Example #1
0
void __wrap_free(void *addr) {
	if (EarlyMallocEnabled) {
		early_free(addr);
	}
	enter_kernel();
	__real_free(addr);
	leave_kernel();
}
Example #2
0
void *__wrap_malloc(size_t size) {
	if (EarlyMallocEnabled) {
		return early_malloc(size);
	}
	enter_kernel();
	void *mem = __real_malloc(size);
	leave_kernel();
	return mem;
}
Example #3
0
/**
  * @brief The calling task terminates itself.
  */
void Task_Terminate()
{
    uint8_t sreg;

    sreg = SREG;
    Disable_Interrupt();

    kernel_request = TASK_TERMINATE;
    enter_kernel();

    SREG = sreg;
}
Example #4
0
/**
  * @brief The calling task gives up its share of the processor voluntarily.
  */
void Task_Next()
{
    uint8_t volatile sreg;

    sreg = SREG;
    Disable_Interrupt();

    kernel_request = TASK_NEXT;
    enter_kernel();

    SREG = sreg;
}
Example #5
0
static int
elf64_exec(struct preloaded_file *fp)
{
	struct file_metadata	*md;
	Elf_Ehdr		*hdr;
	struct ia64_pte		pte;
	struct bootinfo		*bi;

	if ((md = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL)
		return(EFTYPE);			/* XXX actually EFUCKUP */
	hdr = (Elf_Ehdr *)&(md->md_data);

	/*
	 * Ugly hack, similar to linux. Dump the bootinfo into a
	 * special page reserved in the link map.
	 */
	bi = &bootinfo;
	bzero(bi, sizeof(struct bootinfo));
	bi_load(bi, fp);

	/*
	 * Region 6 is direct mapped UC and region 7 is direct mapped
	 * WC. The details of this is controlled by the Alt {I,D}TLB
	 * handlers. Here we just make sure that they have the largest 
	 * possible page size to minimise TLB usage.
	 */
	ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (28 << 2));
	ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (28 << 2));

	bzero(&pte, sizeof(pte));
	pte.pte_p = 1;
	pte.pte_ma = PTE_MA_WB;
	pte.pte_a = 1;
	pte.pte_d = 1;
	pte.pte_pl = PTE_PL_KERN;
	pte.pte_ar = PTE_AR_RWX;
	pte.pte_ppn = 0;

	__asm __volatile("mov cr.ifa=%0" :: "r"(IA64_RR_BASE(7)));
	__asm __volatile("mov cr.itir=%0" :: "r"(28 << 2));
	__asm __volatile("srlz.i;;");
	__asm __volatile("itr.i itr[%0]=%1;;"
			 :: "r"(0), "r"(*(u_int64_t*)&pte));
	__asm __volatile("srlz.i;;");
	__asm __volatile("itr.d dtr[%0]=%1;;"
			 :: "r"(0), "r"(*(u_int64_t*)&pte));
	__asm __volatile("srlz.i;;");

	enter_kernel(fp->f_name, hdr->e_entry, bi);
}
Example #6
0
static int
elf64_exec(struct preloaded_file *fp)
{
    struct file_metadata	*md;
    Elf_Ehdr		*hdr;
    pt_entry_t		pte;
    uint64_t		bi_addr;

    md = file_findmetadata(fp, MODINFOMD_ELFHDR);
    if (md == NULL)
        return (EINVAL);
    hdr = (Elf_Ehdr *)&(md->md_data);

    bi_load(fp, &bi_addr);

    printf("Entering %s at 0x%lx...\n", fp->f_name, hdr->e_entry);

    ldr_enter(fp->f_name);

    __asm __volatile("rsm psr.ic|psr.i;;");
    __asm __volatile("srlz.i;;");

    /*
     * Region 6 is direct mapped UC and region 7 is direct mapped
     * WC. The details of this is controlled by the Alt {I,D}TLB
     * handlers. Here we just make sure that they have the largest
     * possible page size to minimise TLB usage.
     */
    ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (28 << 2));
    ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (28 << 2));

    pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
          PTE_PL_KERN | PTE_AR_RWX | PTE_ED;

    __asm __volatile("mov cr.ifa=%0" :: "r"(IA64_RR_BASE(7)));
    __asm __volatile("mov cr.itir=%0" :: "r"(28 << 2));
    __asm __volatile("ptr.i %0,%1" :: "r"(IA64_RR_BASE(7)), "r"(28<<2));
    __asm __volatile("ptr.d %0,%1" :: "r"(IA64_RR_BASE(7)), "r"(28<<2));
    __asm __volatile("srlz.i;;");
    __asm __volatile("itr.i itr[%0]=%1;;" :: "r"(0), "r"(pte));
    __asm __volatile("srlz.i;;");
    __asm __volatile("itr.d dtr[%0]=%1;;" :: "r"(0), "r"(pte));
    __asm __volatile("srlz.i;;");

    enter_kernel(hdr->e_entry, bi_addr);

    /* NOTREACHED */
    return (0);
}
Example #7
0
int8_t Task_Create_RR(void (*f)(void), int16_t arg) {
	int retval;
	uint8_t sreg;

	sreg = SREG;
	Disable_Interrupt();

	kernel_request_create_args.f = (voidfuncvoid_ptr)f;
	kernel_request_create_args.arg = arg;
	kernel_request_create_args.level = RR;

	kernel_request = TASK_CREATE;
	enter_kernel();

	retval = kernel_request_retval;
	SREG = sreg;

	return retval;
}
Example #8
0
 /**
   * \param f a parameterless function to be created as a process instance
   * \param arg an integer argument to be assigned to this process instance
   * \param period its execution period in TICKs
   * \param wcet its worst-case execution time in TICKs, must be less than "period"
   * \param start its start time in TICKs
   * \return 0 if not successful; otherwise non-zero.
   * \sa Task_GetArg()
   *
   *  A new process is created to execute the parameterless
   *  function \a f with an initial parameter \a arg, which is retrieved
   *  by a call to Task_GetArg().  If a new process cannot be
   *  created, 0 is returned; otherwise, it returns non-zero.
   *
   * \sa \ref policy
   */
int8_t Task_Create_Periodic(void(*f)(void), int16_t arg, uint16_t period, uint16_t wcet, uint16_t start) {
	    int retval;
	    uint8_t sreg;

	    sreg = SREG;
	    Disable_Interrupt();

	    kernel_request_create_args.f = (voidfuncvoid_ptr)f;
	    kernel_request_create_args.arg = arg;
	    kernel_request_create_args.level = (uint8_t)PERIODIC;
        kernel_request_create_args.period = period;
        kernel_request_create_args.wcet = wcet;
        kernel_request_create_args.start = start;

	    kernel_request = TASK_CREATE;
	    enter_kernel();

	    retval = kernel_request_retval;
	    SREG = sreg;

	    return retval;
}
Example #9
0
int main() {
  struct memory_image image;
  void *p;
  printf("milestone 2 loader\n");

  image_complete();

  image_dump_stats();
  write32(2, 0x48200010);
  while(!(read32(0x48200014)&1));

  if (image_find(IMG_LINUX, &image) != NULL) 
  {
      printf("ARCH_NUBMBER[%d], KERNEL_DEST[%d]\n", ARCH_NUMBER, KERNEL_DEST);

      enter_kernel(0, ARCH_NUMBER, atag_build(), KERNEL_DEST);
  } else 
  {
      critical_error(IMG_NOT_PROVIDED);
  }

  return 0;
}