Example #1
0
/*
 * call-seq:
 *    cmp * numeric  ->  complex
 *
 * Performs multiplication.
 *
 *    Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
 *    Complex(900)   * Complex(1)      #=> (900+0i)
 *    Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
 *    Complex(9, 8)  * 4               #=> (36+32i)
 *    Complex(20, 9) * 9.8             #=> (196.0+88.2i)
 */
VALUE
rb_nucomp_mul(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	VALUE real, imag;
	VALUE areal, aimag, breal, bimag;
	int arzero, aizero, brzero, bizero;

	get_dat2(self, other);

	arzero = !!f_zero_p(areal = adat->real);
	aizero = !!f_zero_p(aimag = adat->imag);
	brzero = !!f_zero_p(breal = bdat->real);
	bizero = !!f_zero_p(bimag = bdat->imag);
	real = f_sub(safe_mul(areal, breal, arzero, brzero),
		     safe_mul(aimag, bimag, aizero, bizero));
	imag = f_add(safe_mul(areal, bimag, arzero, bizero),
		     safe_mul(aimag, breal, aizero, brzero));

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_mul(dat->real, other),
			      f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
Example #2
0
static VALUE
nucomp_div(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	if (TYPE(adat->real)  == T_FLOAT ||
	    TYPE(adat->imag) == T_FLOAT ||
	    TYPE(bdat->real)  == T_FLOAT ||
	    TYPE(bdat->imag) == T_FLOAT) {
	    VALUE magn = m_hypot(bdat->real, bdat->imag);
	    VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
					    f_div(bdat->real, magn),
					    f_div(bdat->imag, magn));
	    return f_div(f_mul(self, f_conj(tmp)), magn);
	}
	return f_div(f_mul(self, f_conj(other)), f_abs2(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_div(dat->real, other),
			      f_div(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '/');
}
Example #3
0
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && f_real_p(other))
	return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
	     rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}
Example #4
0
inline static void
nucomp_real_check(VALUE num)
{
    if (!RB_TYPE_P(num, T_FIXNUM) &&
	!RB_TYPE_P(num, T_BIGNUM) &&
	!RB_TYPE_P(num, T_FLOAT) &&
	!RB_TYPE_P(num, T_RATIONAL)) {
	if (!k_numeric_p(num) || !f_real_p(num))
	    rb_raise(rb_eTypeError, "not a real");
    }
}
Example #5
0
inline static VALUE
f_divide(VALUE self, VALUE other,
	 VALUE (*func)(VALUE, VALUE), ID id)
{
    if (k_complex_p(other)) {
	int flo;
	get_dat2(self, other);

	flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
	       k_float_p(bdat->real) || k_float_p(bdat->imag));

	if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
	    VALUE r, n;

	    r = (*func)(bdat->imag, bdat->real);
	    n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
	    if (flo)
		return f_complex_new2(CLASS_OF(self),
				      (*func)(self, n),
				      (*func)(f_negate(f_mul(self, r)), n));
	    return f_complex_new2(CLASS_OF(self),
				  (*func)(f_add(adat->real,
						f_mul(adat->imag, r)), n),
				  (*func)(f_sub(adat->imag,
						f_mul(adat->real, r)), n));
	}
	else {
	    VALUE r, n;

	    r = (*func)(bdat->real, bdat->imag);
	    n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
	    if (flo)
		return f_complex_new2(CLASS_OF(self),
				      (*func)(f_mul(self, r), n),
				      (*func)(f_negate(self), n));
	    return f_complex_new2(CLASS_OF(self),
				  (*func)(f_add(f_mul(adat->real, r),
						adat->imag), n),
				  (*func)(f_sub(f_mul(adat->imag, r),
						adat->real), n));
	}
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      (*func)(dat->real, other),
			      (*func)(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, id);
}
Example #6
0
static VALUE
m_sin(VALUE x)
{
    if (f_real_p(x))
	return m_sin_bang(x);
    {
	get_dat1(x);
	return f_complex_new2(rb_cComplex,
			      f_mul(m_sin_bang(dat->real),
				    m_cosh_bang(dat->imag)),
			      f_mul(m_cos_bang(dat->real),
				    m_sinh_bang(dat->imag)));
    }
}
Example #7
0
inline static void
nucomp_real_check(VALUE num)
{
    switch (TYPE(num)) {
      case T_FIXNUM:
      case T_BIGNUM:
      case T_FLOAT:
      case T_RATIONAL:
	break;
      default:
	if (!k_numeric_p(num) || !f_real_p(num))
	    rb_raise(rb_eTypeError, "not a real");
    }
}
Example #8
0
inline static VALUE
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
{
#ifdef CANON
#define CL_CANON
#ifdef CL_CANON
    if (k_exact_zero_p(imag) && canonicalization)
	return real;
#else
    if (f_zero_p(imag) && canonicalization)
	return real;
#endif
#endif
    if (f_real_p(real) && f_real_p(imag))
	return nucomp_s_new_internal(klass, real, imag);
    else if (f_real_p(real)) {
	get_dat1(imag);

	return nucomp_s_new_internal(klass,
				     f_sub(real, dat->imag),
				     f_add(ZERO, dat->real));
    }
    else if (f_real_p(imag)) {
	get_dat1(real);

	return nucomp_s_new_internal(klass,
				     dat->real,
				     f_add(dat->imag, imag));
    }
    else {
	get_dat2(real, imag);

	return nucomp_s_new_internal(klass,
				     f_sub(adat->real, bdat->imag),
				     f_add(adat->imag, bdat->real));
    }
}
Example #9
0
/*
 * call-seq:
 *    cmp == object  ->  true or false
 *
 * Returns true if cmp equals object numerically.
 *
 *    Complex(2, 3)  == Complex(2, 3)   #=> true
 *    Complex(5)     == 5               #=> true
 *    Complex(0)     == 0.0             #=> true
 *    Complex('1/3') == 0.33            #=> false
 *    Complex('1/2') == '1/2'           #=> false
 */
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
			  f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return f_eqeq_p(other, self);
}
Example #10
0
static VALUE
m_sqrt(VALUE x)
{
    if (f_real_p(x)) {
	if (f_positive_p(x))
	    return m_sqrt_bang(x);
	return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
    }
    else {
	get_dat1(x);

	if (f_negative_p(dat->imag))
	    return f_conj(m_sqrt(f_conj(x)));
	else {
	    VALUE a = f_abs(x);
	    return f_complex_new2(rb_cComplex,
				  m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
				  m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
	}
    }
}
Example #11
0
static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	VALUE real, imag;

	get_dat2(self, other);

	real = f_sub(adat->real, bdat->real);
	imag = f_sub(adat->imag, bdat->imag);

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
Example #12
0
inline static VALUE
f_addsub(VALUE self, VALUE other,
	 VALUE (*func)(VALUE, VALUE), ID id)
{
    if (k_complex_p(other)) {
	VALUE real, imag;

	get_dat2(self, other);

	real = (*func)(adat->real, bdat->real);
	imag = (*func)(adat->imag, bdat->imag);

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      (*func)(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, id);
}
Example #13
0
/*
 * call-seq:
 *    cmp ** numeric  ->  complex
 *
 * Performs exponentiation.
 *
 *    Complex('i') ** 2              #=> (-1+0i)
 *    Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)
 */
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* c14n */

    if (k_complex_p(other)) {
	get_dat1(other);

	if (k_exact_zero_p(dat->imag))
	    other = dat->real; /* c14n */
    }

    if (k_complex_p(other)) {
	VALUE r, theta, nr, ntheta;

	get_dat1(other);

	r = f_abs(self);
	theta = f_arg(self);

	nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
			      f_mul(dat->imag, theta)));
	ntheta = f_add(f_mul(theta, dat->real),
		       f_mul(dat->imag, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_fixnum_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z;
	    long n;

	    x = self;
	    z = x;
	    n = FIX2LONG(other) - 1;

	    while (n) {
		long q, r;

		while (1) {
		    get_dat1(x);

		    q = n / 2;
		    r = n % 2;

		    if (r)
			break;

		    x = nucomp_s_new_internal(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = q;
		}
		z = f_mul(z, x);
		n--;
	    }
	    return z;
	}
	return f_expt(f_reciprocal(self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE r, theta;

	if (k_bignum_p(other))
	    rb_warn("in a**b, b may be too big");

	r = f_abs(self);
	theta = f_arg(self);

	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			       f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
Example #14
0
static VALUE
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
	rb_raise(rb_eTypeError, "can't convert nil into Complex");

    backref = rb_backref_get();
    rb_match_busy(backref);

    if (RB_TYPE_P(a1, T_STRING)) {
	a1 = string_to_c_strict(a1);
    }

    if (RB_TYPE_P(a2, T_STRING)) {
	a2 = string_to_c_strict(a2);
    }

    rb_backref_set(backref);

    if (RB_TYPE_P(a1, T_COMPLEX)) {
	{
	    get_dat1(a1);

	    if (k_exact_zero_p(dat->imag))
		a1 = dat->real;
	}
    }

    if (RB_TYPE_P(a2, T_COMPLEX)) {
	{
	    get_dat1(a2);

	    if (k_exact_zero_p(dat->imag))
		a2 = dat->real;
	}
    }

    if (RB_TYPE_P(a1, T_COMPLEX)) {
	if (argc == 1 || (k_exact_zero_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_real_p(a1))
	    return a1;
	/* should raise exception for consistency */
	if (!k_numeric_p(a1))
	    return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_real_p(a1) || !f_real_p(a2)))
	    return f_add(a1,
			 f_mul(a2,
			       f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nucomp_s_new(argc, argv2, klass);
    }
}
Example #15
0
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_exact_p(other) && f_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* good? */

    if (k_complex_p(other)) {
	VALUE a, r, theta, ore, oim, nr, ntheta;

	get_dat1(other);

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];

	ore = dat->real;
	oim = dat->imag;
	nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
			      f_mul(oim, theta)));
	ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_integer_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z, n;

	    x = self;
	    z = x;
	    n = f_sub(other, ONE);

	    while (f_nonzero_p(n)) {
		VALUE a;

		while (a = f_divmod(n, TWO),
		       f_zero_p(RARRAY_PTR(a)[1])) {
		    get_dat1(x);

		    x = f_complex_new2(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = RARRAY_PTR(a)[0];
		}
		z = f_mul(z, x);
		n = f_sub(n, ONE);
	    }
	    return z;
	}
	return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE a, r, theta;

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];
	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			      f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
Example #16
0
static VALUE
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
      case T_FLOAT:
	break;
      case T_STRING:
	a1 = string_to_c_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
      case T_FLOAT:
	break;
      case T_STRING:
	a2 = string_to_c_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_COMPLEX:
	{
	    get_dat1(a1);

	    if (k_exact_p(dat->imag) && f_zero_p(dat->imag))
		a1 = dat->real;
	}
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	{
	    get_dat1(a2);

	    if (k_exact_p(dat->imag) && f_zero_p(dat->imag))
		a2 = dat->real;
	}
    }

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (argc == 1 || (k_exact_p(a2) && f_zero_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_real_p(a1))
	    return a1;
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_real_p(a1) || !f_real_p(a2)))
	    return f_add(a1,
			 f_mul(a2,
			       f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nucomp_s_new(argc, argv2, klass);
    }
}