Example #1
0
void ep_rhs(fp_t rhs, const ep_t p) {
	fp_t t0;
	fp_t t1;

	fp_null(t0);
	fp_null(t1);

	TRY {
		fp_new(t0);
		fp_new(t1);

		/* t0 = x1^2. */
		fp_sqr(t0, p->x);
		/* t1 = x1^3. */
		fp_mul(t1, t0, p->x);

		/* t1 = x1^3 + a * x1 + b. */
		switch (ep_curve_opt_a()) {
			case OPT_ZERO:
				break;
			case OPT_ONE:
				fp_add(t1, t1, p->x);
				break;
#if FP_RDC != MONTY
			case OPT_DIGIT:
				fp_mul_dig(t0, p->x, ep_curve_get_a()[0]);
				fp_add(t1, t1, t0);
				break;
#endif
			default:
				fp_mul(t0, p->x, ep_curve_get_a());
				fp_add(t1, t1, t0);
				break;
		}

		switch (ep_curve_opt_b()) {
			case OPT_ZERO:
				break;
			case OPT_ONE:
				fp_add_dig(t1, t1, 1);
				break;
#if FP_RDC != MONTY
			case OPT_DIGIT:
				fp_add_dig(t1, t1, ep_curve_get_b()[0]);
				break;
#endif
			default:
				fp_add(t1, t1, ep_curve_get_b());
				break;
		}

		fp_copy(rhs, t1);

	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		fp_free(t0);
		fp_free(t1);
	}
}
Example #2
0
/**
 * Doubles a point represented in affine coordinates on an ordinary prime
 * elliptic curve.
 *
 * @param[out] r			- the result.
 * @param[out] s			- the resulting slope.
 * @param[in] p				- the point to double.
 */
static void ep2_dbl_basic_imp(ep2_t r, fp2_t s, ep2_t p) {
	fp2_t t0, t1, t2;

	fp2_null(t0);
	fp2_null(t1);
	fp2_null(t2);

	TRY {
		fp2_new(t0);
		fp2_new(t1);
		fp2_new(t2);

		/* t0 = 1/(2 * y1). */
		fp2_dbl(t0, p->y);
		fp2_inv(t0, t0);

		/* t1 = 3 * x1^2 + a. */
		fp2_sqr(t1, p->x);
		fp2_copy(t2, t1);
		fp2_dbl(t1, t1);
		fp2_add(t1, t1, t2);

		if (ep2_curve_is_twist()) {
			switch (ep_curve_opt_a()) {
				case OPT_ZERO:
					break;
				case OPT_ONE:
					fp_set_dig(t2[0], 1);
					fp2_mul_art(t2, t2);
					fp2_mul_art(t2, t2);
					fp2_add(t1, t1, t2);
					break;
				case OPT_DIGIT:
					fp_set_dig(t2[0], ep_curve_get_a()[0]);
					fp2_mul_art(t2, t2);
					fp2_mul_art(t2, t2);
					fp2_add(t1, t1, t2);
					break;
				default:
					fp_copy(t2[0], ep_curve_get_a());
					fp_zero(t2[1]);
					fp2_mul_art(t2, t2);
					fp2_mul_art(t2, t2);
					fp2_add(t1, t1, t2);
					break;
			}
		}

		/* t1 = (3 * x1^2 + a)/(2 * y1). */
		fp2_mul(t1, t1, t0);

		if (s != NULL) {
			fp2_copy(s, t1);
		}

		/* t2 = t1^2. */
		fp2_sqr(t2, t1);

		/* x3 = t1^2 - 2 * x1. */
		fp2_dbl(t0, p->x);
		fp2_sub(t0, t2, t0);

		/* y3 = t1 * (x1 - x3) - y1. */
		fp2_sub(t2, p->x, t0);
		fp2_mul(t1, t1, t2);

		fp2_sub(r->y, t1, p->y);

		fp2_copy(r->x, t0);
		fp2_copy(r->z, p->z);

		r->norm = 1;
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp2_free(t0);
		fp2_free(t1);
		fp2_free(t2);
	}
}
Example #3
0
/**
 * Doubles a point represented in affine coordinates on an ordinary prime
 * elliptic curve.
 *
 * @param[out] r				- the result.
 * @param[in] p					- the point to double.
 */
static void ep2_dbl_projc_imp(ep2_t r, ep2_t p) {
	fp2_t t0, t1, t2, t3, t4, t5;

	fp2_null(t0);
	fp2_null(t1);
	fp2_null(t2);
	fp2_null(t3);
	fp2_null(t4);
	fp2_null(t5);

	TRY {
		if (ep_curve_opt_a() == OPT_ZERO) {
			fp2_new(t0);
			fp2_new(t1);
			fp2_new(t2);
			fp2_new(t3);
			fp2_new(t4);
			fp2_new(t5);

			fp2_sqr(t0, p->x);
			fp2_add(t2, t0, t0);
			fp2_add(t0, t2, t0);

			fp2_sqr(t3, p->y);
			fp2_mul(t1, t3, p->x);
			fp2_add(t1, t1, t1);
			fp2_add(t1, t1, t1);
			fp2_sqr(r->x, t0);
			fp2_add(t2, t1, t1);
			fp2_sub(r->x, r->x, t2);
			fp2_mul(r->z, p->z, p->y);
			fp2_add(r->z, r->z, r->z);
			fp2_add(t3, t3, t3);

			fp2_sqr(t3, t3);
			fp2_add(t3, t3, t3);
			fp2_sub(t1, t1, r->x);
			fp2_mul(r->y, t0, t1);
			fp2_sub(r->y, r->y, t3);
		} else {
			/* dbl-2007-bl formulas: 1M + 8S + 1*a + 10add + 1*8 + 2*2 + 1*3 */
			/* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl */

			/* t0 = x1^2, t1 = y1^2, t2 = y1^4. */
			fp2_sqr(t0, p->x);
			fp2_sqr(t1, p->y);
			fp2_sqr(t2, t1);

			if (!p->norm) {
				/* t3 = z1^2. */
				fp2_sqr(t3, p->z);

				if (ep_curve_get_a() == OPT_ZERO) {
					/* z3 = 2 * y1 * z1. */
					fp2_mul(r->z, p->y, p->z);
					fp2_dbl(r->z, r->z);
				} else {
					/* z3 = (y1 + z1)^2 - y1^2 - z1^2. */
					fp2_add(r->z, p->y, p->z);
					fp2_sqr(r->z, r->z);
					fp2_sub(r->z, r->z, t1);
					fp2_sub(r->z, r->z, t3);
				}
			} else {
				/* z3 = 2 * y1. */
				fp2_dbl(r->z, p->y);
			}

			/* t4 = S = 2*((x1 + y1^2)^2 - x1^2 - y1^4). */
			fp2_add(t4, p->x, t1);
			fp2_sqr(t4, t4);
			fp2_sub(t4, t4, t0);
			fp2_sub(t4, t4, t2);
			fp2_dbl(t4, t4);

			/* t5 = M = 3 * x1^2 + a * z1^4. */
			fp2_dbl(t5, t0);
			fp2_add(t5, t5, t0);
			ep2_curve_get_a(t0);
			if (!p->norm) {
				fp2_sqr(t3, t3);
				fp2_mul(t1, t0, t3);
				fp2_add(t5, t5, t1);
			} else {
				fp2_add(t5, t5, t0);
			}

			/* x3 = T = M^2 - 2 * S. */
			fp2_sqr(r->x, t5);
			fp2_dbl(t1, t4);
			fp2_sub(r->x, r->x, t1);

			/* y3 = M * (S - T) - 8 * y1^4. */
			fp2_dbl(t2, t2);
			fp2_dbl(t2, t2);
			fp2_dbl(t2, t2);
			fp2_sub(t4, t4, r->x);
			fp2_mul(t5, t5, t4);
			fp2_sub(r->y, t5, t2);
		}

		r->norm = 0;


		r->norm = 0;
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp2_free(t0);
		fp2_free(t1);
		fp2_free(t2);
		fp2_free(t3);
		fp2_free(t4);
		fp2_free(t5);
	}
}
Example #4
0
/**
 * Doubles a point represented in affine coordinates on an ordinary prime
 * elliptic curve.
 *
 * @param[out] r			- the result.
 * @param[out] s			- the slope.
 * @param[in] p				- the point to double.
 */
static void ep_dbl_basic_imp(ep_t r, fp_t s, const ep_t p) {
	fp_t t0, t1, t2;

	fp_null(t0);
	fp_null(t1);
	fp_null(t2);

	TRY {
		fp_new(t0);
		fp_new(t1);
		fp_new(t2);

		/* t0 = 1/2 * y1. */
		fp_dbl(t0, p->y);
		fp_inv(t0, t0);

		/* t1 = 3 * x1^2 + a. */
		fp_sqr(t1, p->x);
		fp_copy(t2, t1);
		fp_dbl(t1, t1);
		fp_add(t1, t1, t2);

		switch (ep_curve_opt_a()) {
			case OPT_ZERO:
				break;
			case OPT_ONE:
				fp_add_dig(t1, t1, (dig_t)1);
				break;
#if FP_RDC != MONTY
			case OPT_DIGIT:
				fp_add_dig(t1, t1, ep_curve_get_a()[0]);
				break;
#endif
			default:
				fp_add(t1, t1, ep_curve_get_a());
				break;
		}

		/* t1 = (3 * x1^2 + a)/(2 * y1). */
		fp_mul(t1, t1, t0);

		if (s != NULL) {
			fp_copy(s, t1);
		}

		/* t2 = t1^2. */
		fp_sqr(t2, t1);

		/* x3 = t1^2 - 2 * x1. */
		fp_dbl(t0, p->x);
		fp_sub(t0, t2, t0);

		/* y3 = t1 * (x1 - x3) - y1. */
		fp_sub(t2, p->x, t0);
		fp_mul(t1, t1, t2);
		fp_sub(r->y, t1, p->y);

		fp_copy(r->x, t0);
		fp_copy(r->z, p->z);

		r->norm = 1;
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp_free(t0);
		fp_free(t1);
		fp_free(t2);
	}
}
Example #5
0
/**
 * Doubles a point represented in projective coordinates on an ordinary prime
 * elliptic curve.
 *
 * @param r					- the result.
 * @param p					- the point to double.
 */
static void ep_dbl_projc_imp(ep_t r, const ep_t p) {
	fp_t t0, t1, t2, t3, t4, t5;

	fp_null(t1);
	fp_null(t2);
	fp_null(t3);
	fp_null(t4);
	fp_null(t5);

	TRY {

		fp_new(t0);
		fp_new(t1);
		fp_new(t2);
		fp_new(t3);
		fp_new(t4);
		fp_new(t5);

		if (!p->norm && ep_curve_opt_a() == OPT_MINUS3) {
			/* dbl-2001-b formulas: 3M + 5S + 8add + 1*4 + 2*8 + 1*3 */
			/* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b */

			/* t0 = delta = z1^2. */
			fp_sqr(t0, p->z);

			/* t1 = gamma = y1^2. */
			fp_sqr(t1, p->y);

			/* t2 = beta = x1 * y1^2. */
			fp_mul(t2, p->x, t1);

			/* t3 = alpha = 3 * (x1 - z1^2) * (x1 + z1^2). */
			fp_sub(t3, p->x, t0);
			fp_add(t4, p->x, t0);
			fp_mul(t4, t3, t4);
			fp_dbl(t3, t4);
			fp_add(t3, t3, t4);

			/* x3 = alpha^2 - 8 * beta. */
			fp_dbl(t2, t2);
			fp_dbl(t2, t2);
			fp_dbl(t5, t2);
			fp_sqr(r->x, t3);
			fp_sub(r->x, r->x, t5);

			/* z3 = (y1 + z1)^2 - gamma - delta. */
			fp_add(r->z, p->y, p->z);
			fp_sqr(r->z, r->z);
			fp_sub(r->z, r->z, t1);
			fp_sub(r->z, r->z, t0);

			/* y3 = alpha * (4 * beta - x3) - 8 * gamma^2. */
			fp_dbl(t1, t1);
			fp_sqr(t1, t1);
			fp_dbl(t1, t1);
			fp_sub(r->y, t2, r->x);
			fp_mul(r->y, r->y, t3);
			fp_sub(r->y, r->y, t1);
		} else if (ep_curve_opt_a() == OPT_ZERO) {
			/* dbl-2009-l formulas: 2M + 5S + 6add + 1*8 + 3*2 + 1*3. */
			/* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */

			/* A = X1^2 */
			fp_sqr(t0, p->x);

			/* B = Y1^2 */
			fp_sqr(t1, p->y);

			/* C = B^2 */
			fp_sqr(t2, t1);

			/* D = 2*((X1+B)^2-A-C) */
			fp_add(t1, t1, p->x);
			fp_sqr(t1, t1);
			fp_sub(t1, t1, t0);
			fp_sub(t1, t1, t2);
			fp_dbl(t1, t1);

			/* E = 3*A */
			fp_dbl(t3, t0);
			fp_add(t0, t3, t0);

			/* F = E^2 */
			fp_sqr(t3, t0);

			/* Z3 = 2*Y1*Z1 */
			fp_mul(r->z, p->y, p->z);
			fp_dbl(r->z, r->z);

			/* X3 = F-2*D */
			fp_sub(r->x, t3, t1);
			fp_sub(r->x, r->x, t1);

			/* Y3 = E*(D-X3)-8*C */
			fp_sub(r->y, t1, r->x);
			fp_mul(r->y, r->y, t0);
			fp_dbl(t2, t2);
			fp_dbl(t2, t2);
			fp_dbl(t2, t2);
			fp_sub(r->y, r->y, t2);
		} else {
			/* dbl-2007-bl formulas: 1M + 8S + 1*a + 10add + 1*8 + 2*2 + 1*3 */
			/* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl */

			/* t0 = x1^2, t1 = y1^2, t2 = y1^4. */
			fp_sqr(t0, p->x);
			fp_sqr(t1, p->y);
			fp_sqr(t2, t1);

			if (!p->norm) {
				/* t3 = z1^2. */
				fp_sqr(t3, p->z);

				if (ep_curve_get_a() == OPT_ZERO) {
					/* z3 = 2 * y1 * z1. */
					fp_mul(r->z, p->y, p->z);
					fp_dbl(r->z, r->z);
				} else {
					/* z3 = (y1 + z1)^2 - y1^2 - z1^2. */
					fp_add(r->z, p->y, p->z);
					fp_sqr(r->z, r->z);
					fp_sub(r->z, r->z, t1);
					fp_sub(r->z, r->z, t3);
				}
			} else {
				/* z3 = 2 * y1. */
				fp_dbl(r->z, p->y);
			}

			/* t4 = S = 2*((x1 + y1^2)^2 - x1^2 - y1^4). */
			fp_add(t4, p->x, t1);
			fp_sqr(t4, t4);
			fp_sub(t4, t4, t0);
			fp_sub(t4, t4, t2);
			fp_dbl(t4, t4);

			/* t5 = M = 3 * x1^2 + a * z1^4. */
			fp_dbl(t5, t0);
			fp_add(t5, t5, t0);
			if (!p->norm) {
				fp_sqr(t3, t3);
				switch (ep_curve_opt_a()) {
					case OPT_ZERO:
						break;
					case OPT_ONE:
						fp_add(t5, t5, ep_curve_get_a());
						break;
					case OPT_DIGIT:
						fp_mul_dig(t1, t3, ep_curve_get_a()[0]);
						fp_add(t5, t5, t1);
						break;
					default:
						fp_mul(t1, ep_curve_get_a(), t3);
						fp_add(t5, t5, t1);
						break;
				}
			} else {
				switch (ep_curve_opt_a()) {
					case OPT_ZERO:
						break;
					case OPT_ONE:
						fp_add_dig(t5, t5, (dig_t)1);
						break;
					case OPT_DIGIT:
						fp_add_dig(t5, t5, ep_curve_get_a()[0]);
						break;
					default:
						fp_add(t5, t5, ep_curve_get_a());
						break;
				}
			}

			/* x3 = T = M^2 - 2 * S. */
			fp_sqr(r->x, t5);
			fp_dbl(t1, t4);
			fp_sub(r->x, r->x, t1);

			/* y3 = M * (S - T) - 8 * y1^4. */
			fp_dbl(t2, t2);
			fp_dbl(t2, t2);
			fp_dbl(t2, t2);
			fp_sub(t4, t4, r->x);
			fp_mul(t5, t5, t4);
			fp_sub(r->y, t5, t2);
		}

		r->norm = 0;
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		fp_free(t0);
		fp_free(t1);
		fp_free(t2);
		fp_free(t3);
		fp_free(t4);
		fp_free(t5);
	}
}