static void test_gf33m_inverse(void) { element_random(a3); element_invert(b3, a3); element_mul(a3, a3, b3); element_ptr a0 = element_item(a3, 0); EXPECT(!element_cmp(a0, e1)); }
static val_ptr run_item(val_ptr v[]) { mpz_t z; mpz_init(z); element_to_mpz(z, v[1]->elem); int i = mpz_get_si(z); mpz_clear(z); element_ptr a = element_item(v[0]->elem, i); element_ptr e = (element_ptr)pbc_malloc(sizeof(*e)); element_init_same_as(e, a); element_set(e, a); return val_new_element(e); }
// Define l = aX + bY + c where a, b, c are in Fq. // Compute e0 = l(Q) specialized for the case when Q has the form // (Qx, Qy * sqrt(v)) where Qx, Qy are in Fqd and v is the quadratic nonresidue // used to construct the quadratic field extension Fqk of Fqd. static inline void d_miller_evalfn(element_t e0, element_t a, element_t b, element_t c, element_t Qx, element_t Qy) { element_ptr re_out = element_x(e0); element_ptr im_out = element_y(e0); int i; int d = polymod_field_degree(re_out->field); for (i = 0; i < d; i++) { element_mul(element_item(re_out, i), element_item(Qx, i), a); element_mul(element_item(im_out, i), element_item(Qy, i), b); } element_add(element_item(re_out, 0), element_item(re_out, 0), c); }
void pbc_param_init_d_gen(pbc_param_ptr p, pbc_cm_ptr cm) { d_param_init(p); d_param_ptr param = p->data; field_t Fq, Fqx, Fqd; element_t irred, nqr; int d = cm->k / 2; int i; compute_cm_curve(param, cm); field_init_fp(Fq, param->q); field_init_poly(Fqx, Fq); element_init(irred, Fqx); do { poly_random_monic(irred, d); } while (!poly_is_irred(irred)); field_init_polymod(Fqd, irred); // Find a quadratic nonresidue of Fqd lying in Fq. element_init(nqr, Fqd); do { element_random(((element_t *) nqr->data)[0]); } while (element_is_sqr(nqr)); param->coeff = pbc_realloc(param->coeff, sizeof(mpz_t) * d); for (i=0; i<d; i++) { mpz_init(param->coeff[i]); element_to_mpz(param->coeff[i], element_item(irred, i)); } element_to_mpz(param->nqr, ((element_t *) nqr->data)[0]); element_clear(nqr); element_clear(irred); field_clear(Fqx); field_clear(Fqd); field_clear(Fq); }
static element_ptr mulg_item(element_ptr e, int i) { return element_item(e->data, i); }
void pbc_param_init_f_gen(pbc_param_t p, int bits) { f_init(p); f_param_ptr fp = p->data; //36 is a 6-bit number int xbit = (bits - 6) / 4; //TODO: use binary search to find smallest appropriate x mpz_t x, t; mpz_ptr q = fp->q; mpz_ptr r = fp->r; mpz_ptr b = fp->b; field_t Fq, Fq2, Fq2x; element_t e1; element_t f; field_t c; element_t P; mpz_init(x); mpz_init(t); mpz_setbit(x, xbit); for (;;) { mpz_mul(t, x, x); mpz_mul_ui(t, t, 6); mpz_add_ui(t, t, 1); tryminusx(q, x); mpz_sub(r, q, t); mpz_add_ui(r, r, 1); if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break; tryplusx(q, x); mpz_sub(r, q, t); mpz_add_ui(r, r, 1); if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break; mpz_add_ui(x, x, 1); } field_init_fp(Fq, q); element_init(e1, Fq); for (;;) { element_random(e1); field_init_curve_b(c, e1, r, NULL); element_init(P, c); element_random(P); element_mul_mpz(P, P, r); if (element_is0(P)) break; element_clear(P); field_clear(c); } element_to_mpz(b, e1); element_clear(e1); field_init_quadratic(Fq2, Fq); element_to_mpz(fp->beta, field_get_nqr(Fq)); field_init_poly(Fq2x, Fq2); element_init(f, Fq2x); // Find an irreducible polynomial of the form f = x^6 + alpha. // Call poly_set_coeff1() first so we can use element_item() for the other // coefficients. poly_set_coeff1(f, 6); for (;;) { element_random(element_item(f, 0)); if (poly_is_irred(f)) break; } //extend F_q^2 using f = x^6 + alpha //see if sextic twist contains a subgroup of order r //if not, it's the wrong twist: replace alpha with alpha^5 { field_t ctest; element_t Ptest; mpz_t z0, z1; mpz_init(z0); mpz_init(z1); element_init(e1, Fq2); element_set_mpz(e1, fp->b); element_mul(e1, e1, element_item(f, 0)); element_neg(e1, e1); field_init_curve_b(ctest, e1, r, NULL); element_init(Ptest, ctest); element_random(Ptest); //I'm not sure what the #E'(F_q^2) is, but //it definitely divides n_12 = #E(F_q^12). It contains a //subgroup of order r if and only if //(n_12 / r^2)P != O for some (in fact most) P in E'(F_q^6) mpz_pow_ui(z0, q, 12); mpz_add_ui(z0, z0, 1); pbc_mpz_trace_n(z1, q, t, 12); mpz_sub(z1, z0, z1); mpz_mul(z0, r, r); mpz_divexact(z1, z1, z0); element_mul_mpz(Ptest, Ptest, z1); if (element_is0(Ptest)) { mpz_set_ui(z0, 5); element_pow_mpz(element_item(f, 0), element_item(f, 0), z0); } element_clear(e1); element_clear(Ptest); field_clear(ctest); mpz_clear(z0); mpz_clear(z1); } element_to_mpz(fp->alpha0, element_x(element_item(f, 0))); element_to_mpz(fp->alpha1, element_y(element_item(f, 0))); element_clear(f); field_clear(Fq2x); field_clear(Fq2); field_clear(Fq); mpz_clear(t); mpz_clear(x); }
static void f_init_pairing(pairing_t pairing, void *data) { f_param_ptr param = data; f_pairing_data_ptr p; element_t irred; element_t e0, e1, e2; p = pairing->data = pbc_malloc(sizeof(f_pairing_data_t)); mpz_init(pairing->r); mpz_set(pairing->r, param->r); field_init_fp(pairing->Zr, pairing->r); field_init_fp(p->Fq, param->q); p->Fq->nqr = pbc_malloc(sizeof(element_t)); element_init(p->Fq->nqr, p->Fq); element_set_mpz(p->Fq->nqr, param->beta); field_init_quadratic(p->Fq2, p->Fq); field_init_poly(p->Fq2x, p->Fq2); element_init(irred, p->Fq2x); // Call poly_set_coeff1() first so we can use element_item() for the other // coefficients. poly_set_coeff1(irred, 6); element_init(p->negalpha, p->Fq2); element_init(p->negalphainv, p->Fq2); element_set_mpz(element_x(p->negalpha), param->alpha0); element_set_mpz(element_y(p->negalpha), param->alpha1); element_set(element_item(irred, 0), p->negalpha); field_init_polymod(p->Fq12, irred); element_neg(p->negalpha, p->negalpha); element_invert(p->negalphainv, p->negalpha); element_clear(irred); element_init(e0, p->Fq); element_init(e1, p->Fq); element_init(e2, p->Fq2); // Initialize the curve Y^2 = X^3 + b. element_set_mpz(e1, param->b); field_init_curve_ab(p->Eq, e0, e1, pairing->r, NULL); // Initialize the curve Y^2 = X^3 - alpha0 b - alpha1 sqrt(beta) b. element_set_mpz(e0, param->alpha0); element_neg(e0, e0); element_mul(element_x(e2), e0, e1); element_set_mpz(e0, param->alpha1); element_neg(e0, e0); element_mul(element_y(e2), e0, e1); element_clear(e0); element_init(e0, p->Fq2); field_init_curve_ab(p->Etwist, e0, e2, pairing->r, NULL); element_clear(e0); element_clear(e1); element_clear(e2); mpz_t ndonr; mpz_init(ndonr); // ndonr temporarily holds the trace. mpz_sub(ndonr, param->q, param->r); mpz_add_ui(ndonr, ndonr, 1); // TODO: We can use a smaller quotient_cmp, but I have to figure out // BN curves again. pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, 12); mpz_divexact(ndonr, ndonr, param->r); mpz_divexact(ndonr, ndonr, param->r); field_curve_set_quotient_cmp(p->Etwist, ndonr); mpz_clear(ndonr); pairing->G1 = p->Eq; pairing->G2 = p->Etwist; pairing_GT_init(pairing, p->Fq12); pairing->finalpow = f_finalpow; pairing->map = f_pairing; pairing->clear_func = f_pairing_clear; mpz_init(p->tateexp); /* unoptimized tate exponent mpz_pow_ui(p->tateexp, param->q, 12); mpz_sub_ui(p->tateexp, p->tateexp, 1); mpz_divexact(p->tateexp, p->tateexp, param->r); */ mpz_ptr z = p->tateexp; mpz_mul(z, param->q, param->q); mpz_sub_ui(z, z, 1); mpz_mul(z, z, param->q); mpz_mul(z, z, param->q); mpz_add_ui(z, z, 1); mpz_divexact(z, z, param->r); element_init(p->xpowq2, p->Fq2); element_init(p->xpowq6, p->Fq2); element_init(p->xpowq8, p->Fq2); element_t xpowq; element_init(xpowq, p->Fq12); //there are smarter ways since we know q = 1 mod 6 //and that x^6 = -alpha //but this is fast enough element_set1(element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq2, element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq6, element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq8, element_item(xpowq, 1)); element_clear(xpowq); }
/* computation of $c <- U ^ {3^{3m} - 1}$ * This is the algorithm 6 in the paper above. */ static void algorithm6(element_t c, element_t u) { element_ptr u0 = ITEM(u,0,0), u1 = ITEM(u,0,1), u2 = ITEM(u,1,0), u3 = ITEM(u,1,1), u4 = ITEM(u,2,0), u5 = ITEM(u,2,1); field_ptr f = FIELD(u0); /*GF(3^m)*/ field_t f3; /*GF(3^{3*m})*/ field_init_gf33m(f3, f); element_t v0, v1, m0, m1, m2, a0, a1, i; element_init(v0, f3); element_init(v1, f3); element_init(m0, f3); element_init(m1, f3); element_init(m2, f3); element_init(a0, f3); element_init(a1, f3); element_init(i, f3); element_set(element_item(v0, 0), u0); element_set(element_item(v0, 1), u2); element_set(element_item(v0, 2), u4); element_set(element_item(v1, 0), u1); element_set(element_item(v1, 1), u3); element_set(element_item(v1, 2), u5); element_mul(m0, v0, v0); element_mul(m1, v1, v1); element_mul(m2, v0, v1); element_sub(a0, m0, m1); element_add(a1, m0, m1); element_invert(i, a1); element_mul(v0, a0, i); element_mul(v1, m2, i); element_set(ITEM(c,0,0), element_item(v0, 0)); element_set(ITEM(c,1,0), element_item(v0, 1)); element_set(ITEM(c,2,0), element_item(v0, 2)); element_set(ITEM(c,0,1), element_item(v1, 0)); element_set(ITEM(c,1,1), element_item(v1, 1)); element_set(ITEM(c,2,1), element_item(v1, 2)); element_clear(v0); element_clear(v1); element_clear(m0); element_clear(m1); element_clear(m2); element_clear(a0); element_clear(a1); element_clear(i); field_clear(f3); }
static void d_init_pairing(pairing_ptr pairing, void *data) { d_param_ptr param = data; pptr p; element_t a, b; element_t irred; int d = param->k / 2; int i; if (param->k % 2) pbc_die("k must be even"); mpz_init(pairing->r); mpz_set(pairing->r, param->r); field_init_fp(pairing->Zr, pairing->r); pairing->map = cc_pairing; pairing->prod_pairings = cc_pairings_affine; pairing->is_almost_coddh = cc_is_almost_coddh; p = pairing->data = pbc_malloc(sizeof(*p)); field_init_fp(p->Fq, param->q); element_init(a, p->Fq); element_init(b, p->Fq); element_set_mpz(a, param->a); element_set_mpz(b, param->b); field_init_curve_ab(p->Eq, a, b, pairing->r, param->h); field_init_poly(p->Fqx, p->Fq); element_init(irred, p->Fqx); poly_set_coeff1(irred, d); for (i = 0; i < d; i++) { element_set_mpz(element_item(irred, i), param->coeff[i]); } field_init_polymod(p->Fqd, irred); element_clear(irred); p->Fqd->nqr = pbc_malloc(sizeof(element_t)); element_init(p->Fqd->nqr, p->Fqd); element_set_mpz(((element_t *) p->Fqd->nqr->data)[0], param->nqr); field_init_quadratic(p->Fqk, p->Fqd); // Compute constants involved in the final powering. if (param->k == 6) { mpz_ptr q = param->q; mpz_ptr z = pairing->phikonr; mpz_init(z); mpz_mul(z, q, q); mpz_sub(z, z, q); mpz_add_ui(z, z, 1); mpz_divexact(z, z, pairing->r); element_ptr e = p->xpowq; element_init(e, p->Fqd); element_set1(((element_t *) e->data)[1]); element_pow_mpz(e, e, q); element_init(p->xpowq2, p->Fqd); element_square(p->xpowq2, e); } else { mpz_init(p->tateexp); mpz_sub_ui(p->tateexp, p->Fqk->order, 1); mpz_divexact(p->tateexp, p->tateexp, pairing->r); } field_init_curve_ab_map(p->Etwist, p->Eq, element_field_to_polymod, p->Fqd, pairing->r, NULL); field_reinit_curve_twist(p->Etwist); mpz_t ndonr; mpz_init(ndonr); // ndonr temporarily holds the trace. mpz_sub(ndonr, param->q, param->n); mpz_add_ui(ndonr, ndonr, 1); // Negate it because we want the trace of the twist. mpz_neg(ndonr, ndonr); pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, d); mpz_divexact(ndonr, ndonr, param->r); field_curve_set_quotient_cmp(p->Etwist, ndonr); mpz_clear(ndonr); element_init(p->nqrinv, p->Fqd); element_invert(p->nqrinv, field_get_nqr(p->Fqd)); element_init(p->nqrinv2, p->Fqd); element_square(p->nqrinv2, p->nqrinv); pairing->G1 = p->Eq; pairing->G2 = p->Etwist; p->k = param->k; pairing_GT_init(pairing, p->Fqk); pairing->finalpow = cc_finalpow; // By default use affine coordinates. cc_miller_no_denom_fn = cc_miller_no_denom_affine; pairing->option_set = d_pairing_option_set; pairing->pp_init = d_pairing_pp_init; pairing->pp_clear = d_pairing_pp_clear; pairing->pp_apply = d_pairing_pp_apply; pairing->clear_func = d_pairing_clear; element_clear(a); element_clear(b); }
// Computes a curve and sets fp to the field it is defined over using the // complex multiplication method, where cm holds the appropriate information // (e.g. discriminant, field order). static void compute_cm_curve(d_param_ptr param, pbc_cm_ptr cm) { element_t hp, root; field_t fp, fpx; field_t cc; field_init_fp(fp, cm->q); field_init_poly(fpx, fp); element_init(hp, fpx); mpz_t *coefflist; int n = (int)pbc_hilbert(&coefflist, cm->D); // Temporarily set the coefficient of x^{n-1} to 1 so hp has degree n - 1, // allowing us to use poly_coeff(). poly_set_coeff1(hp, n - 1); int i; for (i = 0; i < n; i++) { element_set_mpz(element_item(hp, i), coefflist[i]); } pbc_hilbert_free(coefflist, n); // TODO: Remove x = 0, 1728 roots. // TODO: What if there are no roots? //printf("hp "); //element_out_str(stdout, 0, hp); //printf("\n"); element_init(root, fp); poly_findroot(root, hp); //printf("root = "); //element_out_str(stdout, 0, root); //printf("\n"); element_clear(hp); field_clear(fpx); // The root is the j-invariant of the desired curve. field_init_curve_j(cc, root, cm->n, NULL); element_clear(root); // We may need to twist it. { // Pick a random point P and twist the curve if it has the wrong order. element_t P; element_init(P, cc); element_random(P); element_mul_mpz(P, P, cm->n); if (!element_is0(P)) field_reinit_curve_twist(cc); element_clear(P); } mpz_set(param->q, cm->q); mpz_set(param->n, cm->n); mpz_set(param->h, cm->h); mpz_set(param->r, cm->r); element_to_mpz(param->a, curve_field_a_coeff(cc)); element_to_mpz(param->b, curve_field_b_coeff(cc)); param->k = cm->k; { mpz_t z; mpz_init(z); // Compute order of curve in F_q^k. // n = q - t + 1 hence t = q - n + 1 mpz_sub(z, param->q, param->n); mpz_add_ui(z, z, 1); pbc_mpz_trace_n(z, param->q, z, param->k); mpz_pow_ui(param->nk, param->q, param->k); mpz_sub_ui(z, z, 1); mpz_sub(param->nk, param->nk, z); mpz_mul(z, param->r, param->r); mpz_divexact(param->hk, param->nk, z); mpz_clear(z); } field_clear(cc); field_clear(fp); }
void KSET0(element_t out){ element_set0(out); element_ptr re_out = element_x(out); element_set0(element_item(re_out,0)); }