Example #1
0
// C++ [dcl.init.ref]p5b2
void test4() {
  double& rd2 = 2.0; // expected-error{{non-const lvalue reference to type 'double' cannot bind to a temporary of type 'double'}}
  int i = 2;
  double& rd3 = i; // expected-error{{non-const lvalue reference to type 'double' cannot bind to a value of unrelated type 'int'}}

  const A& rca = fB();
}
    void BulletGeneric6dofConstraint::updateConstructionInfo() {
        if (mGeneric6DofConstraint != 0) {
            delete (mGeneric6DofConstraint);
        }

        btRigidBody *rbA = ((BulletRigidBody*)owner_object()->
                getComponent(COMPONENT_TYPE_PHYSICS_RIGID_BODY))->getRigidBody();

        btVector3 p(mPosition.x, mPosition.y, mPosition.z);
        btMatrix3x3 m(mRotationA.vec[0], mRotationA.vec[1], mRotationA.vec[2], mRotationA.vec[3],
                      mRotationA.vec[4], mRotationA.vec[5], mRotationA.vec[6], mRotationA.vec[7],
                      mRotationA.vec[8]);
        btTransform fA(m, p);

        p = rbA->getWorldTransform().getOrigin() + p;
        p -= mRigidBodyB->getRigidBody()->getWorldTransform().getOrigin();
        m.setValue(mRotationB.vec[0], mRotationB.vec[1], mRotationB.vec[2], mRotationB.vec[3],
                   mRotationB.vec[4], mRotationB.vec[5], mRotationB.vec[6], mRotationB.vec[7],
                   mRotationB.vec[8]);
        btTransform fB(m, p);

        mGeneric6DofConstraint =
                new btGeneric6DofConstraint(*rbA, *mRigidBodyB->getRigidBody(), fA, fB, false);

        mGeneric6DofConstraint->setLinearLowerLimit(Common2Bullet(mLinearLowerLimits));
        mGeneric6DofConstraint->setLinearUpperLimit(Common2Bullet(mLinearUpperLimits));
        mGeneric6DofConstraint->setAngularLowerLimit(Common2Bullet(mAngularLowerLimits));
        mGeneric6DofConstraint->setAngularUpperLimit(Common2Bullet(mAngularUpperLimits));
        mGeneric6DofConstraint->setBreakingImpulseThreshold(mBreakingImpulse);
    }
Example #3
0
int main (void) {
  A2 = fA();
  B2 = fB();
  C2 = fC();
  D2 = fD();
  return all (0);
}
Example #4
0
void g()
{
  mixed_up<A, B, C> m;
  fA(m);
  fB(m);
  fC(m);
}
Example #5
0
// C++ [dcl.init.ref]p5b2
void test4() {
    double& rd2 = 2.0; // expected-error{{non-const lvalue reference to type 'double' cannot be initialized with a temporary of type 'double'}}
    int i = 2;
    double& rd3 = i; // expected-error{{non-const lvalue reference to type 'double' cannot be initialized with a value of type 'int'}}

    const A& rca = fB();
}
Example #6
0
int main (int argc, char *argv[])
{
	Extrae_user_function(1);
	fA();
	fB();
	Extrae_user_function(0);
	return 0;
}
Example #7
0
 void u_FP(lt& t, const lo& o) {
   ASSERT(fB(o) == t.bI);
   if (t.bI == kBN) {
     return;
   }
   uI_FP(t.bI, o);
   t.bI = kBN;
 }
Example #8
0
 void lI(lt& t, const lo& o) {
   auto bi = fB(o);
   auto r = b[bi - 1]->lO(o);
   if (r != TLOR::S) {
     t.bI = kBN;
     return;
   }
   t.bI = bi;
 }
Example #9
0
float forceThin(float** arr, const int N, const int M, const int x, const int y, const std::vector<ivec2> borders)
{
   vec2 a(x-0.5,y+0.5);
   vec2 b(x+0.5,y+0.5);
   vec2 c(x+0.5,y-0.5);
   vec2 d(x-0.5,y-0.5);

   vec2 fA(0.0,0.0);
   vec2 fB(0.0,0.0);
   vec2 fC(0.0,0.0);
   vec2 fD(0.0,0.0);

   for (unsigned int i=0; i < borders.size(); ++i)
   {
      if (distance(ivec2(x,y), borders[i]) <= 16)
      {
         std::vector<ivec2> line;
         line = draw_line(ivec2(x,y), borders[i]);

         bool outofsight = false;
         //printf("(%d,%d)\n(%d,%d) %zd\n", x, y, borders[i].x, borders[i].y, line.size());
         for (unsigned int j=0; j < line.size(); ++j)
         {
            //printf("\t%d\n", j);
            outofsight |= arr[line[j].x][line[j].y] == 0.5;
         }

         if (!outofsight)
         {
            float dist = distance(a, borders[i]);
            float dx = a.x - borders[i].x;
            float dy = a.y - borders[i].y;
            fA = fA + vec2(dx/(abs(dx)+abs(dy)) / dist, dy/(abs(dx)+abs(dy)) / dist);

            dist = distance(b, borders[i]);
            dx = b.x - borders[i].x;
            dy = b.y - borders[i].y;
            fB = fB + vec2(dx/(abs(dx)+abs(dy)) / dist, dy/(abs(dx)+abs(dy)) / dist);

            dist = distance(c, borders[i]);
            dx = c.x - borders[i].x;
            dy = c.y - borders[i].y;
            fC = fC + vec2(dx/(abs(dx)+abs(dy)) / dist, dy/(abs(dx)+abs(dy)) / dist);

            dist = distance(d, borders[i]);
            dx = d.x - borders[i].x;
            dy = d.y - borders[i].y;
            fD = fD + vec2(dx/(abs(dx)+abs(dy)) / dist, dy/(abs(dx)+abs(dy)) / dist);
         }
      }
   }

   //S |= fA.x*fB.x <= 0.0 && abs(fA.y)+abs(fB.y) > abs(fA.x)+abs(fB.x);
   //S |= fC.x*fD.x <= 0.0 && abs(fC.y)+abs(fD.y) > abs(fC.x)+abs(fD.x);
   //S |= fA.y*fD.y <= 0.0 && abs(fA.y)+abs(fD.y) > abs(fA.x)+abs(fD.x);
   //S |= fB.y*fC.y <= 0.0 && abs(fB.y)+abs(fC.y) > abs(fB.x)+abs(fC.x);
   //S |= fA.x*fC.x <= 0.0 && fA.y * fC.y <= 0.0;
   //S |= fB.x*fD.x <= 0.0 && fB.y * fD.y <= 0.0;

   //S |= fA.x*fB.x <= 0.0 && fC.x*fD.x <= 0.0 && (abs(fA.x)+abs(fB.x) > abs(fA.y)+abs(fB.y) || abs(fC.x)+abs(fD.x) > abs(fC.y)+abs(fD.y));
   //S |= fA.y*fD.y <= 0.0 && fB.y*fC.y <= 0.0 && (abs(fA.y)+abs(fD.y) > abs(fA.x)+abs(fD.x) || abs(fB.y)+abs(fC.y) > abs(fB.x)+abs(fC.x));
   //S |= fA.x*fC.x <= 0.0 && fA.y*fC.y <= 0.0;
   //S |= fB.x*fD.x <= 0.0 && fB.y*fD.y <= 0.0;

   //dot products to find change in direction
   float dot;
   float min_dot = INFINITY;

   dot = fA.x*fB.x + fA.y*fB.y;
   if (dot < min_dot)
      min_dot = dot;
   dot = fB.x*fC.x + fB.y*fC.y;
   if (dot < min_dot)
      min_dot = dot;
   dot = fA.x*fD.x + fA.y*fD.y;
   if (dot < min_dot)
      min_dot = dot;
   dot = fC.x*fD.x + fC.y*fD.y;
   if (dot < min_dot)
      min_dot = dot;
   dot = fA.x*fC.x + fA.y*fC.y;
   if (dot < min_dot)
      min_dot = dot;
   dot = fB.x*fD.x + fB.y*fD.y;
   if (dot < min_dot)
      min_dot = dot;

   return min_dot;
}
Example #10
0
Vector4 Rgba::ToVector4() const {
	return Vector4(fR(), fG(), fB(), fA());
}
void fi::VPDetectionCloud::ClusterKDirectionPatches(const pcl::PointCloud<pcl::PointXYZ>::Ptr &_InCloud, Eigen::VectorXf &fRobustEstimatedVP)
{

	unsigned int fNumOfNormals = _InCloud->points.size() * m_ModelParams->fPercentageOfNormals / 100;
	unsigned int fNumOfCrossProducts = m_ModelParams->fNumOfCrossProducts;
	unsigned  int fNumberOfRansacIterations = m_ModelParams->fNumOfIterations;
	unsigned int m_k = m_ModelParams->m_k;

	if ( m_k == 0)
	{
		m_k = 5;
	}

	double fEPS = m_ModelParams->fEPSInDegrees;
	Eigen::Vector4f fEstimatedVP1;


	//// Create the normal estimation class, and pass the input dataset to it
	//pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimation;
	//normal_estimation.setInputCloud (cloud);

	//// Create an empty kdtree representation, and pass it to the normal estimation object.
	//// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
	//pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
	//normal_estimation.setSearchMethod (tree);

	//// Output datasets
	//pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);

	//PtCloudDataPtr InPclDataPtr1(new PtCloudData());
	///*pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(pclData);*/
	//boost::shared_ptr<PtCloudData> InPclDataPtr(new PtCloudData(pclData));
	int nPointCandidates = _InCloud->points.size();

		// Consider using more precise timers such as gettimeofday on *nix or
		// GetTickCount/timeGetTime/QueryPerformanceCounter on Windows.
		boost::mt19937 randGen(std::time(0));

		// Now we set up a distribution. Boost provides a bunch of these as well.
		// This is the preferred way to generate numbers in a certain range.
		// initialize a uniform distribution between 0 and the max=nPointCandidates

		boost::uniform_int<> uInt8Dist(0, nPointCandidates);

		// Finally, declare a variate_generator which maps the random number
		// generator and the distribution together. This variate_generator
		// is usable like a function call.
		boost::variate_generator< boost::mt19937&, boost::uniform_int<> > 
			GetRand(randGen, uInt8Dist);

		//sample random points and compute their normals
		pcl::IndicesPtr indices(new  std::vector<int>());
		for (unsigned int i = 0; i < fNumOfNormals; i++)
		{
			indices->push_back(GetRand() % nPointCandidates);      
		}

		/*pcl::NormalEstimationOMP fd;*/ // 6-8 times faster ?
		pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
		ne.setInputCloud (_InCloud);
		ne.setSearchMethod (pcl::search::KdTree<pcl::PointXYZ>::Ptr (new pcl::search::KdTree<pcl::PointXYZ>));
		ne.setKSearch (m_k);
		//ne.setRadiusSearch (fRadius); //////toDo Set Cloud and radius hier correctly!
		//ne.setSearchSurface(source.surface);
		ne.setIndices(indices);

		pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>());
		ne.compute (*normals);

		//typedef boost::scoped_ptr<Eigen::Vector4f> fXProds;

		std::vector<boost::shared_ptr<Eigen::Vector4f> > fVPHypothesis;
		std::vector<boost::shared_ptr<Eigen::Vector4f> > fVPHypothesisInliers;

		//sample random points and compute their normals
		for (unsigned int i = 0; i < fNumOfCrossProducts; i++)
		{
			unsigned int fIndexA = GetRand() % fNumOfNormals;
			unsigned int fIndexB = GetRand() % fNumOfNormals;

			pcl::Normal &fnormalA = normals->points.at(fIndexA);
			pcl::Normal &fnormalB = normals->points.at(fIndexB);

			Eigen::Vector4f fA(fnormalA.normal_x, fnormalA.normal_y, fnormalA.normal_z, 0); 
			Eigen::Vector4f fB(fnormalB.normal_x, fnormalB.normal_y, fnormalB.normal_z, 0);
			Eigen::Vector4f fC = fA.cross3(fB);

			boost::shared_ptr<Eigen::Vector4f> ftmpRes(new Eigen::Vector4f(fC));
			/*fXProds faVPHypothesis(new Eigen::Vector4f(fC));*/
			fVPHypothesis.push_back(ftmpRes);
			//tmpdistances = sqrt ((line_pt - fPlaneB->points[j].getVector4fMap ()).cross3 (line_dir).squaredNorm ());
		}

		//The Cross products are then the direction we are looking. Find the majority w.r.t a ref Direction!
		Eigen::Vector4f fRefDir (1.0, 0.0, 0.0, 0);

		//Validate the best using RANSAC w.r.t refDir
		unsigned int counterMax = 0;
		unsigned int iBest;
		for (unsigned int g = 0; g < fNumberOfRansacIterations; g++)
		{

			unsigned int gIndex = GetRand() % fNumOfCrossProducts;

			Eigen::Vector4f &fu1 = *fVPHypothesis.at(gIndex);
			double fAnglesInRadians = pcl::getAngle3D(fu1, fRefDir);
			double fAngleInDegrees = pcl::rad2deg(fAnglesInRadians);

			//score the selected hypothesis
			unsigned int sCounter = 0 ;
			for (unsigned int l = 0; l < fNumOfCrossProducts; l++)
			{
				//const float sAnglesInRadianstmp = Math3d::Angle(*((*crosProds)[l]), sRefDir);
				//const float sAnglesInDegreestmp = sAnglesInRadianstmp * 180.0f / CV_PI;

				Eigen::Vector4f &fu1tmp = *fVPHypothesis.at(l);
				double fAnglesInRadianstmp = pcl::getAngle3D(fu1tmp, fRefDir);
				double fAngleInDegreestmp = pcl::rad2deg(fAnglesInRadianstmp);

				if (fabsf(fAngleInDegreestmp - fAngleInDegrees) <= fEPS) //Tolerance of 2 Degress!!!
				{
					sCounter++;

				}
			}
			if (sCounter > counterMax)
			{	
				counterMax = sCounter;
				iBest = gIndex;
			}
		}

		//Insert the Estimated VP!
		//fEstimatedVP1 = *fVPHypothesis.at(l);
		/*delete m_pclDataPtr;*/
		//collect all the inliers and do WLeastSquaresFit
		Eigen::Vector4f &fBestModel = *fVPHypothesis.at(iBest);
		double fAnglesInRadiansBest = pcl::getAngle3D(fBestModel, fRefDir);
		double fAngleInDegreesBest = pcl::rad2deg(fAnglesInRadiansBest);

		pcl::PointCloud<pcl::PointXYZ>::Ptr fVPCandidates(new pcl::PointCloud<pcl::PointXYZ>);
		fVPCandidates->width = counterMax;
		fVPCandidates->height = 1;
		fVPCandidates->resize(fVPCandidates->width * fVPCandidates->height);
		unsigned int ii = 0;

		for (unsigned int l = 0; l < fNumOfCrossProducts; l++)
		{
			Eigen::Vector4f &fu1tmp = *fVPHypothesis.at(l);
			double fAnglesInRadianstmp = pcl::getAngle3D(fu1tmp, fRefDir);
			double fAngleInDegreestmp = pcl::rad2deg(fAnglesInRadianstmp);

			if (fabsf(fAngleInDegreestmp - fAngleInDegreesBest) <= fEPS) //Tolerance of 2 Degrees!!!
			{
				fVPCandidates->points[ii].x = fu1tmp(0);
				fVPCandidates->points[ii].y = fu1tmp(1);
				fVPCandidates->points[ii].z = fu1tmp(2);

				/*boost::scoped_ptr<Eigen::Vector4f> ftmpInliers(new Eigen::Vector4f(fu1tmp));
				fVPHypothesisInliers.push_back(ftmpInliers);*/

				if (ii > counterMax)
				{
					std::cout<<" Something went really wrong!..."<<std::endl;
					return;
				}
				ii++;
			}
		}

		//Robust fitting the inliers using WleastSquears fit
		//Eigen::VectorXf optimized_vp_coefficients;
		LSLineFitting(fVPCandidates, fRobustEstimatedVP);
	   //collect data for 
}