Example #1
0
cv::PCA *PCA_LoadData(int blocks)
{
	char path[40];
	
	int rows, cols;

	sprintf(path, "./PCAeigenvectors%d.mat", blocks);

	FILE *fd = fopen(path, "r+");
	
	if (!fd) {

            perror("Error opening file for loading\n");
            return NULL;
    }

	fscanf(fd, "%d", &rows);
	fscanf(fd, "%d", &cols);
	cv::Mat eigenvectors(rows, cols, CV_64FC1);

	for (int j=0; j < eigenvectors.rows; j++) {
		for (int i=0; i < eigenvectors.cols; i++) {
			
			fscanf(fd, "%lf", &(eigenvectors.at<double>(j,i)));
		}
	}
	fclose(fd);


	sprintf(path, "./PCAmean%d.mat", blocks);
	fd = fopen(path, "r+");

	if (!fd) {
			printf("blah %s\n", path);
            perror("Error opening file for loading huh\n");
            return NULL;
    }	
	
	
	fscanf(fd, "%d", &rows);
	fscanf(fd, "%d", &cols);
	cv::Mat mean(rows, cols, CV_64FC1);
	
	for (int j=0; j < mean.rows; j++) {
		for (int i=0; i < mean.cols; i++) {
			fscanf(fd, "%lf", &(mean.at<double>(j,i)));
		}
	}
	
	fclose(fd);



	cv::PCA *pca_obj = new cv::PCA();
	
	pca_obj->eigenvectors = eigenvectors;
	pca_obj->mean         = mean;
	
	return pca_obj;
}
Example #2
0
bool eigen(const Mat2& M, Vec2& evals, Vec2 evecs[2])
{
    bool result = eigenvalues(M, evals);
    if( result )
        eigenvectors(M, evals, evecs);
    return result;
}
Example #3
0
  /**
     Compute the natural frequencies of the structure

     Arguments:
     n - number of natural frequencies to return (unless n exceeds the total DOF of the structure,
     in which case all computed natural frequencies will be returned.

     Return:
     freq - a numpy array of frequencies (not necessarily of length n as described above).

  **/
  py::tuple computeNaturalFrequenciesAndEigenvectors(int n){

    Vector freqs(n);
    Matrix eigenvectors(0, 0);
    beam->computeNaturalFrequencies(n, freqs, eigenvectors);

    return py::make_tuple(freqs, eigenvectors);
  }
Example #4
0
File: mvn.cpp Project: cran/Boom
 Vector rmvn_robust_mt(RNG &rng, const Vector &mu, const SpdMatrix &V) {
   uint n = V.nrow();
   Matrix eigenvectors(n, n);
   Vector eigenvalues = eigen(V, eigenvectors);
   for (uint i = 0; i < n; ++i) {
     // We're guaranteed that eigenvalues[i] is real and non-negative.  We
     // can take the absolute value of eigenvalues[i] to guard against
     // spurious negative numbers close to zero.
     eigenvalues[i] = sqrt(fabs(eigenvalues[i])) * rnorm_mt(rng, 0, 1);
   }
   Vector ans(eigenvectors * eigenvalues);
   ans += mu;
   return ans;
 }
Example #5
0
int Zoltan_Get_Coordinates(
  ZZ *zz, 
  int num_obj,               /* Input:  number of objects */
  ZOLTAN_ID_PTR global_ids,  /* Input:  global IDs of objects */
  ZOLTAN_ID_PTR local_ids,   /* Input:  local IDs of objects; may be NULL. */
  int *num_dim,              /* Output: dimension of coordinates */
  double **coords            /* Output: array of coordinates; malloc'ed by
                                        fn if NULL upon input. */
)
{
  char *yo = "Zoltan_Get_Coordinates";
  int i,j,rc;
  int num_gid_entries = zz->Num_GID;
  int num_lid_entries = zz->Num_LID;
  int alloced_coords = 0;
  ZOLTAN_ID_PTR lid;   /* Temporary pointers to local IDs; used to pass 
                          NULL to query functions when NUM_LID_ENTRIES == 0. */
  double dist[3];
  double im[3][3];
  double deg_ratio;
  double x;
  int order[3];
  int reduce_dimensions, d, axis_aligned;
  int target_dim;
  int ierr = ZOLTAN_OK;
  char msg[256];
  ZZ_Transform *tran;

  ZOLTAN_TRACE_ENTER(zz, yo);

  /* Error check -- make sure needed callback functions are registered. */

  if (zz->Get_Num_Geom == NULL || 
     (zz->Get_Geom == NULL && zz->Get_Geom_Multi == NULL)) {
    ZOLTAN_PRINT_ERROR(zz->Proc, yo, "Must register ZOLTAN_NUM_GEOM_FN and "
                       "either ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN");
    goto End;
  }

  /* Get problem dimension. */

  *num_dim = zz->Get_Num_Geom(zz->Get_Num_Geom_Data, &ierr);
  if (ierr != ZOLTAN_OK && ierr != ZOLTAN_WARN) {
    ZOLTAN_PRINT_ERROR(zz->Proc, yo, 
                       "Error returned from ZOLTAN_GET_NUM_GEOM_FN");
    goto End;
  }

  if (*num_dim < 0 || *num_dim > 3) {
    ZOLTAN_PRINT_ERROR(zz->Proc, yo, 
                       "Invalid dimension returned from ZOLTAN_NUM_GEOM_FN");
    goto End;
  }

  /* Get coordinates for object; allocate memory if not already provided. */

  if (*num_dim > 0 && num_obj > 0) {
    if (*coords == NULL) {
      alloced_coords = 1;
      *coords = (double *) ZOLTAN_MALLOC(num_obj * (*num_dim) * sizeof(double));
      if (*coords == NULL) {
        ZOLTAN_PRINT_ERROR(zz->Proc, yo, "Memory error");
        goto End;
      }
    }

    if (zz->Get_Geom_Multi != NULL) {
      zz->Get_Geom_Multi(zz->Get_Geom_Multi_Data, zz->Num_GID, zz->Num_LID,
                         num_obj, global_ids, local_ids, *num_dim, *coords,
                         &ierr);
      if (ierr != ZOLTAN_OK && ierr != ZOLTAN_WARN) {
        ZOLTAN_PRINT_ERROR(zz->Proc, yo, 
                           "Error returned from ZOLTAN_GET_GEOM_MULTI_FN");
        goto End;
      }
    }
    else {
      for (i = 0; i < num_obj; i++) {
        lid = (num_lid_entries ? &(local_ids[i*num_lid_entries]) : NULL);
        zz->Get_Geom(zz->Get_Geom_Data, num_gid_entries, num_lid_entries,
                     global_ids + i*num_gid_entries, lid, 
                     (*coords) + i*(*num_dim), &ierr);
        if (ierr != ZOLTAN_OK && ierr != ZOLTAN_WARN) {
          ZOLTAN_PRINT_ERROR(zz->Proc, yo, 
                             "Error returned from ZOLTAN_GET_GEOM_FN");
          goto End;
        }
      }
    }
  }

  /*
   * For RCB, RIB, and HSFC: if REDUCE_DIMENSIONS was selected, compute the
   * center of mass and inertial matrix of the coordinates.  
   *
   * For 3D problems: If the geometry is "flat", transform the points so the
   * two primary directions lie along the X and Y coordinate axes and project 
   * to the Z=0 plane.  If in addition the geometry is "skinny", project to 
   * the X axis.  (This creates a 2D or 1D problem respectively.)
   *
   * For 2D problems: If the geometry is essentially a line, transform it's
   * primary direction to the X axis and project to the X axis, yielding a
   * 1D problem.
   *
   * Return these points to the partitioning algorithm, in effect partitioning
   * in only the 2 (or 1) significant dimensions.  
   */

  if (((*num_dim == 3) || (*num_dim == 2)) && 
      ((zz->LB.Method==RCB) || (zz->LB.Method==RIB) || (zz->LB.Method==HSFC))){

    Zoltan_Bind_Param(Reduce_Dim_Params, "KEEP_CUTS", (void *)&i);
    Zoltan_Bind_Param(Reduce_Dim_Params, "REDUCE_DIMENSIONS", 
                     (void *)&reduce_dimensions);
    Zoltan_Bind_Param(Reduce_Dim_Params, "DEGENERATE_RATIO", (void *)&deg_ratio);

    i = 0;
    reduce_dimensions = 0;
    deg_ratio = 10.0;

    Zoltan_Assign_Param_Vals(zz->Params, Reduce_Dim_Params, zz->Debug_Level,
                             zz->Proc, zz->Debug_Proc);

    if (reduce_dimensions == 0){
      goto End;
    }

    if (deg_ratio <= 1){
      if (zz->Proc == 0){
        ZOLTAN_PRINT_WARN(0, yo, "DEGENERATE_RATIO <= 1, setting it to 10.0");
      }
      deg_ratio = 10.0;
    }

    if (zz->LB.Method == RCB){
      tran = &(((RCB_STRUCT *)(zz->LB.Data_Structure))->Tran);
    } 
    else if (zz->LB.Method == RIB){
      tran = &(((RIB_STRUCT *)(zz->LB.Data_Structure))->Tran);
    }
    else{
      tran = &(((HSFC_Data*)(zz->LB.Data_Structure))->tran);
    }

    d = *num_dim;

    if (tran->Target_Dim >= 0){
      /*
       * On a previous load balancing call, we determined whether
       * or not the geometry was degenerate.  If the geometry was 
       * determined to be not degenerate, then we assume it is still 
       * not degenerate, and we skip the degeneracy calculation.  
       */
      if (tran->Target_Dim > 0){
        /*
         * The geometry *was* degenerate.  We test the extent
         * of the geometry along the principal directions determined
         * last time to determine if it is still degenerate with that
         * orientation.  If so, we transform the coordinates using the
         * same transformation we used last time.  If not, we do the 
         * entire degeneracy calculation again.
         */
 
        if ((tran->Axis_Order[0] >= 0) && 
            (tran->Axis_Order[1] >= 0) && (tran->Axis_Order[2] >= 0)){
          axis_aligned = 1;
        }
        else{
          axis_aligned = 0;
        }

        projected_distances(zz, *coords, num_obj, tran->CM, 
             tran->Evecs, dist, d, axis_aligned, tran->Axis_Order); 

        target_dim = get_target_dimension(dist, order, deg_ratio, d);

        if (target_dim > 0){
          transform_coordinates(*coords, num_obj, d, tran);
        }
        else{
          /* Set's Target_Dim to -1, flag to recompute degeneracy */
          Zoltan_Initialize_Transformation(tran);
        }
      }
    }

    if (tran->Target_Dim < 0){

      tran->Target_Dim = 0;

      /*
       * Get the center of mass and inertial matrix of coordinates.  Ignore
       * vertex weights, we are only interested in geometry.  Global operation.
       */
      if (d == 2){
        inertial_matrix2D(zz, *coords, num_obj, tran->CM, im);
      }
      else{
        inertial_matrix3D(zz, *coords, num_obj, tran->CM, im);
      }

      /*
       * The inertial matrix is a 3x3 or 2x2 real symmetric matrix.  Get its
       * three or two orthonormal eigenvectors.  These usually indicate the 
       * orientation of the geometry.
       */

      rc = eigenvectors(im, tran->Evecs, d);

      if (rc){
        if (zz->Proc == 0){
          ZOLTAN_PRINT_WARN(0, yo, "REDUCE_DIMENSIONS calculation failed");
        }
        goto End; 
      }

      /*
       * Here we check to see if the eigenvectors are very close
       * to the coordinate axes.  If so, we can more quickly
       * determine whether the geometry is degenerate, and also more
       * quickly transform the geometry to the lower dimensional
       * space.
       */

      axis_aligned = 0;

      for (i=0; i<d; i++){
        tran->Axis_Order[i] = -1;
      }

      for (j=0; j<d; j++){
        for (i=0; i<d; i++){
          x = fabs(tran->Evecs[i][j]);

          if (NEAR_ONE(x)){
            tran->Axis_Order[j] = i;  /* e'vector j is very close to i axis */
            break;
          }
        }
        if (tran->Axis_Order[j] < 0){
          break;
        }
      }

      if ((tran->Axis_Order[0] >= 0) && 
          (tran->Axis_Order[1] >= 0) && (tran->Axis_Order[2] >= 0)){
        axis_aligned = 1;
      }

      /*
       * Calculate the extent of the geometry along the three lines defined
       * by the direction of the eigenvectors through the center of mass.
       */

      projected_distances(zz, *coords, num_obj, tran->CM, tran->Evecs, dist, 
                          d, axis_aligned, tran->Axis_Order); 

      /*
       * Decide whether these distances indicate the geometry is
       * very flat in one or two directions.
       */

      target_dim = get_target_dimension(dist, order, deg_ratio, d);

      if (target_dim > 0){
        /*
         * Yes, geometry is degenerate
         */
        if ((zz->Debug_Level > 0) && (zz->Proc == 0)){
          if (d == 2){
            sprintf(msg,
             "Geometry (~%lf x %lf), exceeds %lf to 1.0 ratio",
              dist[order[0]], dist[order[1]], deg_ratio);
          }
          else{
            sprintf(msg,
             "Geometry (~%lf x %lf x %lf), exceeds %lf to 1.0 ratio",
              dist[order[0]], dist[order[1]], dist[order[2]], deg_ratio);
          }

          ZOLTAN_PRINT_INFO(zz->Proc, yo, msg);
          sprintf(msg, "We'll treat it as %d dimensional",target_dim);
          ZOLTAN_PRINT_INFO(zz->Proc, yo, msg);
        }

        if (axis_aligned){
          /*
          ** Create new geometry, transforming the primary direction
          ** to the X-axis, and the secondary to the Y-axis.
          */

          tran->Permutation[0] = tran->Axis_Order[order[0]];
          if (target_dim == 2){
            tran->Permutation[1] = tran->Axis_Order[order[1]];
          }
        }
        else{
          /*
           * Reorder the eigenvectors (they're the columns of evecs) from 
           * longest projected distance to shorted projected distance.  Compute
           * the transpose (the inverse) of the matrix.  This will transform
           * the geometry to align along the X-Y plane, or along the X axis. 
           */
  
          for (i=0; i< target_dim; i++){
            tran->Transformation[i][2] = 0.0;
            for (j=0; j<d; j++){
              tran->Transformation[i][j] = tran->Evecs[j][order[i]];

            }
          }
          for (i=target_dim; i< 3; i++){
            for (j=0; j<3; j++){
              tran->Transformation[i][j] = 0.0;
            }
          }
        }

        tran->Target_Dim = target_dim;

        transform_coordinates(*coords, num_obj, d, tran);

      } /* If geometry is very flat */
    }  /* If REDUCE_DIMENSIONS is true */
  } /* If 2-D or 3-D rcb, rib or hsfc */

End:
  if (ierr != ZOLTAN_OK && ierr != ZOLTAN_WARN) {
    ZOLTAN_PRINT_ERROR(zz->Proc, yo, "Error found; no coordinates returned.");
    if (alloced_coords) ZOLTAN_FREE(coords);
  }
  ZOLTAN_TRACE_EXIT(zz, yo);
  return ierr;
}
Example #6
0
static void
ambHessian(				/* anisotropic radii & pos. gradient */
	AMBHEMI	*hp,
	FVECT	uv[2],			/* returned */
	float	ra[2],			/* returned (optional) */
	float	pg[2]			/* returned (optional) */
)
{
	static char	memerrmsg[] = "out of memory in ambHessian()";
	FVECT		(*hessrow)[3] = NULL;
	FVECT		*gradrow = NULL;
	FVECT		hessian[3];
	FVECT		gradient;
	FFTRI		fftr;
	int		i, j;
					/* be sure to assign unit vectors */
	VCOPY(uv[0], hp->ux);
	VCOPY(uv[1], hp->uy);
			/* clock-wise vertex traversal from sample POV */
	if (ra != NULL) {		/* initialize Hessian row buffer */
		hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
		if (hessrow == NULL)
			error(SYSTEM, memerrmsg);
		memset(hessian, 0, sizeof(hessian));
	} else if (pg == NULL)		/* bogus call? */
		return;
	if (pg != NULL) {		/* initialize form factor row buffer */
		gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
		if (gradrow == NULL)
			error(SYSTEM, memerrmsg);
		memset(gradient, 0, sizeof(gradient));
	}
					/* compute first row of edges */
	for (j = 0; j < hp->ns-1; j++) {
		comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
		if (hessrow != NULL)
			comp_hessian(hessrow[j], &fftr, hp->rp->ron);
		if (gradrow != NULL)
			comp_gradient(gradrow[j], &fftr, hp->rp->ron);
	}
					/* sum each row of triangles */
	for (i = 0; i < hp->ns-1; i++) {
	    FVECT	hesscol[3];	/* compute first vertical edge */
	    FVECT	gradcol;
	    comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
	    if (hessrow != NULL)
		comp_hessian(hesscol, &fftr, hp->rp->ron);
	    if (gradrow != NULL)
		comp_gradient(gradcol, &fftr, hp->rp->ron);
	    for (j = 0; j < hp->ns-1; j++) {
		FVECT	hessdia[3];	/* compute triangle contributions */
		FVECT	graddia;
		double	backg;
		backg = back_ambval(hp, AI(hp,i,j),
					AI(hp,i,j+1), AI(hp,i+1,j));
					/* diagonal (inner) edge */
		comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
		if (hessrow != NULL) {
		    comp_hessian(hessdia, &fftr, hp->rp->ron);
		    rev_hessian(hesscol);
		    add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
		}
		if (gradrow != NULL) {
		    comp_gradient(graddia, &fftr, hp->rp->ron);
		    rev_gradient(gradcol);
		    add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
		}
					/* initialize edge in next row */
		comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
		if (hessrow != NULL)
		    comp_hessian(hessrow[j], &fftr, hp->rp->ron);
		if (gradrow != NULL)
		    comp_gradient(gradrow[j], &fftr, hp->rp->ron);
					/* new column edge & paired triangle */
		backg = back_ambval(hp, AI(hp,i+1,j+1),
					AI(hp,i+1,j), AI(hp,i,j+1));
		comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
		if (hessrow != NULL) {
		    comp_hessian(hesscol, &fftr, hp->rp->ron);
		    rev_hessian(hessdia);
		    add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
		    if (i < hp->ns-2)
			rev_hessian(hessrow[j]);
		}
		if (gradrow != NULL) {
		    comp_gradient(gradcol, &fftr, hp->rp->ron);
		    rev_gradient(graddia);
		    add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
		    if (i < hp->ns-2)
			rev_gradient(gradrow[j]);
		}
	    }
	}
					/* release row buffers */
	if (hessrow != NULL) free(hessrow);
	if (gradrow != NULL) free(gradrow);
	
	if (ra != NULL)			/* extract eigenvectors & radii */
		eigenvectors(uv, ra, hessian);
	if (pg != NULL) {		/* tangential position gradient */
		pg[0] = DOT(gradient, uv[0]);
		pg[1] = DOT(gradient, uv[1]);
	}
}
Example #7
0
void pclbo::LBOEstimation<PointT, NormalT>::compute() {

    typename pcl::KdTreeFLANN<PointT>::Ptr kdt(new pcl::KdTreeFLANN<PointT>());
    kdt->setInputCloud(_cloud);

    const double avg_dist = pclbo::avg_distance<PointT>(10, _cloud, kdt);
    const double h = 5 * avg_dist;

    std::cout << "Average distance between points: " << avg_dist << std::endl;

    int points_with_mass = 0;
    double avg_mass = 0.0;
    B.resize(_cloud->size());

    std::cout << "Computing the Mass matrix..." << std::flush;

    // Compute the mass matrix diagonal B
    for (int i = 0; i < _cloud->size(); i++) {
        const auto& point = _cloud->at(i);
        const auto& normal = _normals->at(i);

        const auto& normal_vector = normal.getNormalVector3fMap().template cast<double>();

        if (!pcl::isFinite(point)) continue;

        std::vector<int> indices;
        std::vector<float> distances;
        kdt->radiusSearch(point, h, indices, distances);

        if (indices.size() < 4) {
            B[i] = 0.0;
            continue;
        }

        // Project the neighbor points in the tangent plane at p_i with normal n_i
        std::vector<Eigen::Vector3d> projected_points;
        for (const auto& neighbor_index : indices) {
            if (neighbor_index != i) {
                const auto& neighbor_point = _cloud->at(neighbor_index);
                projected_points.push_back(project(point, normal, neighbor_point));
            }
        }

        assert(projected_points.size() >= 3);

        // Use the first vector to create a 2D basis
        Eigen::Vector3d u = projected_points[0];
        u.normalize();
        Eigen::Vector3d v = (u.cross(normal_vector));
        v.normalize();

        // Add the points to a 2D plane
        std::vector<Eigen::Vector2d> plane;

        // Add the point at the center
        plane.push_back(Eigen::Vector2d::Zero());

        // Add the rest of the points
        for (const auto& projected : projected_points) {

            double x = projected.dot(u);
            double y = projected.dot(v);

            // Add the 2D point to the vector
            plane.push_back(Eigen::Vector2d(x, y));
        }

        assert(plane.size() >= 4);

        // Compute the voronoi cell area of the point
        double area = VoronoiDiagram::area(plane);
        B[i] = area;
        avg_mass += area;
        points_with_mass++;
    }

    // Average mass
    if (points_with_mass > 0) {
        avg_mass /= static_cast<double>(points_with_mass);
    }

    // Set border points to have average mass
    for (auto& b : B) {
        if (b == 0.0) {
            b = avg_mass; 
        } 
    }

    std::cout << "done" << std::endl;
    std::cout << "Computing the stiffness matrix..." << std::flush;

    std::vector<double> diag(_cloud->size(), 0.0);

    // Compute the stiffness matrix Q
    for (int i = 0; i < _cloud->size(); i++) {
        const auto& point = _cloud->at(i);

        if (!pcl::isFinite(point)) continue;

        std::vector<int> indices;
        std::vector<float> distances;
        kdt->radiusSearch(point, h, indices, distances);

        for (const auto& j : indices) {
            if (j != i) {
                const auto& neighbor = _cloud->at(j);

                double d = (neighbor.getVector3fMap() - point.getVector3fMap()).norm();
                double w = B[i] * B[j] * (1.0 / (4.0 * M_PI * h * h)) * exp(-(d * d) / (4.0 * h));

                I.push_back(i);
                J.push_back(j);
                S.push_back(w);

                diag[i] += w;
            }
        }
    }

    // Fill the diagonal as the negative sum of the rows
    for (int i = 0; i < diag.size(); i++) {
        I.push_back(i);
        J.push_back(i);
        S.push_back(-diag[i]);
    }

    // Compute the B^{-1}Q matrix
    Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(_cloud->size(), _cloud->size());
    for (int i = 0; i < I.size(); i++) {
        const int row = I[i];
        const int col = J[i];
        Q(row, col) = S[i];
    }

    std::cout << "done" << std::endl;
    std::cout << "Computing eigenvectors" << std::endl;

    Eigen::Map<Eigen::VectorXd> B_vec(B.data(), B.size());

    Eigen::GeneralizedSelfAdjointEigenSolver<Eigen::MatrixXd> ges;
    ges.compute(Q, B_vec.asDiagonal());

    eigenvalues = ges.eigenvalues();
    eigenfunctions = ges.eigenvectors();

    // Sort the eigenvalues by magnitude
    std::vector<std::pair<double, int> > map_vector(eigenvalues.size());

    for (auto i = 0; i < eigenvalues.size(); i++) {
        map_vector[i].first = std::abs(eigenvalues(i));
        map_vector[i].second = i;
    }

    std::sort(map_vector.begin(), map_vector.end());

    // truncate the first 100 eigenfunctions
    Eigen::MatrixXd eigenvectors(eigenfunctions.rows(), eigenfunctions.cols());
    Eigen::VectorXd eigenvals(eigenfunctions.cols());

    eigenvalues.resize(map_vector.size());
    for (auto i = 0; i < map_vector.size(); i++) {
        const auto& pair = map_vector[i];
        eigenvectors.col(i) = eigenfunctions.col(pair.second); 
        eigenvals(i) = pair.first;
    }

    eigenfunctions = eigenvectors;
    eigenvalues = eigenvals;
}
Example #8
0
/**
 * Description not yet available.
 * \param
 */
void laplace_approximation_calculator::
  do_newton_raphson_banded(function_minimizer * pfmin,double f_from_1,
  int& no_converge_flag)
{
  //quadratic_prior * tmpptr=quadratic_prior::ptr[0];
  //cout << tmpptr << endl;


  laplace_approximation_calculator::where_are_we_flag=2;
  double maxg=fabs(evaluate_function(uhat,pfmin));


  laplace_approximation_calculator::where_are_we_flag=0;
  dvector uhat_old(1,usize);
  for(int ii=1;ii<=num_nr_iters;ii++)
  {
    // test newton raphson
    switch(hesstype)
    {
    case 3:
      bHess->initialize();
      break;
    case 4:
      Hess.initialize();
      break;
    default:
      cerr << "Illegal value for hesstype here" << endl;
      ad_exit(1);
    }

    grad.initialize();
    //int check=initial_params::stddev_scale(scale,uhat);
    //check=initial_params::stddev_curvscale(curv,uhat);
    //max_separable_g=0.0;
    sparse_count = 0;

    step=get_newton_raphson_info_banded(pfmin);
    //if (bHess)
     // cout << "norm(*bHess) = " << norm(*bHess) << endl;
    //cout << "norm(Hess) = " << norm(Hess) << endl;
    //cout << grad << endl;
    //check_pool_depths();
    if (!initial_params::mc_phase)
      cout << "Newton raphson " << ii << "  ";
    if (quadratic_prior::get_num_quadratic_prior()>0)
    {
      quadratic_prior::get_cHessian_contribution(Hess,xsize);
      quadratic_prior::get_cgradient_contribution(grad,xsize);
    }

    int ierr=0;
    if (hesstype==3)
    {
      if (use_dd_nr==0)
      {
        banded_lower_triangular_dmatrix bltd=choleski_decomp(*bHess,ierr);
        if (ierr && no_converge_flag ==0)
        {
          no_converge_flag=1;
          //break;
        }
        if (ierr)
        {
          double oldval;
          evaluate_function(oldval,uhat,pfmin);
          uhat=banded_calculations_trust_region_approach(uhat,pfmin);
        }
        else
        {
          if (dd_nr_flag==0)
          {
            dvector v=solve(bltd,grad);
            step=-solve_trans(bltd,v);
            //uhat_old=uhat;
            uhat+=step;
          }
          else
          {
#if defined(USE_DD_STUFF)
            int n=grad.indexmax();
            maxg=fabs(evaluate_function(uhat,pfmin));
            uhat=dd_newton_raphson2(grad,*bHess,uhat);
#else
            cerr << "high precision Newton Raphson not implemented" << endl;
            ad_exit(1);
#endif
          }
          maxg=fabs(evaluate_function(uhat,pfmin));
          if (f_from_1< pfmin->lapprox->fmc1.fbest)
          {
            uhat=banded_calculations_trust_region_approach(uhat,pfmin);
            maxg=fabs(evaluate_function(uhat,pfmin));
          }
        }
      }
      else
      {
        cout << "error not used" << endl;
        ad_exit(1);
       /*
        banded_symmetric_ddmatrix bHessdd=banded_symmetric_ddmatrix(*bHess);
        ddvector gradd=ddvector(grad);
        //banded_lower_triangular_ddmatrix bltdd=choleski_decomp(bHessdd,ierr);
        if (ierr && no_converge_flag ==0)
        {
          no_converge_flag=1;
          break;
        }
        if (ierr)
        {
          double oldval;
          evaluate_function(oldval,uhat,pfmin);
          uhat=banded_calculations_trust_region_approach(uhat,pfmin);
          maxg=fabs(evaluate_function(uhat,pfmin));
        }
        else
        {
          ddvector v=solve(bHessdd,gradd);
          step=-make_dvector(v);
          //uhat_old=uhat;
          uhat=make_dvector(ddvector(uhat)+step);
          maxg=fabs(evaluate_function(uhat,pfmin));
          if (f_from_1< pfmin->lapprox->fmc1.fbest)
          {
            uhat=banded_calculations_trust_region_approach(uhat,pfmin);
            maxg=fabs(evaluate_function(uhat,pfmin));
          }
        }
        */
      }

      if (maxg < 1.e-13)
      {
        break;
      }
    }
    else if (hesstype==4)
    {
      dvector step;

#     if defined(USE_ATLAS)
        if (!ad_comm::no_atlas_flag)
        {
          step=-atlas_solve_spd(Hess,grad,ierr);
        }
        else
        {
          dmatrix A=choleski_decomp_positive(Hess,ierr);
          if (!ierr)
          {
            step=-solve(Hess,grad);
            //step=-solve(A*trans(A),grad);
          }
        }
        if (!ierr) break;
#     else
        if (sparse_hessian_flag)
        {
          //step=-solve(*sparse_triplet,Hess,grad,*sparse_symbolic);
          dvector temp=solve(*sparse_triplet2,grad,*sparse_symbolic2,ierr);
          if (ierr)
          {
            step=-temp;
          }
          else
          {
            cerr << "matrix not pos definite in sparse choleski"  << endl;
            pfmin->bad_step_flag=1;

            int on;
            int nopt;
            if ((on=option_match(ad_comm::argc,ad_comm::argv,"-ieigvec",nopt))
              >-1)
            {
              dmatrix M=make_dmatrix(*sparse_triplet2);

              ofstream ofs3("inner-eigvectors");
              ofs3 << "eigenvalues and eigenvectors " << endl;
              dvector v=eigenvalues(M);
              dmatrix ev=trans(eigenvectors(M));
              ofs3 << "eigenvectors" << endl;
              int i;
              for (i=1;i<=ev.indexmax();i++)
               {
                  ofs3 << setw(4) << i  << " "
                   << setshowpoint() << setw(14) << setprecision(10) << v(i)
                   << " "
                   << setshowpoint() << setw(14) << setprecision(10)
                   << ev(i) << endl;
               }
            }
          }
          //cout << norm2(step-tmpstep) << endl;
          //dvector step1=-solve(Hess,grad);
          //cout << norm2(step-step1) << endl;
        }
        else
        {
          step=-solve(Hess,grad);
        }
#     endif
      if (pmin->bad_step_flag)
        break;
      uhat_old=uhat;
      uhat+=step;

      double maxg_old=maxg;
      maxg=fabs(evaluate_function(uhat,pfmin));
      if (maxg>maxg_old)
      {
        uhat=uhat_old;
        evaluate_function(uhat,pfmin);
        break;
      }
      if (maxg < 1.e-13)
      {
        break;
      }
    }

    if (sparse_hessian_flag==0)
    {
      for (int i=1;i<=usize;i++)
      {
        y(i+xsize)=uhat(i);
      }
    }
    else
    {
      for (int i=1;i<=usize;i++)
      {
        value(y(i+xsize))=uhat(i);
      }
    }
  }
}
Example #9
0
/**
Symmetrize and invert the hessian
*/
void function_minimizer::hess_inv(void)
{
  initial_params::set_inactive_only_random_effects();
  int nvar=initial_params::nvarcalc(); // get the number of active parameters
  independent_variables x(1,nvar);

  initial_params::xinit(x);        // get the initial values into the x vector
  //double f;
  dmatrix hess(1,nvar,1,nvar);
  uistream ifs("admodel.hes");
  int file_nvar = 0;
  ifs >> file_nvar;
  if (nvar != file_nvar)
  {
    cerr << "Number of active variables in file mod_hess.rpt is wrong"
         << endl;
  }

  for (int i = 1;i <= nvar; i++)
  {
    ifs >> hess(i);
    if (!ifs)
    {
      cerr << "Error reading line " << i  << " of the hessian"
           << " in routine hess_inv()" << endl;
      exit(1);
    }
  }
  int hybflag = 0;
  ifs >> hybflag;
  dvector sscale(1,nvar);
  ifs >> sscale;
  if (!ifs)
  {
    cerr << "Error reading sscale"
         << " in routine hess_inv()" << endl;
  }

  double maxerr=0.0;
  for (int i = 1;i <= nvar; i++)
  {
    for (int j=1;j<i;j++)
    {
      double tmp=(hess(i,j)+hess(j,i))/2.;
      double tmp1=fabs(hess(i,j)-hess(j,i));
      tmp1/=(1.e-4+fabs(hess(i,j))+fabs(hess(j,i)));
      if (tmp1>maxerr) maxerr=tmp1;
      hess(i,j)=tmp;
      hess(j,i)=tmp;
    }
  }
  /*
  if (maxerr>1.e-2)
  {
    cerr << "warning -- hessian aprroximation is poor" << endl;
  }
 */

  for (int i = 1;i <= nvar; i++)
  {
    int zero_switch=0;
    for (int j=1;j<=nvar;j++)
    {
      if (hess(i,j)!=0.0)
      {
        zero_switch=1;
      }
    }
    if (!zero_switch)
    {
      cerr << " Hessian is 0 in row " << i << endl;
      cerr << " This means that the derivative if probably identically 0 "
              " for this parameter" << endl;
    }
  }

  int ssggnn;
  ln_det(hess,ssggnn);
  int on1=0;
  {
    ofstream ofs3((char*)(ad_comm::adprogram_name + adstring(".eva")));
    {
      dvector se=eigenvalues(hess);
      ofs3 << setshowpoint() << setw(14) << setprecision(10)
           << "unsorted:\t" << se << endl;
     se=sort(se);
     ofs3 << setshowpoint() << setw(14) << setprecision(10)
     << "sorted:\t" << se << endl;
     if (se(se.indexmin())<=0.0)
      {
        negative_eigenvalue_flag=1;
        cout << "Warning -- Hessian does not appear to be"
         " positive definite" << endl;
      }
    }
    ivector negflags(0,hess.indexmax());
    int num_negflags=0;
    {
      int on = option_match(ad_comm::argc,ad_comm::argv,"-eigvec");
      on1=option_match(ad_comm::argc,ad_comm::argv,"-spmin");
      if (on > -1 || on1 >-1 )
      {
        ofs3 << setshowpoint() << setw(14) << setprecision(10)
          << eigenvalues(hess) << endl;
        dmatrix ev=trans(eigenvectors(hess));
        ofs3 << setshowpoint() << setw(14) << setprecision(10)
          << ev << endl;
        for (int i=1;i<=ev.indexmax();i++)
        {
          double lam=ev(i)*hess*ev(i);
          ofs3 << setshowpoint() << setw(14) << setprecision(10)
            << lam << "  "  << ev(i)*ev(i) << endl;
          if (lam<0.0)
          {
            num_negflags++;
            negflags(num_negflags)=i;
          }
        }
        if ( (on1>-1) && (num_negflags>0))   // we will try to get away from
        {                                     // saddle point
          negative_eigenvalue_flag=0;
          spminflag=1;
          if(negdirections)
          {
            delete negdirections;
          }
          negdirections = new dmatrix(1,num_negflags);
          for (int i=1;i<=num_negflags;i++)
          {
            (*negdirections)(i)=ev(negflags(i));
          }
        }
        int on2 = option_match(ad_comm::argc,ad_comm::argv,"-cross");
        if (on2>-1)
        {                                     // saddle point
          dmatrix cross(1,ev.indexmax(),1,ev.indexmax());
          for (int i = 1;i <= ev.indexmax(); i++)
          {
            for (int j=1;j<=ev.indexmax();j++)
            {
              cross(i,j)=ev(i)*ev(j);
            }
          }
          ofs3 <<  endl << "  e(i)*e(j) ";
          ofs3 << endl << cross << endl;
        }
      }
    }

    if (spminflag==0)
    {
      if (num_negflags==0)
      {
        hess=inv(hess);
        int on=0;
        if ( (on=option_match(ad_comm::argc,ad_comm::argv,"-eigvec"))>-1)
        {
          int i;
          ofs3 << "choleski decomp of correlation" << endl;
          dmatrix ch=choleski_decomp(hess);
          for (i=1;i<=ch.indexmax();i++)
            ofs3 << ch(i)/norm(ch(i)) << endl;
          ofs3 << "parameterization of choleski decomnp of correlation" << endl;
          for (i=1;i<=ch.indexmax();i++)
          {
            dvector tmp=ch(i)/norm(ch(i));
            ofs3 << tmp(1,i)/tmp(i) << endl;
          }
        }
      }
    }
  }
  if (spminflag==0)
  {
    if (on1<0)
    {
      for (int i = 1;i <= nvar; i++)
      {
        if (hess(i,i) <= 0.0)
        {
          hess_errorreport();
          ad_exit(1);
        }
      }
    }
    {
      adstring tmpstring="admodel.cov";
      if (ad_comm::wd_flag)
        tmpstring = ad_comm::adprogram_name + ".cov";
      uostream ofs((char*)tmpstring);
      ofs << nvar << hess;
      ofs << gradient_structure::Hybrid_bounded_flag;
      ofs << sscale;
    }
  }
}
Example #10
0
/// Execute algorithm.
void Schrodinger1D::exec()
{
  double startX = get("StartX");
  double endX = get("EndX");

  if (endX <= startX)
  {
    throw std::invalid_argument("StartX must be <= EndX");
  }

  IFunction_sptr VPot = getClass("VPot");
  chebfun vpot( 0, startX, endX );
  vpot.bestFit( *VPot );

  size_t nBasis = vpot.n() + 1;
  std::cerr << "n=" << nBasis << std::endl;
  //if (n < 3)
  {
    nBasis = 200;
    vpot.resize( nBasis );
  }

  const double beta = get("Beta");

  auto kinet = new ChebCompositeOperator;
  kinet->addRight( new ChebTimes(-beta) );
  kinet->addRight( new ChebDiff2 );
  auto hamiltonian = new ChebPlus;
  hamiltonian->add('+', kinet );
  hamiltonian->add('+', new ChebTimes(VPot) );

  GSLMatrix L;
  hamiltonian->createMatrix( vpot.getBase(), L );

  GSLVector d;
  GSLMatrix v;
  L.diag( d, v );

  std::vector<double> norms = vpot.baseNorm();
  assert(norms.size() == L.size1());
  assert(norms.size() == L.size2());

  for(size_t i = 0; i < norms.size(); ++i)
  {
      double factor = 1.0 / norms[i];
      for(size_t j = i; j < norms.size(); ++j)
      {
          v.multiplyBy(i,j,factor);
      }
  }

//  eigenvectors orthogonality check
//  GSLMatrix v1 = v;
//  GSLMatrix tst;
//  tst = Tr(v1) * v;
//  std::cerr << tst << std::endl;

  std::vector<size_t> indx(L.size1());
  getSortedIndex( d, indx );

  auto eigenvalues = API::TableWorkspace_ptr(dynamic_cast<API::TableWorkspace*>(
    API::WorkspaceFactory::instance().create("TableWorkspace"))
    );
  eigenvalues->setRowCount(nBasis);
  setProperty("Eigenvalues", eigenvalues);

  eigenvalues->addColumn("double","N");
  auto nColumn = static_cast<API::TableColumn<double>*>(eigenvalues->getColumn("N").get());
  nColumn->asNumeric()->setPlotRole(API::NumericColumn::X);
  auto& nc = nColumn->data();

  eigenvalues->addDoubleColumn("Energy");
  auto eColumn = static_cast<API::TableColumn<double>*>(eigenvalues->getColumn("Energy").get());
  eColumn->asNumeric()->setPlotRole(API::NumericColumn::Y);
  auto& ec = eigenvalues->getDoubleData("Energy");

  boost::scoped_ptr<ChebfunVector> eigenvectors(new ChebfunVector);

  chebfun fun0(nBasis,startX,endX);
  ChebFunction_sptr theSum(new ChebFunction(fun0));

  // collect indices of spurious eigenvalues to move them to the back
  std::vector<size_t> spurious;
  // index for good eigenvalues
  size_t n = 0;
  for(size_t j = 0; j < nBasis; ++j)
  {
    size_t i = indx[j];
    chebfun fun(fun0);
    fun.setP(v,i);

    // check eigenvalues for spurious ones
    chebfun dfun(fun);
    dfun.square();
    double norm = dfun.integr();

    // I am not sure that it's a solid condition
    if ( norm < 0.999999 )
    {
        // bad eigenvalue
        spurious.push_back(j);
    }
    else
    {
        nc[n] = double(n);
        ec[n] = d[i];
        eigenvectors->add(ChebFunction_sptr(new ChebFunction(fun)));

        // test sum of functions squares
        *theSum += dfun;

//        chebfun dfun(fun);
//        hamiltonian->apply(fun,dfun);
//        dfun *= fun;
//        std::cerr << "ener["<<n<<"]=" << ec[n] << ' ' << norm << ' ' << dfun.integr() << std::endl;
        ++n;
    }
  }

  GSLVector eigv;
  ChebfunVector *eigf = NULL;
  improve(hamiltonian, eigenvectors.get(), eigv, &eigf);

  eigenvalues->setRowCount( eigv.size() );
  for(size_t i = 0; i < eigv.size(); ++i)
  {
      nc[i] = double(i);
      ec[i] = eigv[i];
  }

  eigf->add(theSum);
  setProperty("Eigenvectors",ChebfunVector_sptr(eigf));

  //makeQuadrature(eigf);

}
// This is the model equation for the timeframe RANSAC
// B.K.P. Horn's closed form Absolute Orientation method (1987 paper)
// The convention used here is: right = (1/scale) * RMat * left + TMat
int Photogrammetry::absoluteOrientation(vector<cv::Point3d> & left, vector<cv::Point3d> & right, cv::Mat & RMat, cv::Mat & TMat, double & scale) {

	//check if both vectors have the same number of size
	if (left.size() != right.size()) {
		cerr << "Sizes don't match" << endl;
		return -1;
	}

	//compute the mean of the left and right set of points
	cv::Point3d leftmean, rightmean;

	leftmean.x = 0;
	leftmean.y = 0;
	leftmean.z = 0;
	rightmean.x = 0;
	rightmean.y = 0;
	rightmean.z = 0;

	for (int i = 0; i < left.size(); i++) {
		leftmean.x += left[i].x;
		leftmean.y += left[i].y;
		leftmean.z += left[i].z;

		rightmean.x += right[i].x;
		rightmean.y += right[i].y;
		rightmean.z += right[i].z;
	}

	leftmean.x /= left.size();
	leftmean.y /= left.size();
	leftmean.z /= left.size();

	rightmean.x /= right.size();
	rightmean.y /= right.size();
	rightmean.z /= right.size();

	cv::Mat leftmeanMat(3,1,CV_64F);
	cv::Mat rightmeanMat(3,1,CV_64F);

	leftmeanMat.at<double>(0,0) = leftmean.x;
	leftmeanMat.at<double>(0,1) = leftmean.y;
	leftmeanMat.at<double>(0,2) = leftmean.z;

	rightmeanMat.at<double>(0,0) = rightmean.x;
	rightmeanMat.at<double>(0,1) = rightmean.y;
	rightmeanMat.at<double>(0,2) = rightmean.z;

	//normalize all points
	for (int i = 0; i < left.size(); i++) {
		left[i].x -= leftmean.x;
		left[i].y -= leftmean.y;
		left[i].z -= leftmean.z;

		right[i].x -= rightmean.x;
		right[i].y -= rightmean.y;
		right[i].z -= rightmean.z;
	}

	//compute scale (use the symmetrical solution)
	double Sl = 0;
	double Sr = 0;

	// this is the symmetrical version of the scale !
	for (int i = 0; i < left.size(); i++) {
		Sl += left[i].x*left[i].x + left[i].y*left[i].y + left[i].z*left[i].z;
		Sr += right[i].x*right[i].x + right[i].y*right[i].y + right[i].z*right[i].z;
	}

	scale = sqrt(Sr/Sl);

//	cout << "Scale: " << scale << endl;


	//create M matrix
	double M[3][3];// = {0.0};
/*
		// I believe this is wrong, since not summing over all left right elements, just for the last element ! KM Nov 21
		for (int i = 0; i < left.size(); i++) {
			M[0][0] = left[i].x*right[i].x;
			M[0][1] = left[i].x*right[i].y;
			M[0][2] = left[i].x*right[i].z;
			M[1][0] = left[i].y*right[i].x;
			M[1][1] = left[i].y*right[i].y;
			M[1][2] = left[i].y*right[i].z;
			M[2][0] = left[i].z*right[i].x;
			M[2][1] = left[i].z*right[i].y;
			M[2][2] = left[i].z*right[i].z;
		}
*/
	M[0][0] = 0;
	M[0][1] = 0;
	M[0][2] = 0;
	M[1][0] = 0;
	M[1][1] = 0;
	M[1][2] = 0;
	M[2][0] = 0;
	M[2][1] = 0;
	M[2][2] = 0;

	for (int i = 0; i < left.size(); i++)
	{
		M[0][0] += left[i].x*right[i].x;
		M[0][1] += left[i].x*right[i].y;
		M[0][2] += left[i].x*right[i].z;
		M[1][0] += left[i].y*right[i].x;
		M[1][1] += left[i].y*right[i].y;
		M[1][2] += left[i].y*right[i].z;
		M[2][0] += left[i].z*right[i].x;
		M[2][1] += left[i].z*right[i].y;
		M[2][2] += left[i].z*right[i].z;
	}

	//create N matrix
	cv::Mat N = cv::Mat::zeros(4,4,CV_64F);

	N.at<double>(0,0) = M[0][0] + M[1][1] + M[2][2];
	N.at<double>(0,1) = M[1][2] - M[2][1];
	N.at<double>(0,2) = M[2][0] - M[0][2];
	N.at<double>(0,3) = M[0][1] - M[1][0];

	N.at<double>(1,0) = M[1][2] - M[2][1];
	N.at<double>(1,1) = M[0][0] - M[1][1] - M[2][2];
	N.at<double>(1,2) = M[0][1] + M[1][0];
	N.at<double>(1,3) = M[2][0] + M[0][2];

	N.at<double>(2,0) = M[2][0] - M[0][2];
	N.at<double>(2,1) = M[0][1] + M[1][0];
	N.at<double>(2,2) = -M[0][0] + M[1][1] - M[2][2];
	N.at<double>(2,3) = M[1][2] + M[2][1];

	N.at<double>(3,0) = M[0][1] - M[1][0];
	N.at<double>(3,1) = M[2][0] + M[0][2];
	N.at<double>(3,2) = M[1][2] + M[2][1];
	N.at<double>(3,3) = -M[0][0] - M[1][1] + M[2][2];

//	cout << "N: " << N << endl;

	//compute eigenvalues
	cv::Mat eigenvalues(1,4,CV_64FC1);
	cv::Mat eigenvectors(4,4,CV_64FC1);

//	cout << "eigenvalues: \n" << eigenvalues << endl;

	if (!cv::eigen(N, eigenvalues, eigenvectors)) {
		cerr << "eigen failed" << endl;
		return -1;
	}

//	cout << "Eigenvalues:\n" << eigenvalues << endl;
//	cout << "Eigenvectors:\n" << eigenvectors << endl;

	//compute quaterion as maximum eigenvector

	double q[4];
	q[0] = eigenvectors.at<double>(0,0);
	q[1] = eigenvectors.at<double>(0,1);
	q[2] = eigenvectors.at<double>(0,2);
	q[3] = eigenvectors.at<double>(0,3);

/*	// I believe this changed with the openCV implementation, eigenvectors are stored in row-order !
	q[0] = eigenvectors.at<double>(0,0);
	q[1] = eigenvectors.at<double>(1,0);
	q[2] = eigenvectors.at<double>(2,0);
	q[3] = eigenvectors.at<double>(3,0);
*/

	double absOfEigVec = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] /= absOfEigVec;
	q[1] /= absOfEigVec;
	q[2] /= absOfEigVec;
	q[3] /= absOfEigVec;

	cv::Mat qMat(4,1,CV_64F,q);
//	cout << "q: " << qMat << endl;

	//compute Rotation matrix

	RMat.at<double>(0,0) = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3];
	RMat.at<double>(0,1) = 2*(q[1]*q[2] - q[0]*q[3]);
	RMat.at<double>(0,2) = 2*(q[1]*q[3] + q[0]*q[2]);

	RMat.at<double>(1,0) = 2*(q[2]*q[1] + q[0]*q[3]);
	RMat.at<double>(1,1) = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3];
	RMat.at<double>(1,2) = 2*(q[2]*q[3] - q[0]*q[1]);

	RMat.at<double>(2,0) = 2*(q[3]*q[1] - q[0]*q[2]);
	RMat.at<double>(2,1) = 2*(q[2]*q[3] + q[0]*q[1]);
	RMat.at<double>(2,2) = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];

//	cout <<"R:\n" << RMat << endl;
//	cout << "Det: " << determinant(RMat) << endl;

	//find translation
	cv::Mat tempMat(3,1,CV_64F);

	//gemm(RMat, leftmeanMat, -1.0, rightmeanMat, 1.0, TMat); // enforcing scale of 1, since same scales in both frames
	// The convention used here is: right = (1/scale) * RMat * left + TMat
	TMat = -(1/scale) * RMat*leftmeanMat + rightmeanMat;

	//	gemm(RMat, leftmeanMat, -1.0 * scale, rightmeanMat, 1.0, TMat);

//	cout << "Translation: " << TMat << endl;
	return 0;
}
bool PivotCalibration2::ComputeSpinCalibration(bool snapRotation)
{
	if (this->ToolToReferenceMatrices.size() < 10)
	{
		this->ErrorText = "Not enough input transforms are available";
		return false;
	}

	if (this->GetMaximumToolOrientationDifferenceDeg() < this->MinimumOrientationDifferenceDeg)
	{
		this->ErrorText = "Not enough variation in the input transforms";
		return false;
	}

	// Setup our system to find the axis of rotation
	unsigned int rows = 3, columns = 3;

	vnl_matrix<double> A(rows, columns, 0);

	vnl_matrix<double> I(3, 3, 0);
	I.set_identity();

	vnl_matrix<double> RI(rows, columns);


	// this will store the maximum difference in orientation between the first transform and all the other transforms
	double maximumOrientationDifferenceDeg = 0;

	std::vector< vtkSmartPointer<vtkMatrix4x4> >::const_iterator previt = this->ToolToReferenceMatrices.end();
	for (std::vector< vtkSmartPointer<vtkMatrix4x4> >::const_iterator it = this->ToolToReferenceMatrices.begin(); it != this->ToolToReferenceMatrices.end(); it++)
	{
		if (previt == this->ToolToReferenceMatrices.end())
		{
			previt = it;
			continue; // No comparison to make for the first matrix
		}

		vtkSmartPointer< vtkMatrix4x4 > itinverse = vtkSmartPointer< vtkMatrix4x4 >::New();
		vtkMatrix4x4::Invert((*it), itinverse);

		vtkSmartPointer< vtkMatrix4x4 > instRotation = vtkSmartPointer< vtkMatrix4x4 >::New();
		vtkMatrix4x4::Multiply4x4(itinverse, (*previt), instRotation);

		for (int i = 0; i < 3; i++)
		{
			for (int j = 0; j < 3; j++)
			{
				RI(i, j) = instRotation->GetElement(i, j);
			}
		}

		RI = RI - I;
		A = A + RI.transpose() * RI;

		previt = it;
	}

	// Note: If the needle orientation protocol changes, only the definitions of shaftAxis and secondaryAxes need to be changed
	// Define the shaft axis and the secondary shaft axis
	// Current needle orientation protocol dictates: shaft axis -z, orthogonal axis +x
	// If StylusX is parallel to ShaftAxis then: shaft axis -z, orthogonal axis +y
	vnl_vector<double> shaftAxis_Shaft(columns, 0); shaftAxis_Shaft(0) = 0; shaftAxis_Shaft(1) = 0; shaftAxis_Shaft(2) = -1;
	vnl_vector<double> orthogonalAxis_Shaft(columns, 0); orthogonalAxis_Shaft(0) = 1; orthogonalAxis_Shaft(1) = 0; orthogonalAxis_Shaft(2) = 0;
	vnl_vector<double> backupAxis_Shaft(columns, 0); backupAxis_Shaft(0) = 0; backupAxis_Shaft(1) = 1; backupAxis_Shaft(2) = 0;

	// Find the eigenvector associated with the smallest eigenvalue
	// This is the best axis of rotation over all instantaneous rotations
	vnl_matrix<double> eigenvectors(columns, columns, 0);
	vnl_vector<double> eigenvalues(columns, 0);
	vnl_symmetric_eigensystem_compute(A, eigenvectors, eigenvalues);
	// Note: eigenvectors are ordered in increasing eigenvalue ( 0 = smallest, end = biggest )
	vnl_vector<double> shaftAxis_ToolTip(columns, 0);
	shaftAxis_ToolTip(0) = eigenvectors(0, 0);
	shaftAxis_ToolTip(1) = eigenvectors(1, 0);
	shaftAxis_ToolTip(2) = eigenvectors(2, 0);
	shaftAxis_ToolTip.normalize();

	// Snap the direction vector to be exactly aligned with one of the coordinate axes
	// This is if the sensor is known to be parallel to one of the axis, just not which one
	if (snapRotation)
	{
		int closestCoordinateAxis = element_product(shaftAxis_ToolTip, shaftAxis_ToolTip).arg_max();
		shaftAxis_ToolTip.fill(0);
		shaftAxis_ToolTip.put(closestCoordinateAxis, 1); // Doesn't matter the direction, will be sorted out in the next step
	}

	// Make sure it is in the correct direction (opposite the StylusTipToStylus translation)
	vnl_vector<double> toolTipToToolTranslation(3);
	toolTipToToolTranslation(0) = this->ToolTipToToolMatrix->GetElement(0, 3);
	toolTipToToolTranslation(1) = this->ToolTipToToolMatrix->GetElement(1, 3);
	toolTipToToolTranslation(2) = this->ToolTipToToolMatrix->GetElement(2, 3);
	if (dot_product(shaftAxis_ToolTip, toolTipToToolTranslation) > 0)
	{
		shaftAxis_ToolTip = shaftAxis_ToolTip * (-1);
	}

	//set the RMSE
	this->SpinRMSE = (A * shaftAxis_ToolTip).rms();


	// If the secondary axis 1 is parallel to the shaft axis in the tooltip frame, then use secondary axis 2
	vnl_vector<double> orthogonalAxis_ToolTip;
	double angle = acos(dot_product(shaftAxis_ToolTip, orthogonalAxis_Shaft));
	// Force angle to be between -pi/2 and +pi/2
	if (angle > vtkMath::Pi() / 2)
	{
		angle -= vtkMath::Pi();
	}
	if (angle < -vtkMath::Pi() / 2)
	{
		angle += vtkMath::Pi();
	}
	if (fabs(angle) > vtkMath::RadiansFromDegrees(PARALLEL_ANGLE_THRESHOLD_DEGREES)) // If shaft axis and orthogonal axis are not parallel
	{
		orthogonalAxis_ToolTip = orthogonalAxis_Shaft;
	}
	else
	{
		orthogonalAxis_ToolTip = backupAxis_Shaft;
	}

	// Do the registration find the appropriate rotation
	orthogonalAxis_ToolTip = orthogonalAxis_ToolTip - dot_product(orthogonalAxis_ToolTip, shaftAxis_ToolTip) * shaftAxis_ToolTip;
	orthogonalAxis_ToolTip.normalize();

	// Register X,Y,O points in the two coordinate frames (only spherical registration - since pure rotation)
	vnl_matrix<double> ToolTipPoints(3, 3, 0.0);
	vnl_matrix<double> ShaftPoints(3, 3, 0.0);

	ToolTipPoints.put(0, 0, shaftAxis_ToolTip(0));
	ToolTipPoints.put(0, 1, shaftAxis_ToolTip(1));
	ToolTipPoints.put(0, 2, shaftAxis_ToolTip(2));
	ToolTipPoints.put(1, 0, orthogonalAxis_ToolTip(0));
	ToolTipPoints.put(1, 1, orthogonalAxis_ToolTip(1));
	ToolTipPoints.put(1, 2, orthogonalAxis_ToolTip(2));
	ToolTipPoints.put(2, 0, 0);
	ToolTipPoints.put(2, 1, 0);
	ToolTipPoints.put(2, 2, 0);

	ShaftPoints.put(0, 0, shaftAxis_Shaft(0));
	ShaftPoints.put(0, 1, shaftAxis_Shaft(1));
	ShaftPoints.put(0, 2, shaftAxis_Shaft(2));
	ShaftPoints.put(1, 0, orthogonalAxis_Shaft(0));
	ShaftPoints.put(1, 1, orthogonalAxis_Shaft(1));
	ShaftPoints.put(1, 2, orthogonalAxis_Shaft(2));
	ShaftPoints.put(2, 0, 0);
	ShaftPoints.put(2, 1, 0);
	ShaftPoints.put(2, 2, 0);

	vnl_svd<double> ShaftToToolTipRegistrator(ShaftPoints.transpose() * ToolTipPoints);
	vnl_matrix<double> V = ShaftToToolTipRegistrator.V();
	vnl_matrix<double> U = ShaftToToolTipRegistrator.U();
	vnl_matrix<double> Rotation = V * U.transpose();

	// Make sure the determinant is positve (i.e. +1)
	double determinant = vnl_determinant(Rotation);
	if (determinant < 0)
	{
		// Switch the sign of the third column of V if the determinant is not +1
		// This is the recommended approach from Huang et al. 1987
		V.put(0, 2, -V.get(0, 2));
		V.put(1, 2, -V.get(1, 2));
		V.put(2, 2, -V.get(2, 2));
		Rotation = V * U.transpose();
	}

	// Set the elements of the output matrix
	for (int i = 0; i < 3; i++)
	{
		for (int j = 0; j < 3; j++)
		{
			this->ToolTipToToolMatrix->SetElement(i, j, Rotation[i][j]);
		}
	}

	this->ErrorText.empty();
	return true;
}
Example #13
0
void CCA_logit(bool perm, 
	       vector<vector<int> > & blperm,
	       Set & S,
	       Plink & P)
  
{

  ///////////////
  // Output results

      ofstream EPI;

      if (!perm)
      {  
	  string f = par::output_file_name+".genepi";
	  P.printLOG("\nWriting gene-based epistasis tests to [ " + f + " ]\n");
	  EPI.open(f.c_str(), ios::out);
	  EPI.precision(4);

	  EPI << setw(12) << "NIND"  << " "
	      << setw(12) << "GENE1"  << " "
	      << setw(12) << "GENE2"  << " "	 
	      << setw(12) << "NSNP1"  << " "
	      << setw(12) << "NSNP2"  << " "
	      << setw(12) << "P" << " "
	      << "\n";

      }


      //////////////////////////////////
      // Canonical correlation analysis

      int ns = P.snpset.size();

      // Consider each pair of genes
      for (int s1=0; s1 < ns-1; s1++)
      {
	for (int s2 = s1+1; s2 < ns; s2++)
        {


	    ////////////////////////////////////////////////////////
	    // Step 1. Construct covariance matrix (cases and controls together)
	    //    And partition covariance matrix:
	    //    S_11  S_21
	    //    S_12  S_22
	      
	    int n1=0, n2=0;
	      
	    vector<vector<double> > sigma(0);
	    vector<double> mean(0);
	    vector<CSNP*> pSNP(0);
	      
	    /////////////////////////////
	    // List of SNPs for both loci
	      
	    for (int l=0; l<P.snpset[s1].size(); l++)
            {
	      if ( S.cur[s1][l] )
	      {
		pSNP.push_back( P.SNP[ P.snpset[s1][l] ] );
		n1++;
	      }
	    }
	    for (int l=0; l<P.snpset[s2].size(); l++)
	    {		
              if ( S.cur[s2][l] )
	      {
		pSNP.push_back( P.SNP[ P.snpset[s2][l] ] );
		n2++;
              }
	    }

	    int n12 = n1 + n2;
	    int ne = n1 < n2 ? n1 : n2;
  
	    ///////////////////////////////////
	    // Construct covariance matrix (cases and controls together)
	      
	    P.setFlags(false);
	    vector<Individual*>::iterator person = P.sample.begin();

	    while ( person != P.sample.end() )
	      {
		(*person)->flag = true;
                person++;
	    }

	      
	    int nind = calcGENEPIMeanVariance(pSNP, 
					      n1,n2,
					      false,
					      &P,
					      mean, 
					      sigma, 
					      P.sample , 
					      blperm[s1],
					      blperm[s2] );
	    


	    ///////////////////////////
	    // Partition covariance matrix
	      
	    vector<vector<double> > I11;
	    vector<vector<double> > I11b;
	    vector<vector<double> > I12;
	    vector<vector<double> > I21;
	    vector<vector<double> > I22;
	    vector<vector<double> > I22b;
	      
	    sizeMatrix( I11, n1, n1);
            sizeMatrix( I11b, n1, n1);
	    sizeMatrix( I12, n1, n2);
	    sizeMatrix( I21, n2, n1);
	    sizeMatrix( I22, n2, n2);
	    sizeMatrix( I22b, n2, n2);             // For step 4b (eigenvectors for gene2)
	      
	    for (int i=0; i<n1; i++)
		for (int j=0; j<n1; j++)
                {
		  I11[i][j] = sigma[i][j];
		  I11b[i][j] = sigma[i][j];
                }
	      
	    for (int i=0; i<n1; i++)
		for (int j=0; j<n2; j++)
		    I12[i][j] = sigma[i][n1+j];
	      
	    for (int i=0; i<n2; i++)
		for (int j=0; j<n1; j++)
		    I21[i][j] = sigma[n1+i][j];
	      
	    for (int i=0; i<n2; i++)
		for (int j=0; j<n2; j++)
                {     
		  I22[i][j] = sigma[n1+i][n1+j];
	          I22b[i][j] = sigma[n1+i][n1+j];
		}


	    ////////////////////////////////////////////////////////
	    // Step 2. Calculate the p x p matrix M1 = inv(sqrt(sig11)) %*% sig12 %*% inv(sig22) %*% sig21 %*% inv(sqrt(sig11))
	    bool flag = true;
	    I11 = msqrt(I11);
	    I11 = svd_inverse(I11,flag);
       	    I22 = svd_inverse(I22,flag);

	    I22b = msqrt(I22b);// For Step 4b
	    I22b = svd_inverse(I22b,flag);
	    I11b = svd_inverse(I11b,flag);
      
	    matrix_t tmp;
	    matrix_t M1;
	      
	    multMatrix(I11, I12, tmp);
            multMatrix(tmp, I22, M1);
	    multMatrix(M1, I21, tmp);
	    multMatrix(tmp, I11, M1);


	    ////////////////////////////////////////////////////////
	    // Step 4a. Calculate the p eigenvalues and p x p eigenvectors of
	    // M (e). These are required to compute the coefficients used to
	    // build the p canonical variates a[k] for gene1 (see below)

            double max_cancor = 0.90;

            // Compute evalues and evectors
            Eigen gene1_eigen = eigenvectors(M1);

    
            // Sort evalues for gene 1. (the first p of these equal the first p of gene 2 (ie M2), if they are sorted)
            vector<double> sorted_eigenvalues_gene1 = gene1_eigen.d;
	    sort(sorted_eigenvalues_gene1.begin(),sorted_eigenvalues_gene1.end(),greater<double>());

            // Position of the largest canonical correlation that is <
            // max_cancor in the sorted vector of eigenvalues.  This will be
            // needed to use the right gene1 and gene2 coefficients to build
            // the appropriate canonical variates. 
            double cancor1=0;
            int cancor1_pos;          
            
            for (int i=0; i<n1; i++)
            {
              if ( sqrt(sorted_eigenvalues_gene1[i]) > cancor1 && sqrt(sorted_eigenvalues_gene1[i]) < max_cancor  )
              {
                cancor1 = sqrt(sorted_eigenvalues_gene1[i]);
                cancor1_pos = i;
                break;
              }
            }

            // Display largest canonical correlation and its position
	    //  cout << "Largest canonical correlation [position]\n"
	    //    << cancor1 << " [" << cancor1_pos << "]" << "\n\n" ;

            // Sort evectors. Rows must be ordered according to cancor value (highest first)
	    matrix_t sorted_eigenvectors_gene1 = gene1_eigen.z;
            vector<int> order_eigenvalues_gene1(n1);

	    for (int i=0; i<n1; i++)
            {
	      // Determine position of the vector associated with the ith cancor
              for (int j=0; j<n1; j++)
	      {
	        if (gene1_eigen.d[j]==sorted_eigenvalues_gene1[i])		 
                {
	          if (i==0)	   
                  {
		    order_eigenvalues_gene1[i]=j;
                    break;
                  }
                  else
                  {
		    if (j!=order_eigenvalues_gene1[i-1])
  		    {
                      order_eigenvalues_gene1[i]=j;
                      break;
                    }
	          }
                }
              }
	    }

            for (int i=0; i<n1; i++)
            {
		sorted_eigenvectors_gene1[i] = gene1_eigen.z[order_eigenvalues_gene1[i]];
	    }
	    //   cout << "Eigenvector matrix - unsorted:\n";
	    // display(gene1_eigen.z);
            //cout << "Eigenvector matrix - sorted:\n";
            //display(sorted_eigenvectors_gene1);


	    ////////////////////////////////////////////////////////
	    // Step 4b. Calculate the q x q eigenvectors of M2 (f). These are
	    // required to compute the coefficients used to build the p
	    // canonical variates b[k] for gene2 (see below). The first p are
	    // given by: f[k] = (1/sqrt(eigen[k])) * inv_sqrt_I22 %*% I21 %*%
	    // inv_sqrt_sig11 %*% e[k] for (k in 1:p) { e.vectors.gene2[,k] =
	    // (1/sqrt(e.values[k])) * inv.sqrt.sig22 %*% sig21 %*%
	    // inv.sqrt.sig11 %*% e.vectors.gene1[,k] }
           
             matrix_t M2;

             multMatrix(I22b, I21, tmp);
             multMatrix(tmp, I11b, M2);
             multMatrix(M2, I12, tmp);
             multMatrix(tmp, I22b, M2);
             Eigen gene2_eigen = eigenvectors(M2);
 
            //cout << "Eigenvalues Gene 2 - unsorted:\n";
            //display(gene2_eigen.d);
 
	    // Sort evalues for gene2
            vector<double> sorted_eigenvalues_gene2 = gene2_eigen.d;
            sort(sorted_eigenvalues_gene2.begin(),sorted_eigenvalues_gene2.end(),greater<double>());

            // Sort eigenvectors for gene2
            matrix_t sorted_eigenvectors_gene2 = gene2_eigen.z;
            vector<int> order_eigenvalues_gene2(n2);

            for (int i=0; i<n2; i++)
            {
		// Determine position of the vector associated with the ith cancor
		for (int j=0; j<n2; j++)
		{
		    if (gene2_eigen.d[j]==sorted_eigenvalues_gene2[i])
		    {
			if (i==0)
			{
			    order_eigenvalues_gene2[i]=j;
			    break;
			}
			else
			{
			    if (j!=order_eigenvalues_gene2[i-1])
			    {
				order_eigenvalues_gene2[i]=j;
				break;
			    }
			}
		    }
		}
            }

	    for (int i=0; i<n2; i++)
            {
                sorted_eigenvectors_gene2[i] = gene2_eigen.z[order_eigenvalues_gene2[i]];
            }

            //cout << "Eigenvector matrix Gene 2 - unsorted:\n";
	    //display(gene2_eigen.z);

            //cout << "Eigenvector matrix Gene 2 - sorted:\n";
            //display(sorted_eigenvectors_gene2);

            //exit(0);

            //////////////////////////////////////////////////////////////////////////////////
	    // Step 5 - Calculate the gene1 (pxp) and gene2 (pxq) coefficients
            // used to create the canonical variates associated with the p
            // canonical correlations

            transposeMatrix(gene1_eigen.z);
	    transposeMatrix(gene2_eigen.z);

	    matrix_t coeff_gene1;
            matrix_t coeff_gene2;

            multMatrix(gene1_eigen.z, I11, coeff_gene1);
	    multMatrix(gene2_eigen.z, I22b, coeff_gene2);

            //cout << "Coefficients for Gene 1:\n";
            //display(coeff_gene1);

            //cout << "Coefficients for Gene 2:\n";
            //display(coeff_gene2);

            //exit(0);

            ///////////////////////////////////////////////////////////////////////
            // Step 6 - Compute the gene1 and gene2 canonical variates
            // associated with the highest canonical correlation NOTE: the
            // original variables of data need to have the mean subtracted  first!
            // Otherwise, the resulting correlation between variate.gene1 and
            // variate.gene1 != estimated cancor.

            // For each individual, eg compos.gene1 =
            // evector.gene1[1]*SNP1.gene1 + evector.gene1[2]*SNP2.gene1 + ...

	    /////////////////////////////////
	    // Consider each SNP in gene1

	    vector<double> gene1(nind);
            
	    for (int j=0; j<n1; j++)
	    {

		CSNP * ps = pSNP[j];


           	///////////////////////////
		// Iterate over individuals

		for (int i=0; i< P.n ; i++)
		{

		    // Only need to look at one perm set
		    bool a1 = ps->one[i];
		    bool a2 = ps->two[i];

		    if ( a1 )
		    {
			if ( a2 ) // 11 homozygote
			{
			    gene1[i] += (1 - mean[j]) * coeff_gene1[order_eigenvalues_gene1[cancor1_pos]][j];
			}
                        else      // 12 
                        {
                            gene1[i] += (0 - mean[j]) * coeff_gene1[order_eigenvalues_gene1[cancor1_pos]][j];
                        }
		    }
		    else
		    {
                      if ( a2 )      // 21
                      {
                        gene1[i] += (0 - mean[j]) * coeff_gene1[order_eigenvalues_gene1[cancor1_pos]][j];
                      }
		      else           // 22 homozygote
		      {
			  gene1[i] += (-1 - mean[j]) * coeff_gene1[order_eigenvalues_gene1[cancor1_pos]][j];
		      }
		    }

		} // Next individual

	    } // Next SNP in gene1

           

            /////////////////////////////////
            // Consider each SNP in gene2
            vector<double> gene2(P.n);
            int cur_snp = -1;            
            for (int j=n1; j<n1+n2; j++)
            {

                cur_snp++;
                CSNP * ps = pSNP[j];


                
		// Iterate over individuals

		for (int i=0; i<P.n; i++)
		{
		    
		    // Only need to look at one perm set
		    bool a1 = ps->one[i];
		    bool a2 = ps->two[i];

		    if ( a1 )
		    {
			if ( a2 ) // 11 homozygote
			{
			    gene2[i] += (1 - mean[j]) * coeff_gene2[order_eigenvalues_gene2[cancor1_pos]][cur_snp];
			}
			else      // 12
			{
			    gene2[i] += (0 - mean[j]) * coeff_gene2[order_eigenvalues_gene2[cancor1_pos]][cur_snp];
			}
		    }
		    else
		    {
			if ( a2 )      // 21
			{
			    gene2[i] += (0 - mean[j]) * coeff_gene2[order_eigenvalues_gene2[cancor1_pos]][cur_snp];
			}
			else           // 22 homozygote
			{
			    gene2[i] += (-1 - mean[j]) * coeff_gene2[order_eigenvalues_gene2[cancor1_pos]][cur_snp];
			}
		    }
		    
		} // Next individual
		
	    } // Next SNP in gene2


            // Store gene1.variate and gene2.variate in the multiple_covariates field of P.sample
	    // TO DO: NEED TO CHECK IF FIELDS ARE EMPTY FIRST!

	    for (int i=0; i<P.n; i++)
	    {
		P.sample[i]->clist.resize(2);
		P.sample[i]->clist[0] = gene1[i];
		P.sample[i]->clist[1] = gene2[i];
	    }

            ///////////////////////////////////////////////
	    // STEP 7 - Logistic or linear regression epistasis test
	    //
	    
	    Model * lm;
	    	   
	    if (par::bt)
	    {
		LogisticModel * m = new LogisticModel(& P);
		lm = m;
	    }
	    else
	    {
		LinearModel * m = new LinearModel(& P);
		lm = m;
	    }

	    // No SNPs used
	    lm->hasSNPs(false);

	    // Set missing data
	    lm->setMissing();

 	    // Main effect of GENE1 1. Assumes that the variable is in position 0 of the clist vector
	    lm->addCovariate(0);
	    lm->label.push_back("GENE1");

	    // Main effect of GENE 2. Assumes that the variable is in position 1 of the clist vector
	    lm->addCovariate(1);
	    lm->label.push_back("GENE2");

	    // Epistasis
	    lm->addInteraction(1,2);
	    lm->label.push_back("EPI");

	    // Build design matrix
	    lm->buildDesignMatrix();

	    // Prune out any remaining missing individuals
// No longer needed (check)
//	    lm->pruneY();

	    // Fit linear model
	    lm->fitLM();


	    // Did model fit okay?
	    lm->validParameters();

	    // Obtain estimates and statistic
	    lm->testParameter = 3; // interaction
	    vector_t b = lm->getCoefs();
	    double chisq = lm->getStatistic();
	    double logit_pvalue = chiprobP(chisq,1);


	    // Clean up
	    delete lm;



            /////////////////////////////
            // OUTPUT

	    EPI << setw(12) << nind  << " "
		<< setw(12) << P.setname[s1]  << " "
                << setw(12) << P.setname[s2] << " "
                << setw(12) << n1  << " "
                << setw(12) << n2 << " "
                << setw(12) << logit_pvalue << " "
                << "\n";


        }  // End of loop over genes2
 

      }  // End of loop over genes1
      

      EPI.close();


}  // End of CCA_logit() 
Example #14
0
Eigen::Eigen()
{
	vector <double> eigenvalues(3);
	vector<vector <double>> eigenvectors(3,vector<double>(3));
}
Example #15
0
ArrayXd BaseSolver::calc_spatial_ldos(float target_energy, float broadening) {
    return num::match2sp<ArrayX, ArrayXX>(
        eigenvalues(), eigenvectors(),
        compute::CalcSpatialLDOS{target_energy, broadening}
    );
}