", json::Value("test"));
	e12.set_key("bar", json::Value(3));
	char* out_cstr = e12.save_string(JSON_COMPACT);
	std::string out(out_cstr);
	free(out_cstr);
	ASSERT_EQ(out, "{\"bar\":3,\"foo\":\"test\"}", "object did not serialize as expected");

	std::istringstream instr(out);
	instr >> e12;
	ASSERT_TRUE(e12.is_object(), "e12 is not an object after stream read");
	ASSERT_EQ(e12.size(), 2, "e12 has wrong size after stream read");
	ASSERT_EQ(e12.get("bar").as_integer(), 3, "e12.bar has incorrect value after stream read");
	ASSERT_EQ(e12.get("foo").as_string(), "test", "ee12.test has incorrect value after stream read");

	std::ostringstream outstr;
	outstr << e12;
	ASSERT_EQ(instr.str(), "{\"bar\":3,\"foo\":\"test\"}", "object did not serialize as expected");

	const json::Value e13(e12);
	ASSERT_EQ(e13["bar"].as_integer(), 3, "e13.bar has incorrect value after copy");

	json::Value e14(json::object());
	ASSERT_TRUE(e14.is_object(), "e14 is not an object after construction");
	e14.set_key("foo", json::object());
	ASSERT_TRUE(e14["foo"].is_object(), "e14.foo is not an object after assignment");
	e14["foo"]["bar"] = json::Value(42);
	ASSERT_EQ(e14["foo"]["bar"].as_integer(), 42, "e14.foo.bar has incorrect value after assignment");

	json::Value e15(json::array());
	ASSERT_TRUE(e15.is_array(), "e15 is not an array after construction");
	e15.set_at(0, json::Value(42));
	ASSERT_EQ(e15[0].as_integer(), 42, "e15[0] has incorrect value after assignment");
	e15[0] = json::Value("foo");
	ASSERT_EQ(e15[0].as_string(), "foo", "e15[0] has incorrecy value after assignment");
	return 0;
}