void targetConfiguration(struct master_s *config) { config->mixerConfig.mixerMode = MIXER_HEX6X; config->rxConfig.serialrx_provider = 2; featureSet(FEATURE_RX_SERIAL); config->serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; }
void targetConfiguration(void) { gyroConfigMutable()->looptime = 1000; rxConfigMutable()->rcmap[0] = 1; rxConfigMutable()->rcmap[1] = 2; rxConfigMutable()->rcmap[2] = 3; rxConfigMutable()->rcmap[3] = 0; featureSet(FEATURE_VBAT); featureSet(FEATURE_LED_STRIP); serialConfigMutable()->portConfigs[0].functionMask = FUNCTION_MSP; if (rxConfig()->receiverType == RX_TYPE_SERIAL) { serialConfigMutable()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL; } }
static long cmsx_Ledstrip_FeatureWriteback(void) { if (cmsx_FeatureLedstrip) featureSet(FEATURE_LED_STRIP); else featureClear(FEATURE_LED_STRIP); return 0; }
static long cmsx_Blackbox_FeatureWriteback(void) { if (cmsx_FeatureBlackbox) featureSet(FEATURE_BLACKBOX); else featureClear(FEATURE_BLACKBOX); return 0; }
static long cmsx_Blackbox_FeatureWriteback(void) { if (cmsx_FeatureBlackbox) featureSet(FEATURE_BLACKBOX); else featureClear(FEATURE_BLACKBOX); blackboxConfigMutable()->rate_denom = blackboxConfig_rate_denom; return 0; }
static void cliFeature(char *cmdline) { uint32_t i; uint32_t len; uint32_t mask; len = strlen(cmdline); mask = featureMask(); if (len == 0) { cliPrint("Enabled features: "); for (i = 0; ; i++) { if (featureNames[i] == NULL) break; if (mask & (1 << i)) printf("%s ", featureNames[i]); } cliPrint("\r\n"); } else if (strncasecmp(cmdline, "list", len) == 0) { cliPrint("Available features: "); for (i = 0; ; i++) { if (featureNames[i] == NULL) break; printf("%s ", featureNames[i]); } cliPrint("\r\n"); return; } else { bool remove = false; if (cmdline[0] == '-') { // remove feature remove = true; cmdline++; // skip over - len--; } for (i = 0; ; i++) { if (featureNames[i] == NULL) { cliPrint("Invalid feature name...\r\n"); break; } if (strncasecmp(cmdline, featureNames[i], len) == 0) { if (remove) { featureClear(1 << i); cliPrint("Disabled "); } else { featureSet(1 << i); cliPrint("Enabled "); } printf("%s\r\n", featureNames[i]); break; } } } }
void osdExitMenu(void *ptr) { max7456ClearScreen(); max7456Write(5, 3, "RESTARTING IMU..."); max7456RefreshAll(); stopMotors(); stopPwmAllMotors(); delay(200); if (ptr) { // save local variables to configuration if (featureBlackbox) featureSet(FEATURE_BLACKBOX); else featureClear(FEATURE_BLACKBOX); if (featureLedstrip) featureSet(FEATURE_LED_STRIP); else featureClear(FEATURE_LED_STRIP); #if defined(VTX) || defined(USE_RTC6705) if (featureVtx) featureSet(FEATURE_VTX); else featureClear(FEATURE_VTX); #endif // VTX || USE_RTC6705 #ifdef VTX masterConfig.vtxBand = vtxBand; masterConfig.vtx_channel = vtxChannel - 1; #endif // VTX #ifdef USE_RTC6705 masterConfig.vtx_channel = vtxBand * 8 + vtxChannel - 1; #endif // USE_RTC6705 saveConfigAndNotify(); } systemReset(); }
void targetConfiguration(void) { if (hardwareMotorType == MOTOR_BRUSHED) { motorConfigMutable()->dev.motorPwmRate = BRUSHED_MOTORS_PWM_RATE; motorConfigMutable()->minthrottle = 1049; #if defined(FF_ACROWHOOPSP) rxConfigMutable()->serialrx_provider = SERIALRX_SPEKTRUM2048; rxConfigMutable()->spektrum_sat_bind = 5; rxConfigMutable()->spektrum_sat_bind_autoreset = 1; #else serialConfigMutable()->portConfigs[findSerialPortIndexByIdentifier(SERIAL_PORT_USART2)].functionMask = FUNCTION_TELEMETRY_FRSKY_HUB; rxConfigMutable()->serialrx_inverted = true; featureSet(FEATURE_TELEMETRY); #endif parseRcChannels("TAER1234", rxConfigMutable()); for (uint8_t pidProfileIndex = 0; pidProfileIndex < MAX_PROFILE_COUNT; pidProfileIndex++) { pidProfile_t *pidProfile = pidProfilesMutable(pidProfileIndex); pidProfile->pid[PID_ROLL].P = 80; pidProfile->pid[PID_ROLL].I = 37; pidProfile->pid[PID_ROLL].D = 35; pidProfile->pid[PID_PITCH].P = 100; pidProfile->pid[PID_PITCH].I = 37; pidProfile->pid[PID_PITCH].D = 35; pidProfile->pid[PID_YAW].P = 180; pidProfile->pid[PID_YAW].D = 45; } for (uint8_t rateProfileIndex = 0; rateProfileIndex < CONTROL_RATE_PROFILE_COUNT; rateProfileIndex++) { controlRateConfig_t *controlRateConfig = controlRateProfilesMutable(rateProfileIndex); controlRateConfig->rcRates[FD_ROLL] = 100; controlRateConfig->rcRates[FD_PITCH] = 100; controlRateConfig->rcRates[FD_YAW] = 100; controlRateConfig->rcExpo[FD_ROLL] = 15; controlRateConfig->rcExpo[FD_PITCH] = 15; controlRateConfig->rcExpo[FD_YAW] = 15; controlRateConfig->rates[PID_ROLL] = 80; controlRateConfig->rates[PID_PITCH] = 80; controlRateConfig->rates[PID_YAW] = 80; } } }
// alternative defaults settings for Colibri/Gemini targets void targetConfiguration(void) { masterConfig.mixerMode = MIXER_HEX6X; masterConfig.rxConfig.serialrx_provider = 2; featureSet(FEATURE_RX_SERIAL); masterConfig.escAndServoConfig.minthrottle = 1070; masterConfig.escAndServoConfig.maxthrottle = 2000; masterConfig.boardAlignment.pitchDegrees = 10; //masterConfig.rcControlsConfig.deadband = 10; //masterConfig.rcControlsConfig.yaw_deadband = 10; masterConfig.mag_hardware = 1; masterConfig.profile[0].controlRateProfile[0].dynThrPID = 45; masterConfig.profile[0].controlRateProfile[0].tpa_breakpoint = 1700; masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; }
// Default settings static void resetConf(void) { int i; const int8_t default_align[3][3] = { /* GYRO */ { 0, 0, 0 }, /* ACC */ { 0, 0, 0 }, /* MAG */ { -2, -3, 1 } }; // Clear all configuration memset(&mcfg, 0, sizeof(master_t)); memset(&cfg, 0, sizeof(config_t)); mcfg.version = EEPROM_CONF_VERSION; mcfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); featureSet(FEATURE_VBAT); featureSet(FEATURE_PPM); // global settings mcfg.current_profile = 0; // default profile mcfg.gyro_cmpf_factor = 600; // default MWC mcfg.gyro_cmpfm_factor = 250; // default MWC mcfg.gyro_lpf = 20; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead mcfg.accZero[0] = 0; mcfg.accZero[1] = 0; mcfg.accZero[2] = 0; memcpy(&mcfg.align, default_align, sizeof(mcfg.align)); mcfg.acc_hardware = ACC_DEFAULT; // default/autodetect mcfg.moron_threshold = 32; mcfg.gyro_smoothing_factor = 0x00141403; // default factors of 20, 20, 3 for R/P/Y mcfg.vbatscale = 110; mcfg.vbatmaxcellvoltage = 43; mcfg.vbatmincellvoltage = 33; mcfg.power_adc_channel = 0; mcfg.spektrum_hires = 0; mcfg.midrc = 1500; mcfg.mincheck = 1100; mcfg.maxcheck = 1900; mcfg.retarded_arm = 0; // disable arm/disarm on roll left/right // Motor/ESC/Servo mcfg.minthrottle = 1250; mcfg.maxthrottle = 1850; mcfg.mincommand = 1000; mcfg.motor_pwm_rate = 400; mcfg.servo_pwm_rate = 50; // gps/nav stuff mcfg.gps_type = GPS_NMEA; mcfg.gps_baudrate = 115200; // serial (USART1) baudrate mcfg.serial_baudrate = 115200; mcfg.looptime = 3000; cfg.pidController = 0; cfg.P8[ROLL] = 40; cfg.I8[ROLL] = 30; cfg.D8[ROLL] = 23; cfg.P8[PITCH] = 40; cfg.I8[PITCH] = 30; cfg.D8[PITCH] = 23; cfg.P8[YAW] = 85; cfg.I8[YAW] = 45; cfg.D8[YAW] = 0; cfg.P8[PIDALT] = 64; cfg.I8[PIDALT] = 25; cfg.D8[PIDALT] = 24; cfg.P8[PIDPOS] = 11; // POSHOLD_P * 100; cfg.I8[PIDPOS] = 0; // POSHOLD_I * 100; cfg.D8[PIDPOS] = 0; cfg.P8[PIDPOSR] = 20; // POSHOLD_RATE_P * 10; cfg.I8[PIDPOSR] = 8; // POSHOLD_RATE_I * 100; cfg.D8[PIDPOSR] = 45; // POSHOLD_RATE_D * 1000; cfg.P8[PIDNAVR] = 14; // NAV_P * 10; cfg.I8[PIDNAVR] = 20; // NAV_I * 100; cfg.D8[PIDNAVR] = 80; // NAV_D * 1000; cfg.P8[PIDLEVEL] = 90; cfg.I8[PIDLEVEL] = 10; cfg.D8[PIDLEVEL] = 100; cfg.P8[PIDMAG] = 40; cfg.P8[PIDVEL] = 0; cfg.I8[PIDVEL] = 0; cfg.D8[PIDVEL] = 0; cfg.rcRate8 = 90; cfg.rcExpo8 = 65; cfg.rollPitchRate = 0; cfg.yawRate = 0; cfg.dynThrPID = 0; cfg.thrMid8 = 50; cfg.thrExpo8 = 0; // for (i = 0; i < CHECKBOXITEMS; i++) // cfg.activate[i] = 0; cfg.angleTrim[0] = 0; cfg.angleTrim[1] = 0; cfg.mag_declination = 625; // For example, -6deg 37min, = -637 Japan, format is [sign]dddmm (degreesminutes) default is zero. cfg.acc_lpf_factor = 20; cfg.accz_deadband = 10; cfg.baro_tab_size = 21; cfg.baro_noise_lpf = 0.6f; cfg.baro_cf = 0.985f; // Radio parseRcChannels("AETR1234"); cfg.deadband = 20; cfg.yawdeadband = 20; cfg.alt_hold_throttle_neutral = 40; cfg.alt_hold_fast_change = 1; // Failsafe Variables cfg.failsafe_delay = 10; // 1sec cfg.failsafe_off_delay = 200; // 20sec cfg.failsafe_throttle = 1200; // decent default which should always be below hover throttle for people. cfg.failsafe_detect_threshold = 985; // any of first 4 channels below this value will trigger failsafe // servos cfg.yaw_direction = 1; cfg.tri_yaw_middle = 1500; cfg.tri_yaw_min = 1020; cfg.tri_yaw_max = 2000; // flying wing cfg.wing_left_min = 1020; cfg.wing_left_mid = 1500; cfg.wing_left_max = 2000; cfg.wing_right_min = 1020; cfg.wing_right_mid = 1500; cfg.wing_right_max = 2000; cfg.pitch_direction_l = 1; cfg.pitch_direction_r = -1; cfg.roll_direction_l = 1; cfg.roll_direction_r = 1; // gimbal cfg.gimbal_pitch_gain = 10; cfg.gimbal_roll_gain = 10; cfg.gimbal_flags = GIMBAL_NORMAL; cfg.gimbal_pitch_min = 1020; cfg.gimbal_pitch_max = 2000; cfg.gimbal_pitch_mid = 1500; cfg.gimbal_roll_min = 1020; cfg.gimbal_roll_max = 2000; cfg.gimbal_roll_mid = 1500; // gps/nav stuff cfg.gps_wp_radius = 200; cfg.gps_lpf = 20; cfg.nav_slew_rate = 30; cfg.nav_controls_heading = 1; cfg.nav_speed_min = 100; cfg.nav_speed_max = 300; cfg.ap_mode = 40; // custom mixer. clear by defaults. for (i = 0; i < MAX_MOTORS; i++) mcfg.customMixer[i].throttle = 0.0f; // copy default config into all 3 profiles for (i = 0; i < 3; i++) memcpy(&mcfg.profile[i], &cfg, sizeof(config_t)); }
// Default settings static void resetConf(void) { uint8_t i; const int8_t default_align[3][3] = { /* GYRO */ { 0, 0, 0 }, /* ACC */ { 0, 0, 0 }, /* MAG */ { 0, 0, 0 } }; memset(&cfg, 0, sizeof(config_t)); cfg.version = EEPROM_CONF_VERSION; cfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); // featureSet(FEATURE_VBAT); featureSet(FEATURE_PPM); // featureSet(FEATURE_FAILSAFE); // featureSet(FEATURE_LCD); // featureSet(FEATURE_GPS); // featureSet(FEATURE_PASS); // Just pass Throttlechannel // featureSet(FEATURE_SONAR); cfg.P8[ROLL] = 35; // 40 cfg.I8[ROLL] = 30; cfg.D8[ROLL] = 30; cfg.P8[PITCH] = 35; // 40 cfg.I8[PITCH] = 30; cfg.D8[PITCH] = 30; cfg.P8[YAW] = 60; // 70 cfg.I8[YAW] = 45; cfg.P8[PIDALT] = 100; cfg.I8[PIDALT] = 30; cfg.D8[PIDALT] = 80; cfg.P8[PIDPOS] = 10; // FIND YOUR VALUE cfg.I8[PIDPOS] = 40; // USED cfg.P8[PIDPOSR] = 70; // FIND YOUR VALUE // Controls the speed part with my PH logic cfg.D8[PIDPOSR] = 100; // FIND YOUR VALUE // Controls the speed part with my PH logic cfg.P8[PIDNAVR] = 15; // 14 More ? cfg.I8[PIDNAVR] = 0; // NAV_I * 100; // Scaling/Purpose unchanged cfg.D8[PIDNAVR] = 0; // NAV_D * 1000; // Scaling/Purpose unchanged // cfg.P8[PIDPOS] = 11; // APM PH Stock values // cfg.I8[PIDPOS] = 0; // cfg.D8[PIDPOS] = 0; // cfg.P8[PIDPOSR] = 20; // POSHOLD_RATE_P * 10; // cfg.I8[PIDPOSR] = 8; // POSHOLD_RATE_I * 100; // cfg.D8[PIDPOSR] = 45; // POSHOLD_RATE_D * 1000; // cfg.P8[PIDNAVR] = 14; // NAV_P * 10; // cfg.I8[PIDNAVR] = 20; // NAV_I * 100; // cfg.D8[PIDNAVR] = 80; // NAV_D * 1000; cfg.P8[PIDLEVEL] = 70; // 70 cfg.I8[PIDLEVEL] = 10; cfg.D8[PIDLEVEL] = 50; cfg.P8[PIDMAG] = 80; // cfg.P8[PIDVEL] = 0;// cfg.I8[PIDVEL] = 0;// cfg.D8[PIDVEL] = 0; cfg.rcRate8 = 100; cfg.rcExpo8 = 80; // cfg.rollPitchRate = 0;// cfg.yawRate = 0;// cfg.dynThrPID = 0; cfg.thrMid8 = 50; memcpy(&cfg.align, default_align, sizeof(cfg.align)); cfg.mag_dec = 113; // Crashpilot //cfg.acc_hdw = ACC_DEFAULT;// default/autodetect cfg.mag_time = 1; // (1-6) Calibration time in minutes cfg.mag_gain = 0; // 0(default) = 1.9 GAUSS ; 1 = 2.5 GAUSS (problematic copters, will reduce 20% resolution) cfg.acc_hdw = 2; // Crashpilot MPU6050 cfg.acc_lpfhz = 10.0f; // [0.x-100Hz] LPF for angle/horizon 0.536f resembles somehow the orig mwii factor cfg.acc_altlpfhz = 15; // [1-100Hz] LPF for althold cfg.acc_gpslpfhz = 30; // [1-100Hz] LPF for GPS ins stuff cfg.looptime = 3000; cfg.mainpidctrl = 0; // 0 = OriginalMwiiPid pimped by me, 1 = New mwii controller (experimental, float pimped + pt1) cfg.maincuthz = 12; // [1-100Hz] Cuf Off Frequency for D term of main Pid controller cfg.gpscuthz = 45; // [1-100Hz] Cuf Off Frequency for D term of GPS Pid controller cfg.gy_gcmpf = 700; // (10-1000) 400 default. Now 1000. The higher, the more weight gets the gyro and the lower is the correction with Acc data. cfg.gy_mcmpf = 200; // (10-2000) 200 default for 10Hz. Now higher. Gyro/Magnetometer Complement. cfg.gy_smrll = 0; cfg.gy_smptc = 0; cfg.gy_smyw = 0; // In Tricopter mode a "1" will enable a moving average filter, anything higher will also enable a lowpassfilter cfg.gy_lpf = 42; // Values for MPU 6050/3050: 256, 188, 98, 42, 20, 10, (HZ) For L3G4200D: 93, 78, 54, 32 cfg.gy_stdev = 5; // Baro cfg.accz_vcf = 0.985f; // Crashpilot: Value for complementary filter accz and barovelocity cfg.accz_acf = 0.960f; // Crashpilot: Value for complementary filter accz and altitude cfg.bar_lag = 0.3f; // Lag of Baro/Althold stuff in general, makes stop in hightchange snappier cfg.bar_dscl = 0.7f; // Scale downmovement down (because copter drops faster than rising) cfg.bar_dbg = 0; // Crashpilot: 1 = Debug Barovalues //cfg.baro_noise_lpf = 0.6f;// Crashpilot: Not used anymore//cfg.baro_cf = 0.985f;// Crashpilot: Not used anymore // Autoland cfg.al_barolr = 50; // [10 - 200cm/s] Baro Landingrate cfg.al_snrlr = 50; // [10 - 200cm/s] Sonar Landingrate - You can specify different landingfactor here on sonar contact, because sonar land maybe too fast when snr_cf is high cfg.al_debounce = 5; // (0-20%) 0 Disables. Defines a Throttlelimiter on Autoland. Percentage defines the maximum deviation of assumed hoverthrottle during Autoland cfg.al_tobaro = 2000; // Timeout in ms (100 - 5000) before shutoff on autoland. "esc_nfly" must be undershot for that timeperiod cfg.al_tosnr = 1000; // Timeout in ms (100 - 5000) If sonar aided land is wanted (snr_land = 1) you can choose a different timeout here // Autostart cfg.as_lnchr = 200; // [50 - 250 no dimension DEFAULT:200] Autostart initial launchrate to get off the ground. When as_stdev is exceeded, as_clmbr takes over cfg.as_clmbr = 100; // [50 - 250cm/s DEFAULT:100] Autostart climbrate in cm/s after liftoff! Autostart Rate in cm/s will be lowered when approaching targethight. cfg.as_trgt = 0; // [0 - 255m DEFAULT:0 (0 = Disable)] Autostart Targethight in m Note: use 2m or more cfg.as_stdev = 10; // [5 - 20 no dimension DEFAULT:10] This is the std. deviation of the variometer when a liftoff is assumed. The higher the more unsensitive. cfg.vbatscale = 110; cfg.vbatmaxcellvoltage = 43; cfg.vbatmincellvoltage = 33; cfg.power_adc_channel = 0; // Radio parseRcChannels("AETR1234"); cfg.rc_db = 20; // Crashpilot: A little deadband will not harm our crappy RC cfg.rc_dbyw = 20; // Crashpilot: A little deadband will not harm our crappy RC cfg.rc_dbah = 50; // Crashpilot: A little deadband will not harm our crappy RC cfg.rc_dbgps = 5; // Additional Deadband for all GPS functions; cfg.devorssi = 0; // Will take the last channel for RSSI value, so add one to rc_auxch, don't use that auxchannel unless you want it to trigger something // Note Spektrum or Graupner will override that setting to 0. cfg.rssicut = 0; // [0-80%][0 Disables] Below that percentage rssi will show zero. // cfg.spektrum_hires = 0; cfg.rc_minchk = 1100; cfg.rc_mid = 1500; cfg.rc_maxchk = 1900; cfg.rc_lowlat = 1; // [0 - 1] Default 1. 1 = lower latency, 0 = normal latency/more filtering. cfg.rc_rllrm = 0; // disable arm/disarm on roll left/right cfg.rc_auxch = 4; // [4 - 6] cGiesen: Default = 4, then like the standard! Crashpilot: Limited to 6 aux for safety cfg.rc_killt = 0; // Time in ms when your arm switch becomes a Killswitch, 0 disables the Killswitch, can not be used together with FEATURE_INFLIGHT_ACC_CAL cfg.rc_flpsp = 0; // [0-3] When enabled(1) and upside down in acro or horizon mode throttle is reduced (see readme) cfg.rc_motor = 0; // [0-2] Behaviour when thr < rc_minchk: 0= minthrottle no regulation, 1= minthrottle®ulation, 2= Motorstop // Motor/ESC/Servo cfg.esc_gain = 0; // [0Disables - 32] Gain for esc to reduce delay 16 = Gain of 1 that would double the initial response(limited to +500) Only helps unflashed ESC. // cfg.esc_min = 1150; // ORIG cfg.esc_min = 1100; cfg.esc_max = 1950; cfg.esc_moff = 1000; cfg.esc_nfly = 1300; // This is the absolute throttle that kicks off the "has landed timer" if it is too low cfg.rc_minchk + 5% is taken. Also baselinethr for Autostart, also plausibility check for initial Failsafethrottle // cfg.esc_nfly = 0; // This is the absolute throttle that kicks off the "has landed timer" if it is too low cfg.rc_minchk + 5% is taken. cfg.esc_pwm = 400; cfg.srv_pwm = 50; cfg.pass_mot = 0; // Crashpilot: Only used with feature pass. If 0 = all Motors, otherwise specific Motor // servos cfg.tri_ydir = 1; cfg.tri_ymid = 1500; cfg.tri_ymin = 1020; cfg.tri_ymax = 2000; cfg.tri_ydel = 0; // [0-1000ms] Tri Yaw Arm delay: Time in ms after wich the yaw servo after arming will engage (useful with "yaw arm"). 0 disables Yawservo always active. // flying wing cfg.wing_left_min = 1020; cfg.wing_left_mid = 1500; cfg.wing_left_max = 2000; cfg.wing_right_min = 1020; cfg.wing_right_mid = 1500; cfg.wing_right_max = 2000; cfg.pitch_direction_l = 1; cfg.pitch_direction_r = -1; cfg.roll_direction_l = 1; cfg.roll_direction_r = 1; // gimbal cfg.gbl_pgn = 10; cfg.gbl_rgn = 10; cfg.gbl_flg = GIMBAL_NORMAL; cfg.gbl_pmn = 1020; cfg.gbl_pmx = 2000; cfg.gbl_pmd = 1500; cfg.gbl_rmn = 1020; cfg.gbl_rmx = 2000; cfg.gbl_rmd = 1500; // gps/nav cfg.gps_type = 1; // GPS_NMEA = 0, GPS_UBLOX = 1, GPS_MTK16 = 2, GPS_MTK19 = 3, GPS_UBLOX_DUMB = 4 cfg.gps_baudrate = 115200; //38400; // Changed 8/6/13 to 115200; cfg.gps_ins_vel = 0.6f; // Crashpilot GPS INS The LOWER the value the closer to gps speed // Dont go to high here cfg.gps_lag = 2000; // GPS Lag in ms cfg.gps_ph_minsat = 6; // Minimal Satcount for PH, PH on RTL is still done with 5Sats or more cfg.gps_expo = 20; // 1 - 99 % defines the actual Expo applied for GPS cfg.gps_ph_settlespeed = 10; // 1 - 200 cm/s PH settlespeed in cm/s cfg.gps_ph_brakemaxangle = 15; // 1 - 45 Degree Maximal Overspeedbrake cfg.gps_ph_minbrakepercent = 50; // 1 - 99% minimal percent of "brakemaxangle" left over for braking. Example brakemaxangle = 6 so 50 Percent is 3.. cfg.gps_ph_brkacc = 40; // [1 - 500] Is the assumed negative braking acceleration in cm/(s*s) of copter. Value is positive though. It will be a timeout. The lower the Value the longe the Timeout cfg.gps_maxangle = 35; // 10 - 45 Degree Maximal over all GPS bank angle cfg.gps_wp_radius = 200; // cfg.rtl_mnh = 20; // (0 - 200m) Minimal RTL hight in m, 0 disables feature cfg.rtl_mnh = 0; // (0 - 200m) Minimal RTL hight in m, 0 disables feature cfg.rtl_cr = 80; // [10 - 200cm/s] When rtl_mnh is defined this is the climbrate in cm/s cfg.rtl_mnd = 0; // 0 Disables. Minimal distance for RTL in m, otherwise it will just autoland, prevent Failsafe jump in your face, when arming copter and turning off TX cfg.gps_rtl_flyaway = 0; // [0 - 100m] 0 Disables. If during RTL the distance increases beyond this value (in meters relative to RTL activation point), something is wrong, autoland cfg.gps_yaw = 30; // Thats the MAG P during GPS functions, substitute for "cfg.P8[PIDMAG]" cfg.nav_rtl_lastturn = 1; // 1 = when copter gets to home position it rotates it's head to takeoff direction independend of nav_controls_heading cfg.nav_tail_first = 0; // 1 = Copter comes back with ass first (only works with nav_controls_heading = 1) cfg.nav_controls_heading = 0; // 1 = Nav controls YAW during WP ONLY // cfg.nav_controls_heading = 1; // 1 = Nav controls YAW during WP ONLY cfg.nav_speed_min = 100; // 10 - 200 cm/s don't set higher than nav_speed_max! That dumbness is not covered. cfg.nav_speed_max = 350; // 50 - 2000 cm/s don't set lower than nav_speed_min! That dumbness is not covered. cfg.nav_approachdiv = 3; // 2 - 10 This is the divisor for approach speed for wp_distance. Example: 400cm / 3 = 133cm/s if below nav_speed_min it will be adjusted cfg.nav_tiltcomp = 30; // 0 - 100 (20 TestDefault) Only arducopter really knows. Dfault was 54. This is some kind of a hack of them to reach actual nav_speed_max. 54 was Dfault, 0 disables cfg.nav_ctrkgain = 0.5f; // 0 - 10.0 (0.5 TestDefault) (Floatvariable) That is the "Crosstrackgain" APM Dfault is "1". "0" disables // Failsafe Variables cfg.fs_delay = 10; // in 0.1s (10 = 1sec) cfg.fs_ofdel = 200; // in 0.1s (200 = 20sec) cfg.fs_rcthr = 1200; // decent Dfault which should always be below hover throttle for people. cfg.fs_ddplt = 0; // EXPERIMENTAL Time in sec when FS is engaged after idle on THR/YAW/ROLL/PITCH, 0 disables max 250 cfg.fs_jstph = 0; // Does just PH&Autoland an not RTL, use this in difficult areas with many obstacles to avoid RTL crash into something cfg.fs_nosnr = 1; // When snr_land is set to 1, it is possible to ignore that on Failsafe, because FS over a tree could turn off copter // serial (USART1) baudrate cfg.serial_baudrate = 115200; cfg.tele_prot = 0; // Protocol ONLY used when Armed including Baudchange if necessary. 0 (Dfault)=Keep Multiwii @CurrentUSB Baud, 1=Frsky @9600Baud, 2=Mavlink @CurrentUSB Baud, 3=Mavlink @57KBaud (like stock minimOSD wants it) // LED Stuff cfg.LED_invert = 0; // Crashpilot: Inversion of LED 0&1 Partly implemented because Bootup is not affected cfg.LED_Type = 1; // 1=MWCRGB / 2=MONO_LED / 3=LEDRing cfg.LED_Pinout = 1; // rc6 cfg.LED_ControlChannel = 8; // AUX4 (Channel 8) cfg.LED_Armed = 0; // 0 = Show LED only if armed, 1 = always show LED cfg.LED_Pattern1 = 1300; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Pattern2 = 1800; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Pattern3 = 1900; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Toggle_Delay1 = 0x08; // slow down LED_Pattern cfg.LED_Toggle_Delay2 = 0x08; // slow down LED_Pattern cfg.LED_Toggle_Delay3 = 0x08; // slow down LED_Pattern // SONAR // SOME INFO ON SONAR: // PWM56 are 5V resistant, RC78 only tolerate 3.3V(!!) so add a 1K Ohms resistor!!! // Note: You will never see the maximum possible sonar range in a copter, so go for the half of it (or less?) // // Connection possibilities depending on Receivertype: // PPSUM: RC78 possible, PWM56 possible (on max. quadcopters, see below) // Normal RX: Just Connection on Motorchannel 5&6 (PWM56) is possible. // The PWM56 sonar connection option is only available in setups with max motors 4, otherwise sonar is not initialized. // // HC-SR04: // Operation Voltage: 5V (!! Use PWM56 or 1K resistor !!) // Range: 2cm - 400cm // Angle: 15 Degrees (Test out for yourself: cfg.snr_tilt = X) // // Maxbotix in general // Operation Voltage: (some 2.5V)3.3V - 5V ((!! Use PWM56 or resistor with 5V !!) // Only wire the Maxbotics for PWM output (more precise anyway), not the analog etc. modes, just wire echopin (normally pin 2) // Range: 20cm(!) - 765cm (some >1000cm), MaxTiltAngle is not specified, depending on Model // Tested on MB1200 XL-MaxSonar-EZ0 // // I2C sonar in general (by mj666) // If operation voltage of the sonar sensor is 5 Volt (NAZE I2C is 3.3 Volt), take care they do not have pull up resistors connected to 5 Volt. // Outputs are always open drain so there is no risk kill something only signals may be critical so keep wires short as possible. // Maxbotix I2CXL series operates with 3.3 and 5 Volt but 5Volt are preferred for best performance and stability. // // Devantech Ltd. (SRF02, SRF235, SRF08, SRF10): // Type; Range; Cycletime; Angle; Comment // SRF02; 16 to 600cm; 65ms; 55 degree; automatic calibration, minimum rage can be read from sensor (not implemented) // SRF235; 10 - 1200cm; 10ms; 15 degree; angle is may be to small for the use case // SRF08; 3 - 600cm; 65ms; 55 degree; range, gain an cycletime can be adjusted, multiple echos are measured (both not implemented) // SRF10; 6 - 600cm; 65ms; 72 degree; range, gain an cycletime can be adjusted (not implemented) // be sure to adjust settings accordingly, no additional test are done. // more details at: http://www.robot-electronics.co.uk/index.html // // Maxbotix I2CXL (MB1202, MB1212, MB1222, MB1232, MB1242) // I"CXL Series of sensors only differentiated by the beam pattern and sensibility. Maxbotix is recommending the MX1242 for quadcopter applications. The interface is always the same // NOTE: Maxbotix Sonars only operate with lower I2C speed, so the speed is changed on the fly during Maxbotix readout. // Thanks must go to mj666 for implementing that! // GENERAL WARNING: DON'T SET snr_min TOO LOW, OTHERWISE THE WRONG SONARVALUE WILL BE TAKEN AS REAL MEASUREMENT!! // I implemented some checks to prevent that user error, but still keep that in mind. // Min/Max are checked and changed if they are too stupid for your sonar. So if you suddenly see other values, thats not an eeprom error or so. // MAXBOTICS: SET snr_min to at least 30! I check this in sensors and change the value, if needed. // NOTE: I limited Maxbotics to 7 meters in the code, knowing that some types will do >10m, if you have one of them 7m is still the limit for you. // HC-SR04: SET snr_min to at least 10 ! I check this in sensors and change the value, if needed. // DaddyWalross Sonar: I DON'T KNOW! But it uses HC-SR04 so i apply the same limits (10cm-400cm) to its output // Sonar minimal hight must be higher (including temperature difference) than the physical lower limit of the sensor to do a proximity alert // NOTE: Sonar is def. not a must - have. But nice to have. cfg.snr_type = 3; // 0=PWM56 HC-SR04, 1=RC78 HC-SR04, 2=I2C(DaddyWalross), 3=MBPWM56, 4=MBRC78, 5=I2C(SRFxx), 6=I2C (MX12x2) cfg.snr_min = 30; // Valid Sonar minimal range in cm (10 - 200) see warning above cfg.snr_max = 200; // Valid Sonar maximal range in cm (50 - 700) cfg.snr_dbg = 0; // 1 Sends Sonardata (within defined range and tilt) to debug[0] and tiltvalue to debug[1], debug[0] will be -1 if out of range/tilt. debug[2] contains raw sonaralt, like before cfg.snr_tilt = 18; // Somehow copter tiltrange in degrees (Not exactly but good enough. Value * 0.9 = realtilt) in wich Sonar is possible cfg.snr_cf = 0.5f; // The bigger, the more Sonarinfluence, makes switch between Baro/Sonar smoother and defines baroinfluence when sonarcontact. 1.0f just takes Sonar, if contact (otherwise baro) cfg.snr_diff = 0; // 0 disables that check. Range (0-200) Maximal allowed difference in cm between sonar readouts (100ms rate and snr_diff = 50 means max 5m/s) cfg.snr_land = 1; // Aided Sonar - landing, by setting upper throttle limit to current throttle. - Beware of Trees!! Can be disabled for Failsafe with fs_nosnr = 1 cfg.FDUsedDatasets = 0; // Default no Datasets stored cfg.stat_clear = 1; // This will clear the stats between flights, or you can set to 0 and treasue overallstats, but you have to write manually eeprom or have logging enabled cfg.sens_1G = 1; // Just feed a dummy "1" to avoid div by zero ClearStats(); for (i = 0; i < MAX_MOTORS; i++) cfg.customMixer[i].throttle = 0.0f;// custom mixer. clear by Dfaults. writeParams(0); }
void validateAndFixConfig(void) { if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP))) { featureSet(FEATURE_RX_PARALLEL_PWM); // Consider changing the default to PPM } if (featureConfigured(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM); } if (featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL); featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (featureConfigured(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } #if defined(NAV) // Ensure sane values of navConfig settings validateNavConfig(&masterConfig.navConfig); #endif if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) { #if defined(STM32F10X) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #ifdef STM32F10X // avoid overloading the CPU on F1 targets when using gyro sync and GPS. if (masterConfig.gyroSync && masterConfig.gyroSyncDenominator < 2 && featureConfigured(FEATURE_GPS)) { masterConfig.gyroSyncDenominator = 2; } // avoid overloading the CPU when looptime < 2000 and GPS if (masterConfig.looptime && featureConfigured(FEATURE_GPS)) { masterConfig.looptime = 2000; } #endif #if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (featureConfigured(FEATURE_SOFTSERIAL) && ( 0 #ifdef USE_SOFTSERIAL1 || (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER) #endif #ifdef USE_SOFTSERIAL2 || (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER) #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(NAZE) && defined(SONAR) if (featureConfigured(FEATURE_RX_PARALLEL_PWM) && featureConfigured(FEATURE_SONAR) && featureConfigured(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(OLIMEXINO) && defined(SONAR) if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(CC3D) && defined(DISPLAY) && defined(USE_USART3) if (doesConfigurationUsePort(SERIAL_PORT_USART3) && feature(FEATURE_DISPLAY)) { featureClear(FEATURE_DISPLAY); } #endif #ifdef STM32F303xC // hardware supports serial port inversion, make users life easier for those that want to connect SBus RX's masterConfig.telemetryConfig.telemetry_inversion = 1; #endif #if defined(CC3D) #if defined(CC3D_PPM1) #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { featureClear(FEATURE_SONAR); } #endif #else #if defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO) // shared pin if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) { featureClear(FEATURE_SONAR); featureClear(FEATURE_SOFTSERIAL); featureClear(FEATURE_RSSI_ADC); } #endif #endif // CC3D_PPM1 #endif // CC3D #if defined(COLIBRI_RACE) masterConfig.serialConfig.portConfigs[0].functionMask = FUNCTION_MSP; if(featureConfigured(FEATURE_RX_SERIAL)) { masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; } #endif useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); } /* * If provided predefined mixer setup is disabled, fallback to default one */ if (!isMixerEnabled(masterConfig.mixerMode)) { masterConfig.mixerMode = DEFAULT_MIXER; } }
static void evaluateCommand(void) { uint32_t i, j, tmp, junk; #ifdef GPS uint8_t wp_no; int32_t lat = 0, lon = 0, alt = 0; #endif const char *build = __DATE__; switch (currentPortState->cmdMSP) { case MSP_SET_RAW_RC: for (i = 0; i < 8; i++) rcData[i] = read16(); headSerialReply(0); mspFrameRecieve(); break; case MSP_SET_ACC_TRIM: cfg.angleTrim[PITCH] = read16(); cfg.angleTrim[ROLL] = read16(); headSerialReply(0); break; #ifdef GPS case MSP_SET_RAW_GPS: f.GPS_FIX = read8(); GPS_numSat = read8(); GPS_coord[LAT] = read32(); GPS_coord[LON] = read32(); GPS_altitude = read16(); GPS_speed = read16(); GPS_update |= 2; // New data signalisation to GPS functions headSerialReply(0); break; #endif case MSP_SET_PID: for (i = 0; i < PIDITEMS; i++) { cfg.P8[i] = read8(); cfg.I8[i] = read8(); cfg.D8[i] = read8(); } headSerialReply(0); break; case MSP_SET_BOX: for (i = 0; i < numberBoxItems; i++) cfg.activate[availableBoxes[i]] = read16(); headSerialReply(0); break; case MSP_SET_RC_TUNING: cfg.rcRate8 = read8(); cfg.rcExpo8 = read8(); cfg.rollPitchRate = read8(); cfg.yawRate = read8(); cfg.dynThrPID = read8(); cfg.thrMid8 = read8(); cfg.thrExpo8 = read8(); headSerialReply(0); break; case MSP_SET_MISC: tmp = read16(); // sanity check if (tmp < 1600 && tmp > 1400) mcfg.midrc = tmp; mcfg.minthrottle = read16(); mcfg.maxthrottle = read16(); mcfg.mincommand = read16(); cfg.failsafe_throttle = read16(); mcfg.gps_type = read8(); mcfg.gps_baudrate = read8(); mcfg.gps_ubx_sbas = read8(); mcfg.multiwiicurrentoutput = read8(); mcfg.rssi_aux_channel = read8(); read8(); cfg.mag_declination = read16() * 10; mcfg.vbatscale = read8(); // actual vbatscale as intended mcfg.vbatmincellvoltage = read8(); // vbatlevel_warn1 in MWC2.3 GUI mcfg.vbatmaxcellvoltage = read8(); // vbatlevel_warn2 in MWC2.3 GUI mcfg.vbatwarningcellvoltage = read8(); // vbatlevel when buzzer starts to alert headSerialReply(0); break; case MSP_SET_MOTOR: for (i = 0; i < 8; i++) motor_disarmed[i] = read16(); headSerialReply(0); break; case MSP_SELECT_SETTING: if (!f.ARMED) { mcfg.current_profile = read8(); if (mcfg.current_profile > 2) mcfg.current_profile = 0; // this writes new profile index and re-reads it writeEEPROM(0, false); } headSerialReply(0); break; case MSP_SET_HEAD: magHold = read16(); headSerialReply(0); break; case MSP_IDENT: headSerialReply(7); serialize8(VERSION); // multiwii version serialize8(mcfg.mixerConfiguration); // type of multicopter serialize8(MSP_VERSION); // MultiWii Serial Protocol Version serialize32(CAP_PLATFORM_32BIT | CAP_BASEFLIGHT_CONFIG | CAP_DYNBALANCE | CAP_FW_FLAPS); // "capability" break; case MSP_STATUS: headSerialReply(11); serialize16(cycleTime); serialize16(i2cGetErrorCounter()); serialize16(sensors(SENSOR_ACC) | sensors(SENSOR_BARO) << 1 | sensors(SENSOR_MAG) << 2 | sensors(SENSOR_GPS) << 3 | sensors(SENSOR_SONAR) << 4); // OK, so you waste all the f*****g time to have BOXNAMES and BOXINDEXES etc, and then you go ahead and serialize enabled shit simply by stuffing all // the bits in order, instead of setting the enabled bits based on BOXINDEX. WHERE IS THE F*****G LOGIC IN THIS, FUCKWADS. // Serialize the boxes in the order we delivered them, until multiwii retards fix their shit junk = 0; tmp = f.ANGLE_MODE << BOXANGLE | f.HORIZON_MODE << BOXHORIZON | f.BARO_MODE << BOXBARO | f.MAG_MODE << BOXMAG | f.HEADFREE_MODE << BOXHEADFREE | rcOptions[BOXHEADADJ] << BOXHEADADJ | rcOptions[BOXCAMSTAB] << BOXCAMSTAB | rcOptions[BOXCAMTRIG] << BOXCAMTRIG | f.GPS_HOME_MODE << BOXGPSHOME | f.GPS_HOLD_MODE << BOXGPSHOLD | f.PASSTHRU_MODE << BOXPASSTHRU | rcOptions[BOXBEEPERON] << BOXBEEPERON | rcOptions[BOXLEDMAX] << BOXLEDMAX | rcOptions[BOXLLIGHTS] << BOXLLIGHTS | rcOptions[BOXVARIO] << BOXVARIO | rcOptions[BOXCALIB] << BOXCALIB | rcOptions[BOXGOV] << BOXGOV | rcOptions[BOXOSD] << BOXOSD | rcOptions[BOXTELEMETRY] << BOXTELEMETRY | rcOptions[BOXSERVO1] << BOXSERVO1 | rcOptions[BOXSERVO2] << BOXSERVO2 | rcOptions[BOXSERVO3] << BOXSERVO3 | f.ARMED << BOXARM; for (i = 0; i < numberBoxItems; i++) { int flag = (tmp & (1 << availableBoxes[i])); if (flag) junk |= 1 << i; } serialize32(junk); serialize8(mcfg.current_profile); break; case MSP_RAW_IMU: headSerialReply(18); // Retarded hack until multiwiidorks start using real units for sensor data if (acc_1G > 1024) { for (i = 0; i < 3; i++) serialize16(accSmooth[i] / 8); } else { for (i = 0; i < 3; i++) serialize16(accSmooth[i]); } for (i = 0; i < 3; i++) serialize16(gyroData[i]); for (i = 0; i < 3; i++) serialize16(magADC[i]); break; case MSP_SERVO: s_struct((uint8_t *)&servo, 16); break; case MSP_SERVO_CONF: headSerialReply(56); for (i = 0; i < MAX_SERVOS; i++) { serialize16(cfg.servoConf[i].min); serialize16(cfg.servoConf[i].max); serialize16(cfg.servoConf[i].middle); serialize8(getOldServoConfig(i)); } break; case MSP_SET_SERVO_CONF: headSerialReply(0); for (i = 0; i < MAX_SERVOS; i++) { cfg.servoConf[i].min = read16(); cfg.servoConf[i].max = read16(); cfg.servoConf[i].middle = read16(); tmp = read8(); // trash old servo direction cfg.servoConf[i].rate = tmp & 0xfc; // store old style servo direction depending on current mixer configuration switch (mcfg.mixerConfiguration) { case MULTITYPE_BI: storeOldServoConfig(i, tmp, 4, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 5, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 4, 2, INPUT_YAW); storeOldServoConfig(i, tmp, 5, 2, INPUT_YAW); break; case MULTITYPE_TRI: storeOldServoConfig(i, tmp, 5, 1, INPUT_YAW); break; case MULTITYPE_FLYING_WING: storeOldServoConfig(i, tmp, 3, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 4, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 3, 2, INPUT_ROLL); storeOldServoConfig(i, tmp, 4, 2, INPUT_ROLL); break; case MULTITYPE_DUALCOPTER: storeOldServoConfig(i, tmp, 4, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 5, 1, INPUT_ROLL); break; case MULTITYPE_SINGLECOPTER: storeOldServoConfig(i, tmp, 3, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 4, 1, INPUT_PITCH); storeOldServoConfig(i, tmp, 5, 1, INPUT_ROLL); storeOldServoConfig(i, tmp, 6, 1, INPUT_ROLL); storeOldServoConfig(i, tmp, 3, 2, INPUT_YAW); storeOldServoConfig(i, tmp, 4, 2, INPUT_YAW); storeOldServoConfig(i, tmp, 5, 2, INPUT_YAW); storeOldServoConfig(i, tmp, 6, 2, INPUT_YAW); break; } } break; case MSP_MOTOR: s_struct((uint8_t *)motor, 16); break; case MSP_RC: headSerialReply(16); for (i = 0; i < 8; i++) serialize16(rcData[i]); break; #ifdef GPS case MSP_RAW_GPS: headSerialReply(16); serialize8(f.GPS_FIX); serialize8(GPS_numSat); serialize32(GPS_coord[LAT]); serialize32(GPS_coord[LON]); serialize16(GPS_altitude); serialize16(GPS_speed); serialize16(GPS_ground_course); break; case MSP_COMP_GPS: headSerialReply(5); serialize16(GPS_distanceToHome); serialize16(GPS_directionToHome); serialize8(GPS_update & 1); break; #endif case MSP_ATTITUDE: headSerialReply(6); for (i = 0; i < 2; i++) serialize16(angle[i]); serialize16(heading); break; case MSP_ALTITUDE: headSerialReply(6); serialize32(EstAlt); serialize16(vario); break; case MSP_ANALOG: headSerialReply(7); serialize8((uint8_t)constrain(vbat, 0, 255)); serialize16((uint16_t)constrain(mAhdrawn, 0, 0xFFFF)); // milliamphours drawn from battery serialize16(rssi); if (mcfg.multiwiicurrentoutput) serialize16((uint16_t)constrain((abs(amperage) * 10), 0, 0xFFFF)); // send amperage in 0.001 A steps else serialize16((uint16_t)constrain(abs(amperage), 0, 0xFFFF)); // send amperage in 0.01 A steps break; case MSP_RC_TUNING: headSerialReply(7); serialize8(cfg.rcRate8); serialize8(cfg.rcExpo8); serialize8(cfg.rollPitchRate); serialize8(cfg.yawRate); serialize8(cfg.dynThrPID); serialize8(cfg.thrMid8); serialize8(cfg.thrExpo8); break; case MSP_PID: headSerialReply(3 * PIDITEMS); for (i = 0; i < PIDITEMS; i++) { serialize8(cfg.P8[i]); serialize8(cfg.I8[i]); serialize8(cfg.D8[i]); } break; case MSP_PIDNAMES: headSerialReply(sizeof(pidnames) - 1); serializeNames(pidnames); break; case MSP_BOX: headSerialReply(2 * numberBoxItems); for (i = 0; i < numberBoxItems; i++) serialize16(cfg.activate[availableBoxes[i]]); break; case MSP_BOXNAMES: // headSerialReply(sizeof(boxnames) - 1); serializeBoxNamesReply(); break; case MSP_BOXIDS: headSerialReply(numberBoxItems); for (i = 0; i < numberBoxItems; i++) { for (j = 0; j < CHECKBOXITEMS; j++) { if (boxes[j].permanentId == availableBoxes[i]) serialize8(boxes[j].permanentId); } } break; case MSP_MISC: headSerialReply(2 * 6 + 4 + 2 + 4); serialize16(mcfg.midrc); serialize16(mcfg.minthrottle); serialize16(mcfg.maxthrottle); serialize16(mcfg.mincommand); serialize16(cfg.failsafe_throttle); serialize8(mcfg.gps_type); serialize8(mcfg.gps_baudrate); serialize8(mcfg.gps_ubx_sbas); serialize8(mcfg.multiwiicurrentoutput); serialize8(mcfg.rssi_aux_channel); serialize8(0); serialize16(cfg.mag_declination / 10); // TODO check this shit serialize8(mcfg.vbatscale); serialize8(mcfg.vbatmincellvoltage); serialize8(mcfg.vbatmaxcellvoltage); serialize8(mcfg.vbatwarningcellvoltage); break; case MSP_MOTOR_PINS: headSerialReply(8); for (i = 0; i < 8; i++) serialize8(i + 1); break; #ifdef GPS case MSP_WP: wp_no = read8(); // get the wp number headSerialReply(18); if (wp_no == 0) { lat = GPS_home[LAT]; lon = GPS_home[LON]; } else if (wp_no == 16) { lat = GPS_hold[LAT]; lon = GPS_hold[LON]; } serialize8(wp_no); serialize32(lat); serialize32(lon); serialize32(AltHold); // altitude (cm) will come here -- temporary implementation to test feature with apps serialize16(0); // heading will come here (deg) serialize16(0); // time to stay (ms) will come here serialize8(0); // nav flag will come here break; case MSP_SET_WP: wp_no = read8(); //get the wp number lat = read32(); lon = read32(); alt = read32(); // to set altitude (cm) read16(); // future: to set heading (deg) read16(); // future: to set time to stay (ms) read8(); // future: to set nav flag if (wp_no == 0) { GPS_home[LAT] = lat; GPS_home[LON] = lon; f.GPS_HOME_MODE = 0; // with this flag, GPS_set_next_wp will be called in the next loop -- OK with SERIAL GPS / OK with I2C GPS f.GPS_FIX_HOME = 1; if (alt != 0) AltHold = alt; // temporary implementation to test feature with apps } else if (wp_no == 16) { // OK with SERIAL GPS -- NOK for I2C GPS / needs more code dev in order to inject GPS coord inside I2C GPS GPS_hold[LAT] = lat; GPS_hold[LON] = lon; if (alt != 0) AltHold = alt; // temporary implementation to test feature with apps nav_mode = NAV_MODE_WP; GPS_set_next_wp(&GPS_hold[LAT], &GPS_hold[LON]); } headSerialReply(0); break; #endif /* GPS */ case MSP_RESET_CONF: if (!f.ARMED) checkFirstTime(true); headSerialReply(0); break; case MSP_ACC_CALIBRATION: if (!f.ARMED) calibratingA = CALIBRATING_ACC_CYCLES; headSerialReply(0); break; case MSP_MAG_CALIBRATION: if (!f.ARMED) f.CALIBRATE_MAG = 1; headSerialReply(0); break; case MSP_EEPROM_WRITE: if (f.ARMED) { headSerialError(0); } else { writeEEPROM(0, true); headSerialReply(0); } break; case MSP_DEBUG: headSerialReply(8); // make use of this crap, output some useful QA statistics debug[3] = ((hse_value / 1000000) * 1000) + (SystemCoreClock / 1000000); // XX0YY [crystal clock : core clock] for (i = 0; i < 4; i++) serialize16(debug[i]); // 4 variables are here for general monitoring purpose break; // Additional commands that are not compatible with MultiWii case MSP_ACC_TRIM: headSerialReply(4); serialize16(cfg.angleTrim[PITCH]); serialize16(cfg.angleTrim[ROLL]); break; case MSP_UID: headSerialReply(12); serialize32(U_ID_0); serialize32(U_ID_1); serialize32(U_ID_2); break; #ifdef GPS case MSP_GPSSVINFO: headSerialReply(1 + (GPS_numCh * 4)); serialize8(GPS_numCh); for (i = 0; i < GPS_numCh; i++) { serialize8(GPS_svinfo_chn[i]); serialize8(GPS_svinfo_svid[i]); serialize8(GPS_svinfo_quality[i]); serialize8(GPS_svinfo_cno[i]); } // Poll new SVINFO from GPS gpsPollSvinfo(); break; case MSP_GPSDEBUGINFO: headSerialReply(16); if (sensors(SENSOR_GPS)) { serialize32(GPS_update_rate[1] - GPS_update_rate[0]); serialize32(GPS_svinfo_rate[1] - GPS_svinfo_rate[0]); } else { serialize32(0); serialize32(0); } serialize32(GPS_HorizontalAcc); serialize32(GPS_VerticalAcc); break; #endif /* GPS */ case MSP_SET_CONFIG: headSerialReply(0); mcfg.mixerConfiguration = read8(); // multitype featureClearAll(); featureSet(read32()); // features bitmap mcfg.serialrx_type = read8(); // serialrx_type mcfg.board_align_roll = read16(); // board_align_roll mcfg.board_align_pitch = read16(); // board_align_pitch mcfg.board_align_yaw = read16(); // board_align_yaw mcfg.currentscale = read16(); mcfg.currentoffset = read16(); /// ??? break; case MSP_CONFIG: headSerialReply(1 + 4 + 1 + 2 + 2 + 2 + 4); serialize8(mcfg.mixerConfiguration); serialize32(featureMask()); serialize8(mcfg.serialrx_type); serialize16(mcfg.board_align_roll); serialize16(mcfg.board_align_pitch); serialize16(mcfg.board_align_yaw); serialize16(mcfg.currentscale); serialize16(mcfg.currentoffset); /// ??? break; case MSP_RCMAP: headSerialReply(MAX_INPUTS); // TODO fix this for (i = 0; i < MAX_INPUTS; i++) serialize8(mcfg.rcmap[i]); break; case MSP_SET_RCMAP: headSerialReply(0); for (i = 0; i < MAX_INPUTS; i++) mcfg.rcmap[i] = read8(); break; case MSP_REBOOT: headSerialReply(0); pendReboot = true; break; case MSP_BUILDINFO: headSerialReply(11 + 4 + 4); for (i = 0; i < 11; i++) serialize8(build[i]); // MMM DD YYYY as ascii, MMM = Jan/Feb... etc serialize32(0); // future exp serialize32(0); // future exp break; default: // we do not know how to handle the (valid) message, indicate error MSP $M! headSerialError(0); break; } tailSerialReply(); }
// Default settings STATIC_UNIT_TESTED void resetConf(void) { pgResetAll(MAX_PROFILE_COUNT); setProfile(0); pgActivateProfile(0); setControlRateProfile(0); featureClearAll(); featureSet(DEFAULT_RX_FEATURE); #ifdef BOARD_HAS_VOLTAGE_DIVIDER // only enable the VBAT feature by default if the board has a voltage divider otherwise // the user may see incorrect readings and unexpected issues with pin mappings may occur. featureSet(FEATURE_VBAT); #endif featureSet(FEATURE_FAILSAFE); parseRcChannels("AETR1234", rxConfig()); featureSet(FEATURE_BLACKBOX); #if defined(COLIBRI_RACE) // alternative defaults settings for COLIBRI RACE targets imuConfig()->looptime = 1000; featureSet(FEATURE_ONESHOT125); featureSet(FEATURE_LED_STRIP); #endif #ifdef SPRACINGF3EVO featureSet(FEATURE_TRANSPONDER); featureSet(FEATURE_RSSI_ADC); featureSet(FEATURE_CURRENT_METER); featureSet(FEATURE_TELEMETRY); #endif // alternative defaults settings for ALIENWIIF1 and ALIENWIIF3 targets #ifdef ALIENWII32 featureSet(FEATURE_RX_SERIAL); featureSet(FEATURE_MOTOR_STOP); # ifdef ALIENWIIF3 serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL; batteryConfig()->vbatscale = 20; # else serialConfig()->portConfigs[1].functionMask = FUNCTION_RX_SERIAL; # endif rxConfig()->serialrx_provider = SERIALRX_SPEKTRUM2048; rxConfig()->spektrum_sat_bind = 5; motorAndServoConfig()->minthrottle = 1000; motorAndServoConfig()->maxthrottle = 2000; motorAndServoConfig()->motor_pwm_rate = 32000; imuConfig()->looptime = 2000; pidProfile()->pidController = 3; pidProfile()->P8[PIDROLL] = 36; pidProfile()->P8[PIDPITCH] = 36; failsafeConfig()->failsafe_delay = 2; failsafeConfig()->failsafe_off_delay = 0; currentControlRateProfile->rcRate8 = 130; currentControlRateProfile->rates[ROLL] = 20; currentControlRateProfile->rates[PITCH] = 20; currentControlRateProfile->rates[YAW] = 100; parseRcChannels("TAER1234", rxConfig()); *customMotorMixer(0) = (motorMixer_t){ 1.0f, -0.414178f, 1.0f, -1.0f }; // REAR_R *customMotorMixer(1) = (motorMixer_t){ 1.0f, -0.414178f, -1.0f, 1.0f }; // FRONT_R *customMotorMixer(2) = (motorMixer_t){ 1.0f, 0.414178f, 1.0f, 1.0f }; // REAR_L *customMotorMixer(3) = (motorMixer_t){ 1.0f, 0.414178f, -1.0f, -1.0f }; // FRONT_L *customMotorMixer(4) = (motorMixer_t){ 1.0f, -1.0f, -0.414178f, -1.0f }; // MIDFRONT_R *customMotorMixer(5) = (motorMixer_t){ 1.0f, 1.0f, -0.414178f, 1.0f }; // MIDFRONT_L *customMotorMixer(6) = (motorMixer_t){ 1.0f, -1.0f, 0.414178f, 1.0f }; // MIDREAR_R *customMotorMixer(7) = (motorMixer_t){ 1.0f, 1.0f, 0.414178f, -1.0f }; // MIDREAR_L #endif // copy first profile into remaining profile PG_FOREACH_PROFILE(reg) { for (int i = 1; i < MAX_PROFILE_COUNT; i++) { memcpy(reg->address + i * pgSize(reg), reg->address, pgSize(reg)); } } for (int i = 1; i < MAX_PROFILE_COUNT; i++) { configureRateProfileSelection(i, i % MAX_CONTROL_RATE_PROFILE_COUNT); } }
// Default settings static void resetConf(void) { int i; // Clear all configuration memset(&masterConfig, 0, sizeof(master_t)); setProfile(0); setControlRateProfile(0); masterConfig.version = EEPROM_CONF_VERSION; masterConfig.mixerMode = MIXER_QUADX; featureClearAll(); persistentFlagClearAll(); featureSet(DEFAULT_RX_FEATURE | FEATURE_FAILSAFE); #ifdef DEFAULT_FEATURES featureSet(DEFAULT_FEATURES); #endif #ifdef BOARD_HAS_VOLTAGE_DIVIDER // only enable the VBAT feature by default if the board has a voltage divider otherwise // the user may see incorrect readings and unexpected issues with pin mappings may occur. featureSet(FEATURE_VBAT); #endif // global settings masterConfig.current_profile_index = 0; // default profile masterConfig.dcm_kp_acc = 2500; // 0.25 * 10000 masterConfig.dcm_ki_acc = 50; // 0.005 * 10000 masterConfig.dcm_kp_mag = 10000; // 1.00 * 10000 masterConfig.dcm_ki_mag = 0; // 0.00 * 10000 masterConfig.gyro_lpf = 3; // INV_FILTER_42HZ, In case of ST gyro, will default to 32Hz instead resetAccelerometerTrims(&masterConfig.accZero, &masterConfig.accGain); resetSensorAlignment(&masterConfig.sensorAlignmentConfig); masterConfig.boardAlignment.rollDeciDegrees = 0; masterConfig.boardAlignment.pitchDeciDegrees = 0; masterConfig.boardAlignment.yawDeciDegrees = 0; masterConfig.acc_hardware = ACC_DEFAULT; // default/autodetect masterConfig.gyroConfig.gyroMovementCalibrationThreshold = 32; masterConfig.mag_hardware = MAG_DEFAULT; // default/autodetect masterConfig.baro_hardware = BARO_DEFAULT; // default/autodetect resetBatteryConfig(&masterConfig.batteryConfig); resetTelemetryConfig(&masterConfig.telemetryConfig); masterConfig.rxConfig.serialrx_provider = 0; masterConfig.rxConfig.spektrum_sat_bind = 0; masterConfig.rxConfig.midrc = 1500; masterConfig.rxConfig.mincheck = 1100; masterConfig.rxConfig.maxcheck = 1900; masterConfig.rxConfig.rx_min_usec = 885; // any of first 4 channels below this value will trigger rx loss detection masterConfig.rxConfig.rx_max_usec = 2115; // any of first 4 channels above this value will trigger rx loss detection for (i = 0; i < MAX_SUPPORTED_RC_CHANNEL_COUNT; i++) { rxFailsafeChannelConfiguration_t *channelFailsafeConfiguration = &masterConfig.rxConfig.failsafe_channel_configurations[i]; channelFailsafeConfiguration->mode = (i < NON_AUX_CHANNEL_COUNT) ? RX_FAILSAFE_MODE_AUTO : RX_FAILSAFE_MODE_HOLD; channelFailsafeConfiguration->step = (i == THROTTLE) ? CHANNEL_VALUE_TO_RXFAIL_STEP(masterConfig.rxConfig.rx_min_usec) : CHANNEL_VALUE_TO_RXFAIL_STEP(masterConfig.rxConfig.midrc); } masterConfig.rxConfig.rssi_channel = 0; masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT; masterConfig.rxConfig.rssi_ppm_invert = 0; masterConfig.rxConfig.rcSmoothing = 1; resetAllRxChannelRangeConfigurations(masterConfig.rxConfig.channelRanges); masterConfig.inputFilteringMode = INPUT_FILTERING_DISABLED; masterConfig.disarm_kill_switch = 1; masterConfig.auto_disarm_delay = 5; masterConfig.small_angle = 25; resetMixerConfig(&masterConfig.mixerConfig); // Motor/ESC/Servo resetEscAndServoConfig(&masterConfig.escAndServoConfig); resetFlight3DConfig(&masterConfig.flight3DConfig); #ifdef BRUSHED_MOTORS masterConfig.motor_pwm_rate = BRUSHED_MOTORS_PWM_RATE; #else masterConfig.motor_pwm_rate = BRUSHLESS_MOTORS_PWM_RATE; #endif masterConfig.servo_pwm_rate = 50; #ifdef GPS // gps/nav stuff masterConfig.gpsConfig.provider = GPS_UBLOX; masterConfig.gpsConfig.sbasMode = SBAS_AUTO; masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON; masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_ON; masterConfig.gpsConfig.dynModel = GPS_DYNMODEL_AIR_1G; #endif #ifdef NAV resetNavConfig(&masterConfig.navConfig); #endif resetSerialConfig(&masterConfig.serialConfig); masterConfig.looptime = 2000; masterConfig.emf_avoidance = 0; masterConfig.i2c_overclock = 0; masterConfig.gyroSync = 0; masterConfig.gyroSyncDenominator = 2; resetPidProfile(¤tProfile->pidProfile); resetControlRateConfig(&masterConfig.controlRateProfiles[0]); // for (i = 0; i < CHECKBOXITEMS; i++) // cfg.activate[i] = 0; currentProfile->mag_declination = 0; resetBarometerConfig(&masterConfig.barometerConfig); // Radio parseRcChannels("AETR1234", &masterConfig.rxConfig); resetRcControlsConfig(¤tProfile->rcControlsConfig); currentProfile->throttle_tilt_compensation_strength = 0; // 0-100, 0 - disabled // Failsafe Variables masterConfig.failsafeConfig.failsafe_delay = 10; // 1sec masterConfig.failsafeConfig.failsafe_off_delay = 200; // 20sec masterConfig.failsafeConfig.failsafe_throttle = 1000; // default throttle off. masterConfig.failsafeConfig.failsafe_kill_switch = 0; // default failsafe switch action is identical to rc link loss masterConfig.failsafeConfig.failsafe_throttle_low_delay = 100; // default throttle low delay for "just disarm" on failsafe condition masterConfig.failsafeConfig.failsafe_procedure = 0; // default full failsafe procedure is 0: auto-landing #ifdef USE_SERVOS // servos for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) { currentProfile->servoConf[i].min = DEFAULT_SERVO_MIN; currentProfile->servoConf[i].max = DEFAULT_SERVO_MAX; currentProfile->servoConf[i].middle = DEFAULT_SERVO_MIDDLE; currentProfile->servoConf[i].rate = 100; currentProfile->servoConf[i].angleAtMin = DEFAULT_SERVO_MIN_ANGLE; currentProfile->servoConf[i].angleAtMax = DEFAULT_SERVO_MAX_ANGLE; currentProfile->servoConf[i].forwardFromChannel = CHANNEL_FORWARDING_DISABLED; } // gimbal currentProfile->gimbalConfig.mode = GIMBAL_MODE_NORMAL; #endif // custom mixer. clear by defaults. for (i = 0; i < MAX_SUPPORTED_MOTORS; i++) masterConfig.customMotorMixer[i].throttle = 0.0f; #ifdef LED_STRIP applyDefaultColors(masterConfig.colors, CONFIGURABLE_COLOR_COUNT); applyDefaultLedStripConfig(masterConfig.ledConfigs); #endif #ifdef BLACKBOX #ifdef ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT featureSet(FEATURE_BLACKBOX); masterConfig.blackbox_device = BLACKBOX_DEVICE_FLASH; #else masterConfig.blackbox_device = BLACKBOX_DEVICE_SERIAL; #endif masterConfig.blackbox_rate_num = 1; masterConfig.blackbox_rate_denom = 1; #endif // alternative defaults settings for COLIBRI RACE targets #if defined(COLIBRI_RACE) masterConfig.looptime = 1000; masterConfig.rxConfig.rcmap[0] = 1; masterConfig.rxConfig.rcmap[1] = 2; masterConfig.rxConfig.rcmap[2] = 3; masterConfig.rxConfig.rcmap[3] = 0; masterConfig.rxConfig.rcmap[4] = 4; masterConfig.rxConfig.rcmap[5] = 5; masterConfig.rxConfig.rcmap[6] = 6; masterConfig.rxConfig.rcmap[7] = 7; featureSet(FEATURE_ONESHOT125); featureSet(FEATURE_VBAT); featureSet(FEATURE_LED_STRIP); featureSet(FEATURE_FAILSAFE); #endif // alternative defaults settings for ALIENWIIF1 and ALIENWIIF3 targets #ifdef ALIENWII32 #ifdef ALIENWIIF3 masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; masterConfig.batteryConfig.vbatscale = 20; #else masterConfig.serialConfig.portConfigs[1].functionMask = FUNCTION_RX_SERIAL; #endif masterConfig.rxConfig.serialrx_provider = 1; masterConfig.rxConfig.spektrum_sat_bind = 5; masterConfig.escAndServoConfig.minthrottle = 1000; masterConfig.escAndServoConfig.maxthrottle = 2000; masterConfig.motor_pwm_rate = 32000; masterConfig.looptime = 2000; currentProfile->pidProfile.P8[ROLL] = 36; currentProfile->pidProfile.P8[PITCH] = 36; masterConfig.failsafeConfig.failsafe_delay = 2; masterConfig.failsafeConfig.failsafe_off_delay = 0; currentControlRateProfile->rcRate8 = 130; currentControlRateProfile->rates[FD_PITCH] = 20; currentControlRateProfile->rates[FD_ROLL] = 20; currentControlRateProfile->rates[FD_YAW] = 100; parseRcChannels("TAER1234", &masterConfig.rxConfig); // { 1.0f, -0.414178f, 1.0f, -1.0f }, // REAR_R masterConfig.customMotorMixer[0].throttle = 1.0f; masterConfig.customMotorMixer[0].roll = -0.414178f; masterConfig.customMotorMixer[0].pitch = 1.0f; masterConfig.customMotorMixer[0].yaw = -1.0f; // { 1.0f, -0.414178f, -1.0f, 1.0f }, // FRONT_R masterConfig.customMotorMixer[1].throttle = 1.0f; masterConfig.customMotorMixer[1].roll = -0.414178f; masterConfig.customMotorMixer[1].pitch = -1.0f; masterConfig.customMotorMixer[1].yaw = 1.0f; // { 1.0f, 0.414178f, 1.0f, 1.0f }, // REAR_L masterConfig.customMotorMixer[2].throttle = 1.0f; masterConfig.customMotorMixer[2].roll = 0.414178f; masterConfig.customMotorMixer[2].pitch = 1.0f; masterConfig.customMotorMixer[2].yaw = 1.0f; // { 1.0f, 0.414178f, -1.0f, -1.0f }, // FRONT_L masterConfig.customMotorMixer[3].throttle = 1.0f; masterConfig.customMotorMixer[3].roll = 0.414178f; masterConfig.customMotorMixer[3].pitch = -1.0f; masterConfig.customMotorMixer[3].yaw = -1.0f; // { 1.0f, -1.0f, -0.414178f, -1.0f }, // MIDFRONT_R masterConfig.customMotorMixer[4].throttle = 1.0f; masterConfig.customMotorMixer[4].roll = -1.0f; masterConfig.customMotorMixer[4].pitch = -0.414178f; masterConfig.customMotorMixer[4].yaw = -1.0f; // { 1.0f, 1.0f, -0.414178f, 1.0f }, // MIDFRONT_L masterConfig.customMotorMixer[5].throttle = 1.0f; masterConfig.customMotorMixer[5].roll = 1.0f; masterConfig.customMotorMixer[5].pitch = -0.414178f; masterConfig.customMotorMixer[5].yaw = 1.0f; // { 1.0f, -1.0f, 0.414178f, 1.0f }, // MIDREAR_R masterConfig.customMotorMixer[6].throttle = 1.0f; masterConfig.customMotorMixer[6].roll = -1.0f; masterConfig.customMotorMixer[6].pitch = 0.414178f; masterConfig.customMotorMixer[6].yaw = 1.0f; // { 1.0f, 1.0f, 0.414178f, -1.0f }, // MIDREAR_L masterConfig.customMotorMixer[7].throttle = 1.0f; masterConfig.customMotorMixer[7].roll = 1.0f; masterConfig.customMotorMixer[7].pitch = 0.414178f; masterConfig.customMotorMixer[7].yaw = -1.0f; #endif // copy first profile into remaining profile for (i = 1; i < MAX_PROFILE_COUNT; i++) { memcpy(&masterConfig.profile[i], currentProfile, sizeof(profile_t)); } // copy first control rate config into remaining profile for (i = 1; i < MAX_CONTROL_RATE_PROFILE_COUNT; i++) { memcpy(&masterConfig.controlRateProfiles[i], currentControlRateProfile, sizeof(controlRateConfig_t)); } for (i = 1; i < MAX_PROFILE_COUNT; i++) { masterConfig.profile[i].defaultRateProfileIndex = i % MAX_CONTROL_RATE_PROFILE_COUNT; } }
void checkFirstTime(bool reset) { uint8_t test_val, i; test_val = *(uint8_t *) FLASH_WRITE_ADDR; if (!reset && test_val == checkNewConf) return; // Default settings cfg.version = checkNewConf; cfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); featureSet(FEATURE_VBAT); cfg.looptime = 0; cfg.P8[ROLL] = 40; cfg.I8[ROLL] = 30; cfg.D8[ROLL] = 23; cfg.P8[PITCH] = 40; cfg.I8[PITCH] = 30; cfg.D8[PITCH] = 23; cfg.P8[YAW] = 85; cfg.I8[YAW] = 45; cfg.D8[YAW] = 0; cfg.P8[PIDALT] = 16; cfg.I8[PIDALT] = 15; cfg.D8[PIDALT] = 7; cfg.P8[PIDPOS] = 11; // POSHOLD_P * 100; cfg.I8[PIDPOS] = 0; // POSHOLD_I * 100; cfg.D8[PIDPOS] = 0; cfg.P8[PIDPOSR] = 20; // POSHOLD_RATE_P * 10; cfg.I8[PIDPOSR] = 8; // POSHOLD_RATE_I * 100; cfg.D8[PIDPOSR] = 45; // POSHOLD_RATE_D * 1000; cfg.P8[PIDNAVR] = 14; // NAV_P * 10; cfg.I8[PIDNAVR] = 20; // NAV_I * 100; cfg.D8[PIDNAVR] = 80; // NAV_D * 1000; cfg.P8[PIDLEVEL] = 70; cfg.I8[PIDLEVEL] = 10; cfg.D8[PIDLEVEL] = 20; cfg.P8[PIDMAG] = 40; cfg.P8[PIDVEL] = 0; cfg.I8[PIDVEL] = 0; cfg.D8[PIDVEL] = 0; cfg.rcRate8 = 90; cfg.rcExpo8 = 65; cfg.rollPitchRate = 0; cfg.yawRate = 0; cfg.dynThrPID = 0; cfg.thrMid8 = 50; cfg.thrExpo8 = 0; for (i = 0; i < CHECKBOXITEMS; i++) cfg.activate[i] = 0; cfg.angleTrim[0] = 0; cfg.angleTrim[1] = 0; cfg.accZero[0] = 0; cfg.accZero[1] = 0; cfg.accZero[2] = 0; cfg.mag_declination = 0; // For example, -6deg 37min, = -637 Japan, format is [sign]dddmm (degreesminutes) default is zero. cfg.acc_hardware = ACC_DEFAULT; // default/autodetect cfg.acc_lpf_factor = 4; cfg.acc_lpf_for_velocity = 10; cfg.accz_deadband = 50; cfg.gyro_cmpf_factor = 400; // default MWC cfg.gyro_lpf = 42; cfg.mpu6050_scale = 1; // f**k invensense cfg.baro_tab_size = 21; cfg.baro_noise_lpf = 0.6f; cfg.baro_cf = 0.985f; cfg.gyro_smoothing_factor = 0x00141403; // default factors of 20, 20, 3 for R/P/Y cfg.vbatscale = 110; cfg.vbatmaxcellvoltage = 43; cfg.vbatmincellvoltage = 33; // Radio parseRcChannels("AETR1234"); cfg.deadband = 0; cfg.yawdeadband = 0; cfg.alt_hold_throttle_neutral = 20; cfg.spektrum_hires = 0; cfg.midrc = 1500; cfg.mincheck = 1100; cfg.maxcheck = 1900; cfg.retarded_arm = 0; // disable arm/disarm on roll left/right // Failsafe Variables cfg.failsafe_delay = 10; // 1sec cfg.failsafe_off_delay = 200; // 20sec cfg.failsafe_throttle = 1200; // decent default which should always be below hover throttle for people. // Motor/ESC/Servo cfg.minthrottle = 1150; cfg.maxthrottle = 1850; cfg.mincommand = 1000; cfg.motor_pwm_rate = 400; cfg.servo_pwm_rate = 50; // servos cfg.yaw_direction = 1; cfg.tri_yaw_middle = 1500; cfg.tri_yaw_min = 1020; cfg.tri_yaw_max = 2000; // flying wing cfg.wing_left_min = 1020; cfg.wing_left_mid = 1500; cfg.wing_left_max = 2000; cfg.wing_right_min = 1020; cfg.wing_right_mid = 1500; cfg.wing_right_max = 2000; cfg.pitch_direction_l = 1; cfg.pitch_direction_r = -1; cfg.roll_direction_l = 1; cfg.roll_direction_r = 1; // gimbal cfg.gimbal_pitch_gain = 10; cfg.gimbal_roll_gain = 10; cfg.gimbal_flags = GIMBAL_NORMAL; cfg.gimbal_pitch_min = 1020; cfg.gimbal_pitch_max = 2000; cfg.gimbal_pitch_mid = 1500; cfg.gimbal_roll_min = 1020; cfg.gimbal_roll_max = 2000; cfg.gimbal_roll_mid = 1500; // gps/nav stuff cfg.gps_type = GPS_NMEA; cfg.gps_baudrate = 115200; cfg.gps_wp_radius = 200; cfg.gps_lpf = 20; cfg.nav_slew_rate = 30; cfg.nav_controls_heading = 1; cfg.nav_speed_min = 100; cfg.nav_speed_max = 300; // serial (USART1) baudrate cfg.serial_baudrate = 115200; // custom mixer. clear by defaults. for (i = 0; i < MAX_MOTORS; i++) cfg.customMixer[i].throttle = 0.0f; writeParams(0); }
// Default settings static void resetConf(void) { int32_t i; memset(&cfg, 0, sizeof(config_t)); cfg.version = EEPROM_CONF_VERSION; // Default settings cfg.version = EEPROM_CONF_VERSION; cfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); featureSet(FEATURE_VBAT); featureSet(FEATURE_PPM); parseRcChannels("AETR1234"); // Motor/ESC cfg.escPwmRate = 400; cfg.servoPwmRate = 50; // Failsafe cfg.failsafeOnDelay = 50; // Number of command loops (50Hz) until failsafe kicks in cfg.failsafeOffDelay = 20000; // Number of command loops until failsafe stops cfg.failsafeThrottle = 1200; cfg.commandRate = 90; cfg.commandExpo = 65; cfg.rollPitchRate = 0; cfg.yawRate = 0; //cfg.dynThrPID = 0; cfg.throttleMid = 50; cfg.throttleExpo = 0; // Command Settings for(i = 0; i < AUX_OPTIONS; ++i) cfg.auxActivate[i] = 0; cfg.minCommand = 1000; cfg.midCommand = 1500; cfg.maxCommand = 2000; cfg.minCheck = 1100; cfg.maxCheck = 1900; cfg.minThrottle = 1150; cfg.maxThrottle = 1850; cfg.spektrumHiRes = false; cfg.deadBand[ROLL] = 12; cfg.deadBand[PITCH] = 12; cfg.deadBand[YAW] = 12; // Servos // Tricopter cfg.yawDirection = 1; cfg.triYawServoMin = 1000; cfg.triYawServoMid = 1500; cfg.triYawServoMax = 2000; // Bicopter cfg.biLeftServoMin = 1000; cfg.biLeftServoMid = 1500; cfg.biLeftServoMax = 2000; cfg.biRightServoMin = 1000; cfg.biRightServoMid = 1500; cfg.biRightServoMax = 2000; // Flying wing cfg.wingLeftMin = 1020; cfg.wingLeftMid = 1500; cfg.wingLeftMax = 2000; cfg.wingRightMin = 1020; cfg.wingRightMid = 1500; cfg.wingRightMax = 2000; cfg.pitchDirectionLeft = 1; cfg.pitchDirectionRight = -1; cfg.rollDirectionLeft = 1; cfg.rollDirectionRight = 1; cfg.gimbalFlags = GIMBAL_NORMAL; cfg.gimbalSmoothFactor = 0.95f; cfg.gimbalRollServoMin = 1000; cfg.gimbalRollServoMid = 1500; cfg.gimbalRollServoMax = 2000; cfg.gimbalRollServoGain = 1.0f; cfg.gimbalPitchServoMin = 1000; cfg.gimbalPitchServoMid = 1500; cfg.gimbalPitchServoMax = 2000; cfg.gimbalPitchServoGain = 1.0f; // PIDs cfg.pids[ROLL_RATE_PID].p = 100.0f; cfg.pids[ROLL_RATE_PID].i = 0.0f; cfg.pids[ROLL_RATE_PID].d = 0.0f; cfg.pids[ROLL_RATE_PID].iLim = 100.0f; // PWMs cfg.pids[PITCH_RATE_PID].p = 100.0f; cfg.pids[PITCH_RATE_PID].i = 0.0f; cfg.pids[PITCH_RATE_PID].d = 0.0f; cfg.pids[PITCH_RATE_PID].iLim = 100.0f; // PWMs cfg.pids[YAW_RATE_PID].p = 200.0f; cfg.pids[YAW_RATE_PID].i = 0.0f; cfg.pids[YAW_RATE_PID].d = 0.0f; cfg.pids[YAW_RATE_PID].iLim = 100.0f; // PWMs cfg.pids[ROLL_LEVEL_PID].p = 2.0f; cfg.pids[ROLL_LEVEL_PID].i = 0.0f; cfg.pids[ROLL_LEVEL_PID].d = 0.0f; cfg.pids[ROLL_LEVEL_PID].iLim = 0.5f; // radians/sec cfg.pids[PITCH_LEVEL_PID].p = 2.0f; cfg.pids[PITCH_LEVEL_PID].i = 0.0f; cfg.pids[PITCH_LEVEL_PID].d = 0.0f; cfg.pids[PITCH_LEVEL_PID].iLim = 0.5f; // radians/sec cfg.pids[HEADING_PID].p = 1.5f; cfg.pids[HEADING_PID].i = 0.0f; cfg.pids[HEADING_PID].d = 0.0f; cfg.pids[HEADING_PID].iLim = 0.5f; // radians/sec cfg.pids[ALTITUDE_PID].p = 20.0f; cfg.pids[ALTITUDE_PID].i = 17.0f; cfg.pids[ALTITUDE_PID].d = 7.0f; cfg.pids[ALTITUDE_PID].iLim = 30000.0f; // 0.1 m cfg.angleTrim[ROLL] = 0.0f; cfg.angleTrim[PITCH] = 0.0f; cfg.accelLPF = false; cfg.accelSmoothFactor = 0.75f; cfg.accelCalibrated = false; cfg.accelBias[XAXIS] = 0; cfg.accelBias[YAXIS] = 0; cfg.accelBias[ZAXIS] = 0; cfg.gyroBiasOnStartup = false; cfg.gyroSmoothFactor = 0.95f; cfg.gyroTCBiasSlope[ROLL] = 0.0f; cfg.gyroTCBiasSlope[PITCH] = 0.0f; cfg.gyroTCBiasSlope[YAW] = 0.0f; cfg.gyroTCBiasIntercept[ROLL] = 0.0f; cfg.gyroTCBiasIntercept[PITCH] = 0.0f; cfg.gyroTCBiasIntercept[YAW] = 0.0f; cfg.magCalibrated = false; cfg.magBias[ROLL] = 0; cfg.magBias[PITCH] = 0; cfg.magBias[YAW] = 0; cfg.mpu6050Scale = false; // Shitty hack // For Mahony AHRS cfg.accelKp = 2.0f; cfg.accelKi = 0.01f; cfg.magKp = 1.0f; cfg.magKi = 0.01f; cfg.magDriftCompensation = false; // Get your magnetic decliniation from here : http://magnetic-declination.com/ // For example, -6deg 37min, = -6.37 Japan, format is [sign]ddd.mm (degreesminutes) cfg.magDeclination = 10.59f; cfg.batScale = 11.0f; cfg.batMinCellVoltage = 3.3f; cfg.batMaxCellVoltage = 4.2f; cfg.startupDelay = 1000; // custom mixer. clear by defaults. for (i = 0; i < MAX_MOTORS; i++) cfg.customMixer[i].throttle = 0.0f; writeParams(); }
// Default settings static void resetConf(void) { int i; int8_t servoRates[8] = { 30, 30, 100, 100, 100, 100, 100, 100 }; // Clear all configuration memset(&mcfg, 0, sizeof(master_t)); memset(&cfg, 0, sizeof(config_t)); mcfg.version = EEPROM_CONF_VERSION; mcfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); #ifdef CJMCU featureSet(FEATURE_PPM); #else featureSet(FEATURE_VBAT); #endif // global settings mcfg.current_profile = 0; // default profile mcfg.gyro_cmpf_factor = 600; // default MWC mcfg.gyro_cmpfm_factor = 250; // default MWC mcfg.gyro_lpf = 42; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead mcfg.accZero[0] = 0; mcfg.accZero[1] = 0; mcfg.accZero[2] = 0; mcfg.gyro_align = ALIGN_DEFAULT; mcfg.acc_align = ALIGN_DEFAULT; mcfg.mag_align = ALIGN_DEFAULT; mcfg.board_align_roll = 0; mcfg.board_align_pitch = 0; mcfg.board_align_yaw = 0; mcfg.acc_hardware = ACC_DEFAULT; // default/autodetect mcfg.mag_hardware = MAG_DEFAULT; mcfg.max_angle_inclination = 500; // 50 degrees mcfg.yaw_control_direction = 1; mcfg.moron_threshold = 32; mcfg.currentscale = 400; // for Allegro ACS758LCB-100U (40mV/A) mcfg.vbatscale = 110; mcfg.vbatmaxcellvoltage = 43; mcfg.vbatmincellvoltage = 33; mcfg.vbatwarningcellvoltage = 35; mcfg.power_adc_channel = 0; mcfg.serialrx_type = 0; mcfg.spektrum_sat_bind = 0; mcfg.telemetry_provider = TELEMETRY_PROVIDER_FRSKY; mcfg.telemetry_port = TELEMETRY_PORT_UART; mcfg.telemetry_switch = 0; mcfg.midrc = 1500; mcfg.mincheck = 1100; mcfg.maxcheck = 1900; mcfg.retarded_arm = 0; // disable arm/disarm on roll left/right mcfg.disarm_kill_switch = 1; // AUX disarm independently of throttle value mcfg.fw_althold_dir = 1; // Motor/ESC/Servo mcfg.minthrottle = 1150; mcfg.maxthrottle = 1850; mcfg.mincommand = 1000; mcfg.deadband3d_low = 1406; mcfg.deadband3d_high = 1514; mcfg.neutral3d = 1460; mcfg.deadband3d_throttle = 50; mcfg.motor_pwm_rate = MOTOR_PWM_RATE; mcfg.servo_pwm_rate = 50; // safety features mcfg.auto_disarm_board = 5; // auto disarm after 5 sec if motors not started or disarmed // gps/nav stuff mcfg.gps_type = GPS_NMEA; mcfg.gps_baudrate = GPS_BAUD_115200; // serial (USART1) baudrate mcfg.serial_baudrate = 115200; mcfg.softserial_baudrate = 9600; mcfg.softserial_1_inverted = 0; mcfg.softserial_2_inverted = 0; mcfg.looptime = 3500; mcfg.emf_avoidance = 0; mcfg.rssi_aux_channel = 0; mcfg.rssi_adc_max = 4095; cfg.pidController = 0; cfg.P8[ROLL] = 40; cfg.I8[ROLL] = 30; cfg.D8[ROLL] = 23; cfg.P8[PITCH] = 40; cfg.I8[PITCH] = 30; cfg.D8[PITCH] = 23; cfg.P8[YAW] = 85; cfg.I8[YAW] = 45; cfg.D8[YAW] = 0; cfg.P8[PIDALT] = 50; cfg.I8[PIDALT] = 0; cfg.D8[PIDALT] = 0; cfg.P8[PIDPOS] = 11; // POSHOLD_P * 100; cfg.I8[PIDPOS] = 0; // POSHOLD_I * 100; cfg.D8[PIDPOS] = 0; cfg.P8[PIDPOSR] = 20; // POSHOLD_RATE_P * 10; cfg.I8[PIDPOSR] = 8; // POSHOLD_RATE_I * 100; cfg.D8[PIDPOSR] = 45; // POSHOLD_RATE_D * 1000; cfg.P8[PIDNAVR] = 14; // NAV_P * 10; cfg.I8[PIDNAVR] = 20; // NAV_I * 100; cfg.D8[PIDNAVR] = 80; // NAV_D * 1000; cfg.P8[PIDLEVEL] = 90; cfg.I8[PIDLEVEL] = 10; cfg.D8[PIDLEVEL] = 100; cfg.P8[PIDMAG] = 40; cfg.P8[PIDVEL] = 120; cfg.I8[PIDVEL] = 45; cfg.D8[PIDVEL] = 1; cfg.rcRate8 = 90; cfg.rcExpo8 = 65; cfg.yawRate = 0; cfg.dynThrPID = 0; cfg.tpa_breakpoint = 1500; cfg.thrMid8 = 50; cfg.thrExpo8 = 0; // for (i = 0; i < CHECKBOXITEMS; i++) // cfg.activate[i] = 0; cfg.angleTrim[0] = 0; cfg.angleTrim[1] = 0; cfg.locked_in = 0; cfg.mag_declination = 0; // For example, -6deg 37min, = -637 Japan, format is [sign]dddmm (degreesminutes) default is zero. cfg.acc_lpf_factor = 4; cfg.accz_deadband = 40; cfg.accxy_deadband = 40; cfg.baro_tab_size = 21; cfg.baro_noise_lpf = 0.6f; cfg.baro_cf_vel = 0.985f; cfg.baro_cf_alt = 0.965f; cfg.accz_lpf_cutoff = 5.0f; cfg.acc_unarmedcal = 1; cfg.small_angle = 25; // Radio parseRcChannels("AETR1234"); cfg.deadband = 0; cfg.yawdeadband = 0; cfg.alt_hold_throttle_neutral = 40; cfg.alt_hold_fast_change = 1; cfg.throttle_correction_value = 0; // could 10 with althold or 40 for fpv cfg.throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv // Failsafe Variables cfg.failsafe_delay = 10; // 1sec cfg.failsafe_off_delay = 200; // 20sec cfg.failsafe_throttle = 1200; // decent default which should always be below hover throttle for people. cfg.failsafe_detect_threshold = 985; // any of first 4 channels below this value will trigger failsafe // servos for (i = 0; i < 8; i++) { cfg.servoConf[i].min = 1020; cfg.servoConf[i].max = 2000; cfg.servoConf[i].middle = 1500; cfg.servoConf[i].rate = servoRates[i]; } cfg.yaw_direction = 1; cfg.tri_unarmed_servo = 1; // gimbal cfg.gimbal_flags = GIMBAL_NORMAL; // gps/nav stuff cfg.gps_wp_radius = 200; cfg.gps_lpf = 20; cfg.nav_slew_rate = 30; cfg.nav_controls_heading = 1; cfg.nav_speed_min = 100; cfg.nav_speed_max = 300; cfg.ap_mode = 40; // fw stuff cfg.fw_roll_throw = 0.5f; cfg.fw_pitch_throw = 0.5f; cfg.fw_gps_maxcorr = 20; cfg.fw_gps_rudder = 15; cfg.fw_gps_maxclimb = 15; cfg.fw_gps_maxdive = 15; cfg.fw_climb_throttle = 1900; cfg.fw_cruise_throttle = 1500; cfg.fw_idle_throttle = 1300; cfg.fw_scaler_throttle = 8; cfg.fw_roll_comp = 1; // control stuff mcfg.reboot_character = 'R'; // custom mixer. clear by defaults. for (i = 0; i < MAX_MOTORS; i++) mcfg.customMixer[i].throttle = 0.0f; // copy default config into all 3 profiles for (i = 0; i < 3; i++) memcpy(&mcfg.profile[i], &cfg, sizeof(config_t)); }
void validateAndFixConfig(void) { if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP))) { featureSet(DEFAULT_RX_FEATURE); } if (featureConfigured(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_SERIAL | FEATURE_RX_MSP); } if (featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM); } if (featureConfigured(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_PPM); } if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_MSP | FEATURE_RX_PPM); } #ifdef STM32F10X // avoid overloading the CPU on F1 targets when using gyro sync and GPS. if (imuConfig()->gyroSync && imuConfig()->gyroSyncDenominator < 2 && featureConfigured(FEATURE_GPS)) { imuConfig()->gyroSyncDenominator = 2; } #endif #if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (featureConfigured(FEATURE_SOFTSERIAL) && ( 0 #ifdef USE_SOFTSERIAL1 || (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER) #endif #ifdef USE_SOFTSERIAL2 || (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER) #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(CC3D) && defined(DISPLAY) && defined(USE_UART3) if (doesConfigurationUsePort(SERIAL_PORT_UART3) && featureConfigured(FEATURE_DISPLAY)) { featureClear(FEATURE_DISPLAY); } #endif #ifdef STM32F303xC // hardware supports serial port inversion, make users life easier for those that want to connect SBus RX's #ifdef TELEMETRY telemetryConfig()->telemetry_inversion = 1; #endif #endif /* * The retarded_arm setting is incompatible with pid_at_min_throttle because full roll causes the craft to roll over on the ground. * The pid_at_min_throttle implementation ignores yaw on the ground, but doesn't currently ignore roll when retarded_arm is enabled. */ if (armingConfig()->retarded_arm && mixerConfig()->pid_at_min_throttle) { mixerConfig()->pid_at_min_throttle = 0; } #if defined(LED_STRIP) && defined(TRANSPONDER) && !defined(UNIT_TEST) if ((WS2811_DMA_TC_FLAG == TRANSPONDER_DMA_TC_FLAG) && featureConfigured(FEATURE_TRANSPONDER) && featureConfigured(FEATURE_LED_STRIP)) { featureClear(FEATURE_LED_STRIP); } #endif #if defined(CC3D) && defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO) // shared pin if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) { featureClear(FEATURE_SONAR); featureClear(FEATURE_SOFTSERIAL); featureClear(FEATURE_RSSI_ADC); } #endif #if defined(COLIBRI_RACE) serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP; if (featureConfigured(FEATURE_RX_SERIAL)) { serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL; } #endif if (!isSerialConfigValid(serialConfig())) { PG_RESET_CURRENT(serialConfig); } #if defined(USE_VCP) serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP; #endif }
void validateAndFixConfig(void) { if (!(feature(FEATURE_RX_PARALLEL_PWM) || feature(FEATURE_RX_PPM) || feature(FEATURE_RX_SERIAL) || feature(FEATURE_RX_MSP))) { featureSet(FEATURE_RX_PARALLEL_PWM); // Consider changing the default to PPM } if (feature(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM); } if (feature(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL); featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_PARALLEL_PWM)) { #if defined(STM32F10X) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (feature(FEATURE_SOFTSERIAL) && ( 0 #ifdef USE_SOFTSERIAL1 || (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER) #endif #ifdef USE_SOFTSERIAL2 || (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER) #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(NAZE) && defined(SONAR) if (feature(FEATURE_RX_PARALLEL_PWM) && feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(OLIMEXINO) && defined(SONAR) if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(CC3D) && defined(DISPLAY) && defined(USE_USART3) if (doesConfigurationUsePort(SERIAL_PORT_USART3) && feature(FEATURE_DISPLAY)) { featureClear(FEATURE_DISPLAY); } #endif /* * The retarded_arm setting is incompatible with pid_at_min_throttle because full roll causes the craft to roll over on the ground. * The pid_at_min_throttle implementation ignores yaw on the ground, but doesn't currently ignore roll when retarded_arm is enabled. */ if (masterConfig.retarded_arm && masterConfig.mixerConfig.pid_at_min_throttle) { masterConfig.mixerConfig.pid_at_min_throttle = 0; } useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); } }
// Default settings static void resetConf(void) { int i; #ifdef USE_SERVOS int8_t servoRates[MAX_SUPPORTED_SERVOS] = { 30, 30, 100, 100, 100, 100, 100, 100 }; ; #endif // Clear all configuration memset(&masterConfig, 0, sizeof(master_t)); setProfile(0); setControlRateProfile(0); masterConfig.version = EEPROM_CONF_VERSION; masterConfig.mixerMode = MIXER_QUADX; featureClearAll(); #if defined(CJMCU) || defined(SPARKY) featureSet(FEATURE_RX_PPM); #endif #ifdef BOARD_HAS_VOLTAGE_DIVIDER // only enable the VBAT feature by default if the board has a voltage divider otherwise // the user may see incorrect readings and unexpected issues with pin mappings may occur. featureSet(FEATURE_VBAT); #endif featureSet(FEATURE_FAILSAFE); // global settings masterConfig.current_profile_index = 0; // default profile masterConfig.gyro_cmpf_factor = 600; // default MWC masterConfig.gyro_cmpfm_factor = 250; // default MWC masterConfig.gyro_lpf = 42; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead resetAccelerometerTrims(&masterConfig.accZero); resetSensorAlignment(&masterConfig.sensorAlignmentConfig); masterConfig.boardAlignment.rollDegrees = 0; masterConfig.boardAlignment.pitchDegrees = 0; masterConfig.boardAlignment.yawDegrees = 0; masterConfig.acc_hardware = ACC_DEFAULT; // default/autodetect masterConfig.max_angle_inclination = 500; // 50 degrees masterConfig.yaw_control_direction = 1; masterConfig.gyroConfig.gyroMovementCalibrationThreshold = 32; masterConfig.mag_hardware = MAG_DEFAULT; // default/autodetect resetBatteryConfig(&masterConfig.batteryConfig); resetTelemetryConfig(&masterConfig.telemetryConfig); masterConfig.rxConfig.serialrx_provider = 0; masterConfig.rxConfig.spektrum_sat_bind = 0; masterConfig.rxConfig.midrc = 1500; masterConfig.rxConfig.mincheck = 1100; masterConfig.rxConfig.maxcheck = 1900; masterConfig.rxConfig.rx_min_usec = 985; // any of first 4 channels below this value will trigger rx loss detection masterConfig.rxConfig.rx_max_usec = 2115; // any of first 4 channels above this value will trigger rx loss detection masterConfig.rxConfig.rssi_channel = 0; masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT; masterConfig.inputFilteringMode = INPUT_FILTERING_DISABLED; masterConfig.retarded_arm = 0; masterConfig.disarm_kill_switch = 1; masterConfig.auto_disarm_delay = 5; masterConfig.small_angle = 25; resetMixerConfig(&masterConfig.mixerConfig); masterConfig.airplaneConfig.flaps_speed = 0; masterConfig.airplaneConfig.fixedwing_althold_dir = 1; // Motor/ESC/Servo resetEscAndServoConfig(&masterConfig.escAndServoConfig); resetFlight3DConfig(&masterConfig.flight3DConfig); #ifdef BRUSHED_MOTORS masterConfig.motor_pwm_rate = BRUSHED_MOTORS_PWM_RATE; #else masterConfig.motor_pwm_rate = BRUSHLESS_MOTORS_PWM_RATE; #endif masterConfig.servo_pwm_rate = 50; #ifdef GPS // gps/nav stuff masterConfig.gpsConfig.provider = GPS_NMEA; masterConfig.gpsConfig.sbasMode = SBAS_AUTO; masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON; masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_OFF; #endif resetSerialConfig(&masterConfig.serialConfig); masterConfig.looptime = 3500; masterConfig.emf_avoidance = 0; resetPidProfile(¤tProfile->pidProfile); resetControlRateConfig(&masterConfig.controlRateProfiles[0]); // for (i = 0; i < CHECKBOXITEMS; i++) // cfg.activate[i] = 0; resetRollAndPitchTrims(¤tProfile->accelerometerTrims); currentProfile->mag_declination = 0; currentProfile->acc_lpf_factor = 4; currentProfile->accz_lpf_cutoff = 5.0f; currentProfile->accDeadband.xy = 40; currentProfile->accDeadband.z = 40; resetBarometerConfig(¤tProfile->barometerConfig); currentProfile->acc_unarmedcal = 1; // Radio parseRcChannels("AETR1234", &masterConfig.rxConfig); resetRcControlsConfig(¤tProfile->rcControlsConfig); currentProfile->throttle_correction_value = 0; // could 10 with althold or 40 for fpv currentProfile->throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv // Failsafe Variables masterConfig.failsafeConfig.failsafe_delay = 10; // 1sec masterConfig.failsafeConfig.failsafe_off_delay = 200; // 20sec masterConfig.failsafeConfig.failsafe_throttle = 1000; // default throttle off. #ifdef USE_SERVOS // servos for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) { currentProfile->servoConf[i].min = DEFAULT_SERVO_MIN; currentProfile->servoConf[i].max = DEFAULT_SERVO_MAX; currentProfile->servoConf[i].middle = DEFAULT_SERVO_MIDDLE; currentProfile->servoConf[i].rate = servoRates[i]; currentProfile->servoConf[i].forwardFromChannel = CHANNEL_FORWARDING_DISABLED; } // gimbal currentProfile->gimbalConfig.gimbal_flags = GIMBAL_NORMAL; #endif #ifdef GPS resetGpsProfile(¤tProfile->gpsProfile); #endif // custom mixer. clear by defaults. for (i = 0; i < MAX_SUPPORTED_MOTORS; i++) masterConfig.customMixer[i].throttle = 0.0f; #ifdef LED_STRIP applyDefaultColors(masterConfig.colors, CONFIGURABLE_COLOR_COUNT); applyDefaultLedStripConfig(masterConfig.ledConfigs); #endif #ifdef BLACKBOX #ifdef SPRACINGF3 featureSet(FEATURE_BLACKBOX); masterConfig.blackbox_device = 1; #else masterConfig.blackbox_device = 0; #endif masterConfig.blackbox_rate_num = 1; masterConfig.blackbox_rate_denom = 1; #endif // alternative defaults settings for ALIENWIIF1 and ALIENWIIF3 targets #ifdef ALIENWII32 featureSet(FEATURE_RX_SERIAL); featureSet(FEATURE_MOTOR_STOP); featureSet(FEATURE_FAILSAFE); #ifdef ALIENWIIF3 masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; masterConfig.batteryConfig.vbatscale = 20; #else masterConfig.serialConfig.portConfigs[1].functionMask = FUNCTION_RX_SERIAL; #endif masterConfig.rxConfig.serialrx_provider = 1; masterConfig.rxConfig.spektrum_sat_bind = 5; masterConfig.escAndServoConfig.minthrottle = 1000; masterConfig.escAndServoConfig.maxthrottle = 2000; masterConfig.motor_pwm_rate = 32000; masterConfig.looptime = 2000; currentProfile->pidProfile.pidController = 3; currentProfile->pidProfile.P8[ROLL] = 36; currentProfile->pidProfile.P8[PITCH] = 36; masterConfig.failsafeConfig.failsafe_delay = 2; masterConfig.failsafeConfig.failsafe_off_delay = 0; masterConfig.failsafeConfig.failsafe_throttle = 1000; currentControlRateProfile->rcRate8 = 130; currentControlRateProfile->rates[FD_PITCH] = 20; currentControlRateProfile->rates[FD_ROLL] = 20; currentControlRateProfile->rates[FD_YAW] = 100; parseRcChannels("TAER1234", &masterConfig.rxConfig); // { 1.0f, -0.5f, 1.0f, -1.0f }, // REAR_R masterConfig.customMixer[0].throttle = 1.0f; masterConfig.customMixer[0].roll = -0.5f; masterConfig.customMixer[0].pitch = 1.0f; masterConfig.customMixer[0].yaw = -1.0f; // { 1.0f, -0.5f, -1.0f, 1.0f }, // FRONT_R masterConfig.customMixer[1].throttle = 1.0f; masterConfig.customMixer[1].roll = -0.5f; masterConfig.customMixer[1].pitch = -1.0f; masterConfig.customMixer[1].yaw = 1.0f; // { 1.0f, 0.5f, 1.0f, 1.0f }, // REAR_L masterConfig.customMixer[2].throttle = 1.0f; masterConfig.customMixer[2].roll = 0.5f; masterConfig.customMixer[2].pitch = 1.0f; masterConfig.customMixer[2].yaw = 1.0f; // { 1.0f, 0.5f, -1.0f, -1.0f }, // FRONT_L masterConfig.customMixer[3].throttle = 1.0f; masterConfig.customMixer[3].roll = 0.5f; masterConfig.customMixer[3].pitch = -1.0f; masterConfig.customMixer[3].yaw = -1.0f; // { 1.0f, -1.0f, -0.5f, -1.0f }, // MIDFRONT_R masterConfig.customMixer[4].throttle = 1.0f; masterConfig.customMixer[4].roll = -1.0f; masterConfig.customMixer[4].pitch = -0.5f; masterConfig.customMixer[4].yaw = -1.0f; // { 1.0f, 1.0f, -0.5f, 1.0f }, // MIDFRONT_L masterConfig.customMixer[5].throttle = 1.0f; masterConfig.customMixer[5].roll = 1.0f; masterConfig.customMixer[5].pitch = -0.5f; masterConfig.customMixer[5].yaw = 1.0f; // { 1.0f, -1.0f, 0.5f, 1.0f }, // MIDREAR_R masterConfig.customMixer[6].throttle = 1.0f; masterConfig.customMixer[6].roll = -1.0f; masterConfig.customMixer[6].pitch = 0.5f; masterConfig.customMixer[6].yaw = 1.0f; // { 1.0f, 1.0f, 0.5f, -1.0f }, // MIDREAR_L masterConfig.customMixer[7].throttle = 1.0f; masterConfig.customMixer[7].roll = 1.0f; masterConfig.customMixer[7].pitch = 0.5f; masterConfig.customMixer[7].yaw = -1.0f; #endif // copy first profile into remaining profile for (i = 1; i < MAX_PROFILE_COUNT; i++) { memcpy(&masterConfig.profile[i], currentProfile, sizeof(profile_t)); } // copy first control rate config into remaining profile for (i = 1; i < MAX_CONTROL_RATE_PROFILE_COUNT; i++) { memcpy(&masterConfig.controlRateProfiles[i], currentControlRateProfile, sizeof(controlRateConfig_t)); } for (i = 1; i < MAX_PROFILE_COUNT; i++) { masterConfig.profile[i].defaultRateProfileIndex = i % MAX_CONTROL_RATE_PROFILE_COUNT; } }
static void validateAndFixConfig(void) { if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP) || featureConfigured(FEATURE_RX_NRF24))) { featureSet(DEFAULT_RX_FEATURE); } if (featureConfigured(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_NRF24); } if (featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM | FEATURE_RX_NRF24); } if (featureConfigured(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_PPM | FEATURE_RX_NRF24); } if (featureConfigured(FEATURE_RX_NRF24)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM | FEATURE_RX_MSP); } #if defined(NAV) // Ensure sane values of navConfig settings validateNavConfig(&masterConfig.navConfig); #endif if (featureConfigured(FEATURE_SOFTSPI)) { featureClear(FEATURE_RX_PPM | FEATURE_RX_PARALLEL_PWM | FEATURE_SOFTSERIAL | FEATURE_VBAT); #if defined(STM32F10X) featureClear(FEATURE_LED_STRIP); // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif } if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_MSP | FEATURE_RX_PPM | FEATURE_RX_NRF24); #if defined(STM32F10X) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #if defined(CC3D) // There is a timer clash between PWM RX pins and motor output pins - this forces us to have same timer tick rate for these timers // which is only possible when using brushless motors w/o oneshot (timer tick rate is PWM_TIMER_MHZ) // On CC3D OneShot is incompatible with PWM RX featureClear(FEATURE_ONESHOT125); // Brushed motors on CC3D are not possible when using PWM RX if (masterConfig.motor_pwm_rate > BRUSHLESS_MOTORS_PWM_RATE) { masterConfig.motor_pwm_rate = BRUSHLESS_MOTORS_PWM_RATE; } #endif #endif #if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #ifdef STM32F10X // avoid overloading the CPU on F1 targets when using gyro sync and GPS. if (masterConfig.gyroSync && masterConfig.gyroSyncDenominator < 2 && featureConfigured(FEATURE_GPS)) { masterConfig.gyroSyncDenominator = 2; } // avoid overloading the CPU when looptime < 2000 and GPS if (masterConfig.looptime && featureConfigured(FEATURE_GPS)) { masterConfig.looptime = 2000; } #endif #if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (featureConfigured(FEATURE_SOFTSERIAL) && ( 0 #ifdef USE_SOFTSERIAL1 || (WS2811_TIMER == SOFTSERIAL_1_TIMER) #endif #ifdef USE_SOFTSERIAL2 || (WS2811_TIMER == SOFTSERIAL_2_TIMER) #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(NAZE) && defined(SONAR) if (featureConfigured(FEATURE_RX_PARALLEL_PWM) && featureConfigured(FEATURE_SONAR) && featureConfigured(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(OLIMEXINO) && defined(SONAR) if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(CC3D) && defined(DISPLAY) && defined(USE_USART3) if (doesConfigurationUsePort(SERIAL_PORT_USART3) && feature(FEATURE_DISPLAY)) { featureClear(FEATURE_DISPLAY); } #endif #ifdef STM32F303xC // hardware supports serial port inversion, make users life easier for those that want to connect SBus RX's #ifdef TELEMETRY masterConfig.telemetryConfig.telemetry_inversion = 1; #endif #endif #if defined(CC3D) #if defined(CC3D_PPM1) #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { featureClear(FEATURE_SONAR); } #endif #else #if defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO) // shared pin if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) { featureClear(FEATURE_SONAR); featureClear(FEATURE_SOFTSERIAL); featureClear(FEATURE_RSSI_ADC); } #endif #endif // CC3D_PPM1 #endif // CC3D #if defined(COLIBRI_RACE) masterConfig.serialConfig.portConfigs[0].functionMask = FUNCTION_MSP; if(featureConfigured(FEATURE_RX_SERIAL)) { masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; } #endif useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); } /* * If provided predefined mixer setup is disabled, fallback to default one */ if (!isMixerEnabled(masterConfig.mixerMode)) { masterConfig.mixerMode = DEFAULT_MIXER; } }
// Default settings static void resetConf(void) { uint8_t i; const int8_t default_align[3][3] = { /* GYRO */ { 0, 0, 0 }, /* ACC */ { 0, 0, 0 }, /* MAG */ { -2, -3, 1 } }; memset(&cfg, 0, sizeof(config_t)); cfg.version = EEPROM_CONF_VERSION; cfg.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); // featureSet(FEATURE_VBAT); featureSet(FEATURE_PPM); // featureSet(FEATURE_FAILSAFE); // featureSet(FEATURE_LCD); // featureSet(FEATURE_GPS); // featureSet(FEATURE_PASS); // Just pass Throttlechannel // featureSet(FEATURE_SONAR); cfg.P8[ROLL] = 35; // 40 cfg.I8[ROLL] = 20; cfg.D8[ROLL] = 30; cfg.P8[PITCH] = 35; // 40 cfg.I8[PITCH] = 20; cfg.D8[PITCH] = 30; cfg.P8[YAW] = 60; // 70 cfg.I8[YAW] = 45; cfg.P8[PIDALT] = 100; cfg.I8[PIDALT] = 30; cfg.D8[PIDALT] = 80; cfg.P8[PIDPOS] = 10; // FIND YOUR VALUE cfg.I8[PIDPOS] = 0; // NOT USED cfg.D8[PIDPOS] = 0; // NOT USED cfg.P8[PIDPOSR] = 50; // FIND YOUR VALUE // Controls the speed part with my PH logic cfg.I8[PIDPOSR] = 0; // 25; // DANGER "I" may lead to circeling // Controls the speed part with my PH logic cfg.D8[PIDPOSR] = 40; // FIND YOUR VALUE // Controls the speed part with my PH logic cfg.P8[PIDNAVR] = 15; // 14 More ? cfg.I8[PIDNAVR] = 0; // NAV_I * 100; // Scaling/Purpose unchanged cfg.D8[PIDNAVR] = 0; // NAV_D * 1000; // Scaling/Purpose unchanged // cfg.P8[PIDPOS] = 11; // APM PH Stock values // cfg.I8[PIDPOS] = 0; // cfg.D8[PIDPOS] = 0; // cfg.P8[PIDPOSR] = 20; // POSHOLD_RATE_P * 10; // cfg.I8[PIDPOSR] = 8; // POSHOLD_RATE_I * 100; // cfg.D8[PIDPOSR] = 45; // POSHOLD_RATE_D * 1000; // cfg.P8[PIDNAVR] = 14; // NAV_P * 10; // cfg.I8[PIDNAVR] = 20; // NAV_I * 100; // cfg.D8[PIDNAVR] = 80; // NAV_D * 1000; cfg.P8[PIDLEVEL] = 60; // 70 cfg.I8[PIDLEVEL] = 10; cfg.D8[PIDLEVEL] = 50; cfg.P8[PIDMAG] = 80; // cfg.P8[PIDVEL] = 0;// cfg.I8[PIDVEL] = 0;// cfg.D8[PIDVEL] = 0; cfg.rcRate8 = 100; cfg.rcExpo8 = 80; // cfg.rollPitchRate = 0;// cfg.yawRate = 0;// cfg.dynThrPID = 0; cfg.thrMid8 = 50; // cfg.thrExpo8 = 0;//for (i = 0; i < CHECKBOXITEMS; i++)//cfg.activate[i] = 0; // cfg.angleTrim[0] = 0;// cfg.angleTrim[1] = 0;// cfg.accZero[0] = 0;// cfg.accZero[1] = 0; // cfg.accZero[2] = 0;// cfg.mag_declination = 0; // For example, -6deg 37min, = -637 Japan, format is [sign]dddmm (degreesminutes) default is zero. memcpy(&cfg.align, default_align, sizeof(cfg.align)); // cfg.mag_declination = 0; // For example, -6deg 37min, = -637 Japan, format is [sign]dddmm (degreesminutes) default is zero. cfg.mag_declination = 107; // Crashpilot //cfg.acc_hardware = ACC_DEFAULT;// default/autodetect cfg.mag_oldcalib = 0; // 1 = old hard iron calibration // 0 = extended calibration (better) cfg.mag_oldctime = 1; // 1 - 5 Time in MINUTES for old calibration. Use this together with mag_oldcalib = 1 if you have a monster of a copter cfg.acc_hardware = 2; // Crashpilot MPU6050 cfg.acc_lpf_factor = 100; // changed 27.11.2012 cfg.acc_ins_lpf = 10; // General LPF for all INS stuff cfg.looptime = 3000; // changed 27.11.2012 // cfg.acc_lpf_factor = 4; cfg.mainpidctrl = 1; // 1 = OriginalMwiiPid pimped by me, 2 = New mwii controller (experimental, float pimped + pt1) cfg.mainpt1cut = 15; // (0-50Hz) 0 Disables pt1element. Cuf Off Frequency for pt1 element D term in Hz of main Pid controller cfg.newpidimax = 256; // [10-65000) 256 Default. Imax of new Pidcontroller cfg.gpspt1cut = 10; // (1-50Hz) Cuf Off Frequency for D term in Hz of GPS Pid controller cfg.gyro_cmpf_factor = 1000; // (10-1000) 400 default. Now 1000. The higher, the more weight gets the gyro and the lower is the correction with Acc data. cfg.gyro_cmpfm_factor = 1000; // (10-2000) 200 default for 10Hz. Now 1000 for 70Hz seems ok. Gyro/Magnetometer Complement. Greater Value means more filter on mag/delay cfg.gyro_lpf = 42; // Possible values 256 188 98 42 20 10 (HZ) // Baro cfg.accz_vel_cf = 0.985f; // Crashpilot: Value for complementary filter accz and barovelocity cfg.accz_alt_cf = 0.940f; // Crashpilot: Value for complementary filter accz and altitude cfg.baro_lag = 0.3f; // Lag of Baro/Althold stuff in general, makes stop in hightchange snappier cfg.barodownscale = 0.7f; // Scale downmovement down (because copter drops faster than rising) // Autoland cfg.al_barolr = 75; // Temporary value "64" increase to increase Landingspeed cfg.al_snrlr = 75; // You can specify different landingfactor here on sonar contact, because sonar land maybe too fast when snr_cf is high cfg.al_lndthr = 0; // This is the absolute throttle that kicks off the "has landed timer" if it is too low cfg.minthrottle is taken. cfg.al_debounce = 5; // (0-20%) 0 Disables. Defines a Throttlelimiter on Autoland. Percentage defines the maximum deviation of assumed hoverthrottle during Autoland cfg.al_tobaro = 2000; // Timeout in ms (100 - 5000) before shutoff on autoland. "al_lndthr" must be undershot for that timeperiod cfg.al_tosnr = 1000; // Timeout in ms (100 - 5000) If sonar aided land is wanted (snr_land = 1) you can choose a different timeout here cfg.baro_debug = 0; // Crashpilot: 1 = Debug Barovalues //cfg.baro_noise_lpf = 0.6f;// Crashpilot: Not used anymore//cfg.baro_cf = 0.985f;// Crashpilot: Not used anymore cfg.moron_threshold = 32; cfg.gyro_smoothing_factor = 0x00141403; // default factors of 20, 20, 3 for R/P/Y cfg.vbatscale = 110; cfg.vbatmaxcellvoltage = 43; cfg.vbatmincellvoltage = 33; cfg.power_adc_channel = 0; // Radio parseRcChannels("AETR1234"); cfg.deadband = 15; // Crashpilot: A little deadband will not harm our crappy RC cfg.yawdeadband = 15; // Crashpilot: A little deadband will not harm our crappy RC cfg.alt_hold_throttle_neutral = 50; // Crashpilot: A little deadband will not harm our crappy RC cfg.gps_adddb = 5; // Additional Deadband for all GPS functions; // cfg.spektrum_hires = 0; cfg.midrc = 1500; cfg.mincheck = 1100; cfg.maxcheck = 1900; cfg.retarded_arm = 0; // disable arm/disarm on roll left/right cfg.auxChannels = 4; // [4 - 10] cGiesen: Default = 4, then like the standard! cfg.killswitchtime = 0; // Time in ms when your arm switch becomes a Killswitch, 0 disables the Killswitch, can not be used together with FEATURE_INFLIGHT_ACC_CAL // Motor/ESC/Servo cfg.minthrottle = 1150; // ORIG // cfg.minthrottle = 1100; cfg.maxthrottle = 1950; cfg.passmotor = 0; // Crashpilot: Only used with feature pass. If 0 = all Motors, otherwise specific Motor cfg.mincommand = 1000; cfg.motor_pwm_rate = 400; cfg.servo_pwm_rate = 50; // servos cfg.yaw_direction = 1; cfg.tri_yaw_middle = 1500; cfg.tri_yaw_min = 1020; cfg.tri_yaw_max = 2000; // flying wing cfg.wing_left_min = 1020; cfg.wing_left_mid = 1500; cfg.wing_left_max = 2000; cfg.wing_right_min = 1020; cfg.wing_right_mid = 1500; cfg.wing_right_max = 2000; cfg.pitch_direction_l = 1; cfg.pitch_direction_r = -1; cfg.roll_direction_l = 1; cfg.roll_direction_r = 1; // gimbal cfg.gimbal_pitch_gain = 10; cfg.gimbal_roll_gain = 10; cfg.gimbal_flags = GIMBAL_NORMAL; cfg.gimbal_pitch_min = 1020; cfg.gimbal_pitch_max = 2000; cfg.gimbal_pitch_mid = 1500; cfg.gimbal_roll_min = 1020; cfg.gimbal_roll_max = 2000; cfg.gimbal_roll_mid = 1500; // gps/nav cfg.gps_type = 1; // GPS_NMEA = 0, GPS_UBLOX = 1, GPS_MTK16 = 2, GPS_MTK19 = 3, GPS_UBLOX_DUMB = 4 cfg.gps_baudrate = 115200; //38400; // Changed 8/6/13 to 115200; // cfg.gps_baudrate = 38400; //38400; // Changed 8/6/13 to 115200; // cfg.gps_ins_vel = 0.72f; // Crashpilot GPS INS The LOWER the value the closer to gps speed // Dont go to high here cfg.gps_ins_vel = 0.6f; // Crashpilot GPS INS The LOWER the value the closer to gps speed // Dont go to high here cfg.gps_ins_mdl = 1; // NOTE: KEEP THIS TO "1" FOR NOW because other models work like shit currently. GPS ins model. 1 = Based on lat/lon, 2 = based on Groundcourse & speed,(3 = based on ublx velned deleted) cfg.gps_lag = 2000; // GPS Lag in ms cfg.gps_phase = 0; // +- 30 Degree Make a phaseshift of GPS output for whatever reason you might want that (frametype etc) cfg.gps_ph_minsat = 6; // Minimal Satcount for PH, PH on RTL is still done with 5Sats or more cfg.gps_ph_settlespeed = 10; // 1 - 200 cm/s PH settlespeed in cm/s cfg.gps_ph_brakemaxangle = 10; // 1 - 45 Degree Maximal 5 Degree Overspeedbrake cfg.gps_ph_minbrakepercent = 50; // 1 - 99% minimal percent of "brakemaxangle" left over for braking. Example brakemaxangle = 6 so 50 Percent is 3.. cfg.gps_ph_brkacc = 40; // [1 - 500] Is the assumed negative braking acceleration in cm/(s*s) of copter. Value is positive though. It will be a timeout. The lower the Value the longe the Timeout cfg.gps_ph_abstub = 100; // 0 - 1000cm (300 Dfault, 0 disables) Defines the "bath tub" around current absolute PH Position, where PosP is diminished, reaction gets harder on tubs edge and then goes on linear cfg.gps_maxangle = 25; // 10 - 45 Degree Maximal over all GPS bank angle cfg.gps_wp_radius = 150; // cfg.gps_rtl_minhight = 20; // (0 - 200) Minimal RTL hight in m, 0 disables feature cfg.gps_rtl_minhight = 0; // (0 - 200) Minimal RTL hight in m, 0 disables feature cfg.gps_rtl_mindist = 0; // 0 Disables. Minimal distance for RTL in m, otherwise it will just autoland, prevent Failsafe jump in your face, when arming copter and turning off TX cfg.gps_rtl_flyaway = 0; // 0 Disables. If during RTL the distance increases beyond this value (in meters relative to RTL activation point), something is wrong, autoland cfg.gps_yaw = 30; // Thats the MAG P during GPS functions, substitute for "cfg.P8[PIDMAG]" cfg.nav_rtl_lastturn = 1; // 1 = when copter gets to home position it rotates it's head to takeoff direction independend of nav_controls_heading // cfg.nav_slew_rate = 30; // was 30 and 50 before cfg.nav_slew_rate = 20; // was 30 and 50 before cfg.nav_tail_first = 0; // 1 = Copter comes back with ass first (only works with nav_controls_heading = 1) cfg.nav_controls_heading = 0; // 1 = Nav controls YAW during WP ONLY // cfg.nav_controls_heading = 1; // 1 = Nav controls YAW during WP ONLY cfg.nav_speed_min = 100; // 10 - 200 cm/s don't set higher than nav_speed_max! That dumbness is not covered. cfg.nav_speed_max = 350; // 50 - 2000 cm/s don't set lower than nav_speed_min! That dumbness is not covered. cfg.nav_approachdiv = 3; // 2 - 10 This is the divisor for approach speed for wp_distance. Example: 400cm / 3 = 133cm/s if below nav_speed_min it will be adjusted cfg.nav_tiltcomp = 20; // 0 - 100 (20 TestDefault) Only arducopter really knows. Dfault was 54. This is some kind of a hack of them to reach actual nav_speed_max. 54 was Dfault, 0 disables cfg.nav_ctrkgain = 0.5f; // 0 - 10.0 (0.5 TestDefault) (Floatvariable) That is the "Crosstrackgain" APM Dfault is "1". "0" disables // Failsafe Variables cfg.failsafe_delay = 10; // in 0.1s (10 = 1sec) cfg.failsafe_off_delay = 200; // in 0.1s (200 = 20sec) cfg.failsafe_throttle = 1200; // decent Dfault which should always be below hover throttle for people. cfg.failsafe_deadpilot = 0; // DONT USE, EXPERIMENTAL Time in sec when FS is engaged after idle on THR/YAW/ROLL/PITCH, 0 disables max 250 cfg.failsafe_justph = 0; // Does just PH&Autoland an not RTL, use this in difficult areas with many obstacles to avoid RTL crash into something cfg.failsafe_ignoreSNR = 1; // When snr_land is set to 1, it is possible to ignore that on Failsafe, because FS over a tree could turn off copter // serial (USART1) baudrate cfg.serial_baudrate = 115200; cfg.tele_prot = 0; // Protocol ONLY used when Armed including Baudchange if necessary. 0 (Dfault)=Keep Multiwii @CurrentUSB Baud, 1=Frsky @9600Baud, 2=Mavlink @CurrentUSB Baud, 3=Mavlink @57KBaud (like stock minimOSD wants it) // LED Stuff cfg.LED_invert = 0; // Crashpilot: Inversion of LED 0&1 Partly implemented because Bootup is not affected cfg.LED_Type = 1; // 1=MWCRGB / 2=MONO_LED / 3=LEDRing cfg.LED_Pinout = 1; // rc6 cfg.LED_ControlChannel = 8; // AUX4 (Channel 8) cfg.LED_Armed = 0; // 0 = Show LED only if armed, 1 = always show LED cfg.LED_Pattern1 = 1300; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Pattern2 = 1800; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Pattern3 = 1900; // 32bit bit pattern to have flickering led patterns / the pattern for MWCRGB 1000-2000 cfg.LED_Toggle_Delay1 = 0x08; // slow down LED_Pattern cfg.LED_Toggle_Delay2 = 0x08; // slow down LED_Pattern cfg.LED_Toggle_Delay3 = 0x08; // slow down LED_Pattern // SONAR // SOME INFO ON SONAR: // PWM56 are 5V resistant, RC78 only tolerate 3.3V(!!) so add a 1K Ohms resistor!!! // Note: You will never see the maximum possible sonar range in a copter, so go for the half of it (or less?) // // Connection possibilities depending on Receivertype: // PPSUM: RC78 possible, PWM56 possible (on max. quadcopters, see below) // Normal RX: Just Connection on Motorchannel 5&6 (PWM56) is possible. // The PWM56 sonar connection option is only available in setups with max motors 4, otherwise sonar is not initialized. // // HC-SR04: // Operation Voltage: 5V (!! Use PWM56 or 1K resistor !!) // Range: 2cm - 400cm // Angle: 15 Degrees (Test out for yourself: cfg.snr_tilt = X) // // Maxbotics in general // Operation Voltage: (some 2.5V)3.3V - 5V ((!! Use PWM56 or resistor with 5V !!) // Only wire the Maxbotics for PWM output (more precise anyway), not the analog etc. modes, just wire echopin (normally pin 2) // Range: 20cm(!) - 765cm (some >1000cm), MaxTiltAngle is not specified, depending on Model // Tested on MB1200 XL-MaxSonar-EZ0 // // GENERAL WARNING: DON'T SET snr_min TOO LOW, OTHERWISE THE WRONG SONARVALUE WILL BE TAKEN AS REAL MEASUREMENT!! // I implemented some checks to prevent that user error, but still keep that in mind. // Min/Max are checked and changed if they are too stupid for your sonar. So if you suddenly see other values, thats not an eeprom error or so. // MAXBOTICS: SET snr_min to at least 25! I check this in sensors and change the value, if needed. // NOTE: I limited Maxbotics to 7 meters in the code, knowing that some types will do >10m, if you have one of them 7m is still the limit for you. // HC-SR04: SET snr_min to at least 5 ! I check this in sensors and change the value, if needed. // DaddyWalross Sonar: I DON'T KNOW! But it uses HC-SR04 so i apply the same limits (5cm-400cm) to its output // NOTE: Sonar is def. not a must - have. But nice to have. cfg.snr_type = 3; // 0 = PWM56 HC-SR04, 1 = RC78 HC-SR04, 2 = I2C (DaddyWalross), 3 = MBPWM56, 4 = MBRC78 cfg.snr_min = 25; // Valid Sonar minimal range in cm (5-200) see warning above cfg.snr_max = 200; // Valid Sonar maximal range in cm (50-700) cfg.snr_debug = 0; // 1 Sends Sonardata (within defined range and tilt) to debug[0] and tiltvalue to debug[1], debug[0] will be -1 if out of range/tilt. debug[2] contains raw sonaralt, like before cfg.snr_tilt = 18; // Somehow copter tiltrange in degrees (Not exactly but good enough. Value * 0.9 = realtilt) in wich Sonar is possible cfg.snr_cf = 0.7f; // The bigger, the more Sonarinfluence, makes switch between Baro/Sonar smoother and defines baroinfluence when sonarcontact. 1.0f just takes Sonar, if contact (otherwise baro) cfg.snr_diff = 0; // 0 disables that check. Range (0-200) Maximal allowed difference in cm between sonar readouts (100ms rate and snr_diff = 50 means max 5m/s) cfg.snr_land = 1; // Aided Sonar - landing, by setting upper throttle limit to current throttle. - Beware of Trees!! Can be disabled for Failsafe with failsafe_ignoreSNR = 1 // LOGGING cfg.floppy_mode = FD_MODE_GPSLOGGER; // Usagemode of free Space. 1 = GPS Logger cfg.FDUsedDatasets = 0; // Default no Datasets stored cfg.stat_clear = 1; // This will clear the stats between flights, or you can set to 0 and treasue overallstats, but you have to write manually eeprom or have logging enabled cfg.sens_1G = 1; // Just feed a dummy "1" to avoid div by zero ClearStats(); // custom mixer. clear by Dfaults. for (i = 0; i < MAX_MOTORS; i++) cfg.customMixer[i].throttle = 0.0f; writeParams(0); }
// Default settings STATIC_UNIT_TESTED void resetConf(void) { pgResetAll(MAX_PROFILE_COUNT); setProfile(0); pgActivateProfile(0); setControlRateProfile(0); parseRcChannels("AETR1234", rxConfig()); featureClearAll(); featureSet(DEFAULT_RX_FEATURE | FEATURE_FAILSAFE | FEATURE_BLACKBOX); #ifdef DEFAULT_FEATURES featureSet(DEFAULT_FEATURES); #endif #ifdef BOARD_HAS_VOLTAGE_DIVIDER // only enable the feature by default if the board has supporting hardware featureSet(FEATURE_VBAT); #endif #ifdef BOARD_HAS_AMPERAGE_METER // only enable the feature by default if the board has supporting hardware featureSet(FEATURE_AMPERAGE_METER); batteryConfig()->amperageMeterSource = AMPERAGE_METER_ADC; #endif // alternative defaults settings for ALIENFLIGHTF1 and ALIENFLIGHTF3 targets #ifdef ALIENFLIGHT #ifdef ALIENFLIGHTF3 serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL; getVoltageMeterConfig(ADC_BATTERY)->vbatscale = 20; sensorSelectionConfig()->mag_hardware = MAG_NONE; // disabled by default # else serialConfig()->portConfigs[1].functionMask = FUNCTION_RX_SERIAL; # endif rxConfig()->serialrx_provider = SERIALRX_SPEKTRUM2048; rxConfig()->spektrum_sat_bind = 5; motorConfig()->minthrottle = 1000; motorConfig()->maxthrottle = 2000; motorConfig()->motor_pwm_rate = 32000; failsafeConfig()->failsafe_delay = 2; failsafeConfig()->failsafe_off_delay = 0; mixerConfig()->yaw_jump_prevention_limit = YAW_JUMP_PREVENTION_LIMIT_HIGH; currentControlRateProfile->rcRate8 = 100; currentControlRateProfile->rates[PITCH] = 20; currentControlRateProfile->rates[ROLL] = 20; currentControlRateProfile->rates[YAW] = 20; parseRcChannels("TAER1234", rxConfig()); *customMotorMixer(0) = (motorMixer_t){ 1.0f, -0.414178f, 1.0f, -1.0f }; // REAR_R *customMotorMixer(1) = (motorMixer_t){ 1.0f, -0.414178f, -1.0f, 1.0f }; // FRONT_R *customMotorMixer(2) = (motorMixer_t){ 1.0f, 0.414178f, 1.0f, 1.0f }; // REAR_L *customMotorMixer(3) = (motorMixer_t){ 1.0f, 0.414178f, -1.0f, -1.0f }; // FRONT_L *customMotorMixer(4) = (motorMixer_t){ 1.0f, -1.0f, -0.414178f, -1.0f }; // MIDFRONT_R *customMotorMixer(5) = (motorMixer_t){ 1.0f, 1.0f, -0.414178f, 1.0f }; // MIDFRONT_L *customMotorMixer(6) = (motorMixer_t){ 1.0f, -1.0f, 0.414178f, 1.0f }; // MIDREAR_R *customMotorMixer(7) = (motorMixer_t){ 1.0f, 1.0f, 0.414178f, -1.0f }; // MIDREAR_L #endif // copy first profile into remaining profile PG_FOREACH_PROFILE(reg) { for (int i = 1; i < MAX_PROFILE_COUNT; i++) { memcpy(reg->address + i * pgSize(reg), reg->address, pgSize(reg)); } } for (int i = 1; i < MAX_PROFILE_COUNT; i++) { configureRateProfileSelection(i, i % MAX_CONTROL_RATE_PROFILE_COUNT); } }
void validateAndFixConfig(void) { if (!(feature(FEATURE_RX_PARALLEL_PWM) || feature(FEATURE_RX_PPM) || feature(FEATURE_RX_SERIAL) || feature(FEATURE_RX_MSP))) { featureSet(FEATURE_RX_PARALLEL_PWM); // Consider changing the default to PPM } if (feature(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM); } if (feature(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL); featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_PARALLEL_PWM)) { #if defined(STM32F103_MD) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports featureClear(FEATURE_CURRENT_METER); #ifdef SONAR // sonar needs a free PWM port featureClear(FEATURE_SONAR); #endif #endif #if defined(STM32F103_MD) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #if defined(STM32F103_MD) // led strip needs the same timer as softserial if (feature(FEATURE_SOFTSERIAL)) { featureClear(FEATURE_LED_STRIP); } #endif useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; applySerialConfigToPortFunctions(serialConfig); if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); }
// alternative defaults settings for AlienFlight targets void targetConfiguration(void) { /* depending on revision ... depends on the LEDs to be utilised. */ if (hardwareRevision == AFF3_REV_2) { statusLedConfigMutable()->inversion = 0 #ifdef LED0_A_INVERTED | BIT(0) #endif #ifdef LED1_A_INVERTED | BIT(1) #endif #ifdef LED2_A_INVERTED | BIT(2) #endif ; for (int i = 0; i < STATUS_LED_NUMBER; i++) { statusLedConfigMutable()->ioTags[i] = IO_TAG_NONE; } #ifdef LED0_A statusLedConfigMutable()->ioTags[0] = IO_TAG(LED0_A); #endif #ifdef LED1_A statusLedConfigMutable()->ioTags[1] = IO_TAG(LED1_A); #endif #ifdef LED2_A statusLedConfigMutable()->ioTags[2] = IO_TAG(LED2_A); #endif } else { gyroConfigMutable()->gyro_sync_denom = 2; pidConfigMutable()->pid_process_denom = 2; } if (!haveFrSkyRX) { rxConfigMutable()->serialrx_provider = SERIALRX_SPEKTRUM2048; rxConfigMutable()->spektrum_sat_bind = 5; rxConfigMutable()->spektrum_sat_bind_autoreset = 1; parseRcChannels("TAER1234", rxConfigMutable()); } else { rxConfigMutable()->serialrx_provider = SERIALRX_SBUS; rxConfigMutable()->serialrx_inverted = true; serialConfigMutable()->portConfigs[findSerialPortIndexByIdentifier(SERIALRX_UART)].functionMask = FUNCTION_TELEMETRY_FRSKY_HUB | FUNCTION_RX_SERIAL; telemetryConfigMutable()->telemetry_inverted = false; featureSet(FEATURE_TELEMETRY); beeperDevConfigMutable()->isOpenDrain = false; beeperDevConfigMutable()->isInverted = true; parseRcChannels("AETR1234", rxConfigMutable()); } if (hardwareMotorType == MOTOR_BRUSHED) { motorConfigMutable()->dev.motorPwmRate = BRUSHED_MOTORS_PWM_RATE; pidConfigMutable()->pid_process_denom = 1; } for (uint8_t pidProfileIndex = 0; pidProfileIndex < MAX_PROFILE_COUNT; pidProfileIndex++) { pidProfile_t *pidProfile = pidProfilesMutable(pidProfileIndex); pidProfile->pid[PID_ROLL].P = 90; pidProfile->pid[PID_ROLL].I = 44; pidProfile->pid[PID_ROLL].D = 60; pidProfile->pid[PID_PITCH].P = 90; pidProfile->pid[PID_PITCH].I = 44; pidProfile->pid[PID_PITCH].D = 60; } *customMotorMixerMutable(0) = (motorMixer_t){ 1.0f, -0.414178f, 1.0f, -1.0f }; // REAR_R *customMotorMixerMutable(1) = (motorMixer_t){ 1.0f, -0.414178f, -1.0f, 1.0f }; // FRONT_R *customMotorMixerMutable(2) = (motorMixer_t){ 1.0f, 0.414178f, 1.0f, 1.0f }; // REAR_L *customMotorMixerMutable(3) = (motorMixer_t){ 1.0f, 0.414178f, -1.0f, -1.0f }; // FRONT_L *customMotorMixerMutable(4) = (motorMixer_t){ 1.0f, -1.0f, -0.414178f, -1.0f }; // MIDFRONT_R *customMotorMixerMutable(5) = (motorMixer_t){ 1.0f, 1.0f, -0.414178f, 1.0f }; // MIDFRONT_L *customMotorMixerMutable(6) = (motorMixer_t){ 1.0f, -1.0f, 0.414178f, 1.0f }; // MIDREAR_R *customMotorMixerMutable(7) = (motorMixer_t){ 1.0f, 1.0f, 0.414178f, -1.0f }; // MIDREAR_L }
// Default settings static void resetConf(void) { int i; int8_t servoRates[8] = { 30, 30, 100, 100, 100, 100, 100, 100 }; // Clear all configuration memset(&masterConfig, 0, sizeof(master_t)); setProfile(0); setControlRateProfile(0); masterConfig.version = EEPROM_CONF_VERSION; masterConfig.mixerConfiguration = MULTITYPE_QUADX; featureClearAll(); #if defined(CJMCU) || defined(SPARKY) featureSet(FEATURE_RX_PPM); #endif featureSet(FEATURE_VBAT); // global settings masterConfig.current_profile_index = 0; // default profile masterConfig.gyro_cmpf_factor = 600; // default MWC masterConfig.gyro_cmpfm_factor = 250; // default MWC masterConfig.gyro_lpf = 42; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead resetAccelerometerTrims(&masterConfig.accZero); resetSensorAlignment(&masterConfig.sensorAlignmentConfig); masterConfig.boardAlignment.rollDegrees = 0; masterConfig.boardAlignment.pitchDegrees = 0; masterConfig.boardAlignment.yawDegrees = 0; masterConfig.acc_hardware = ACC_DEFAULT; // default/autodetect masterConfig.max_angle_inclination = 500; // 50 degrees masterConfig.yaw_control_direction = 1; masterConfig.gyroConfig.gyroMovementCalibrationThreshold = 32; resetBatteryConfig(&masterConfig.batteryConfig); resetTelemetryConfig(&masterConfig.telemetryConfig); masterConfig.rxConfig.serialrx_provider = 0; masterConfig.rxConfig.spektrum_sat_bind = 0; masterConfig.rxConfig.midrc = 1500; masterConfig.rxConfig.mincheck = 1100; masterConfig.rxConfig.maxcheck = 1900; masterConfig.rxConfig.rssi_channel = 0; masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT; masterConfig.inputFilteringMode = INPUT_FILTERING_DISABLED; masterConfig.retarded_arm = 0; masterConfig.disarm_kill_switch = 1; masterConfig.small_angle = 25; masterConfig.airplaneConfig.flaps_speed = 0; masterConfig.airplaneConfig.fixedwing_althold_dir = 1; // Motor/ESC/Servo resetEscAndServoConfig(&masterConfig.escAndServoConfig); resetFlight3DConfig(&masterConfig.flight3DConfig); #ifdef BRUSHED_MOTORS masterConfig.motor_pwm_rate = BRUSHED_MOTORS_PWM_RATE; #else masterConfig.motor_pwm_rate = BRUSHLESS_MOTORS_PWM_RATE; #endif masterConfig.servo_pwm_rate = 50; #ifdef GPS // gps/nav stuff masterConfig.gpsConfig.provider = GPS_NMEA; masterConfig.gpsConfig.sbasMode = SBAS_AUTO; masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON; masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_OFF; #endif resetSerialConfig(&masterConfig.serialConfig); masterConfig.looptime = 3500; masterConfig.emf_avoidance = 0; currentProfile->pidController = 0; resetPidProfile(¤tProfile->pidProfile); resetControlRateConfig(&masterConfig.controlRateProfiles[0]); // for (i = 0; i < CHECKBOXITEMS; i++) // cfg.activate[i] = 0; resetRollAndPitchTrims(¤tProfile->accelerometerTrims); currentProfile->mag_declination = 0; currentProfile->acc_lpf_factor = 4; currentProfile->accz_lpf_cutoff = 5.0f; currentProfile->accDeadband.xy = 40; currentProfile->accDeadband.z = 40; resetBarometerConfig(¤tProfile->barometerConfig); currentProfile->acc_unarmedcal = 1; // Radio parseRcChannels("AETR1234", &masterConfig.rxConfig); resetRcControlsConfig(¤tProfile->rcControlsConfig); currentProfile->throttle_correction_value = 0; // could 10 with althold or 40 for fpv currentProfile->throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv // Failsafe Variables currentProfile->failsafeConfig.failsafe_delay = 10; // 1sec currentProfile->failsafeConfig.failsafe_off_delay = 200; // 20sec currentProfile->failsafeConfig.failsafe_throttle = 1200; // decent default which should always be below hover throttle for people. currentProfile->failsafeConfig.failsafe_min_usec = 985; // any of first 4 channels below this value will trigger failsafe currentProfile->failsafeConfig.failsafe_max_usec = 2115; // any of first 4 channels above this value will trigger failsafe // servos for (i = 0; i < 8; i++) { currentProfile->servoConf[i].min = DEFAULT_SERVO_MIN; currentProfile->servoConf[i].max = DEFAULT_SERVO_MAX; currentProfile->servoConf[i].middle = DEFAULT_SERVO_MIDDLE; currentProfile->servoConf[i].rate = servoRates[i]; currentProfile->servoConf[i].forwardFromChannel = CHANNEL_FORWARDING_DISABLED; } currentProfile->mixerConfig.yaw_direction = 1; currentProfile->mixerConfig.tri_unarmed_servo = 1; // gimbal currentProfile->gimbalConfig.gimbal_flags = GIMBAL_NORMAL; #ifdef GPS resetGpsProfile(¤tProfile->gpsProfile); #endif // custom mixer. clear by defaults. for (i = 0; i < MAX_SUPPORTED_MOTORS; i++) masterConfig.customMixer[i].throttle = 0.0f; #ifdef LED_STRIP applyDefaultColors(masterConfig.colors, CONFIGURABLE_COLOR_COUNT); applyDefaultLedStripConfig(masterConfig.ledConfigs); #endif // copy first profile into remaining profile for (i = 1; i < MAX_PROFILE_COUNT; i++) { memcpy(&masterConfig.profile[i], currentProfile, sizeof(profile_t)); } // copy first control rate config into remaining profile for (i = 1; i < MAX_CONTROL_RATE_PROFILE_COUNT; i++) { memcpy(&masterConfig.controlRateProfiles[i], currentControlRateProfile, sizeof(controlRateConfig_t)); } for (i = 1; i < MAX_PROFILE_COUNT; i++) { masterConfig.profile[i].defaultRateProfileIndex = i % MAX_CONTROL_RATE_PROFILE_COUNT; } }
static void validateAndFixConfig(void) { if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP))) { featureSet(DEFAULT_RX_FEATURE); } if (featureConfigured(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_SERIAL | FEATURE_RX_MSP); } if (featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM); } if (featureConfigured(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_PPM); } if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_MSP | FEATURE_RX_PPM); } // The retarded_arm setting is incompatible with pid_at_min_throttle because full roll causes the craft to roll over on the ground. // The pid_at_min_throttle implementation ignores yaw on the ground, but doesn't currently ignore roll when retarded_arm is enabled. if (armingConfig()->retarded_arm && mixerConfig()->pid_at_min_throttle) { mixerConfig()->pid_at_min_throttle = 0; } if (gyroConfig()->gyro_soft_notch_hz < gyroConfig()->gyro_soft_notch_cutoff_hz) { gyroConfig()->gyro_soft_notch_hz = gyroConfig()->gyro_soft_notch_cutoff_hz; } #if defined(LED_STRIP) #if (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (featureConfigured(FEATURE_SOFTSERIAL) && ( 0 #ifdef USE_SOFTSERIAL1 || (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER) #endif #ifdef USE_SOFTSERIAL2 || (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER) #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(TRANSPONDER) && !defined(UNIT_TEST) if ((WS2811_DMA_TC_FLAG == TRANSPONDER_DMA_TC_FLAG) && featureConfigured(FEATURE_TRANSPONDER) && featureConfigured(FEATURE_LED_STRIP)) { featureClear(FEATURE_LED_STRIP); } #endif #endif // LED_STRIP #if defined(CC3D) #if defined(DISPLAY) && defined(USE_UART3) if (featureConfigured(FEATURE_DISPLAY) && doesConfigurationUsePort(SERIAL_PORT_UART3)) { featureClear(FEATURE_DISPLAY); } #endif #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (featureConfigured(FEATURE_SONAR) && featureConfigured(FEATURE_SOFTSERIAL)) { featureClear(FEATURE_SONAR); } #endif #if defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO) // shared pin if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) { featureClear(FEATURE_SONAR); featureClear(FEATURE_SOFTSERIAL); featureClear(FEATURE_RSSI_ADC); } #endif #endif // CC3D #if defined(COLIBRI_RACE) serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP_SERVER; if (featureConfigured(FEATURE_RX_SERIAL)) { serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL; } #endif #if defined(SPRACINGF3NEO_REV) && (SPRACINGF3NEO_REV < 5) if (featureConfigured(FEATURE_OSD) && featureConfigured(FEATURE_TRANSPONDER)) { featureClear(FEATURE_TRANSPONDER); } if (featureConfigured(FEATURE_OSD) && featureConfigured(FEATURE_LED_STRIP)) { featureClear(FEATURE_LED_STRIP); } #endif if (!isSerialConfigValid(serialConfig())) { PG_RESET_CURRENT(serialConfig); } #if defined(USE_VCP) serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP_SERVER; #endif }
void validateAndFixConfig(void) { if((masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_BRUSHED) && (masterConfig.motorConfig.mincommand < 1000)){ masterConfig.motorConfig.mincommand = 1000; } if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP) || featureConfigured(FEATURE_RX_SPI))) { featureSet(DEFAULT_RX_FEATURE); } if (featureConfigured(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_SPI); } if (featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM | FEATURE_RX_SPI); } if (featureConfigured(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_PPM | FEATURE_RX_SPI); } if (featureConfigured(FEATURE_RX_SPI)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM | FEATURE_RX_MSP); } if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) { featureClear(FEATURE_RX_SERIAL | FEATURE_RX_MSP | FEATURE_RX_PPM | FEATURE_RX_SPI); #if defined(STM32F10X) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #ifdef USE_SOFTSPI if (featureConfigured(FEATURE_SOFTSPI)) { featureClear(FEATURE_RX_PPM | FEATURE_RX_PARALLEL_PWM | FEATURE_SOFTSERIAL | FEATURE_VBAT); #if defined(STM32F10X) featureClear(FEATURE_LED_STRIP); // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif } #endif #if defined(NAZE) && defined(SONAR) if (featureConfigured(FEATURE_RX_PARALLEL_PWM) && featureConfigured(FEATURE_SONAR) && featureConfigured(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(OLIMEXINO) && defined(SONAR) if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(CC3D) && defined(DISPLAY) && defined(USE_UART3) if (doesConfigurationUsePort(SERIAL_PORT_USART3) && feature(FEATURE_DASHBOARD)) { featureClear(FEATURE_DASHBOARD); } #endif #if defined(CC3D) && defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO) // shared pin if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) { featureClear(FEATURE_SONAR); featureClear(FEATURE_SOFTSERIAL); featureClear(FEATURE_RSSI_ADC); } #endif #if defined(COLIBRI_RACE) masterConfig.serialConfig.portConfigs[0].functionMask = FUNCTION_MSP; if (featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_MSP); featureSet(FEATURE_RX_PPM); } #endif useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); } #if defined(TARGET_VALIDATECONFIG) targetValidateConfiguration(&masterConfig); #endif }
void validateAndFixConfig(void) { if (!(feature(FEATURE_RX_PARALLEL_PWM) || feature(FEATURE_RX_PPM) || feature(FEATURE_RX_SERIAL) || feature(FEATURE_RX_MSP))) { featureSet(FEATURE_RX_PARALLEL_PWM); // Consider changing the default to PPM } if (feature(FEATURE_RX_PPM)) { featureClear(FEATURE_RX_PARALLEL_PWM); } if (feature(FEATURE_RX_MSP)) { featureClear(FEATURE_RX_SERIAL); featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_SERIAL)) { featureClear(FEATURE_RX_PARALLEL_PWM); featureClear(FEATURE_RX_PPM); } if (feature(FEATURE_RX_PARALLEL_PWM)) { #if defined(STM32F10X) // rssi adc needs the same ports featureClear(FEATURE_RSSI_ADC); // current meter needs the same ports featureClear(FEATURE_CURRENT_METER); #endif #if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY) // led strip needs the same ports featureClear(FEATURE_LED_STRIP); #endif // software serial needs free PWM ports featureClear(FEATURE_SOFTSERIAL); } #if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)) if (feature(FEATURE_SOFTSERIAL) && ( #ifdef USE_SOFTSERIAL1 (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER) #else 0 #endif || #ifdef USE_SOFTSERIAL2 (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER) #else 0 #endif )) { // led strip needs the same timer as softserial featureClear(FEATURE_LED_STRIP); } #endif #if defined(NAZE) && defined(SONAR) if (feature(FEATURE_RX_PARALLEL_PWM) && feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER)) { featureClear(FEATURE_CURRENT_METER); } #endif #if defined(OLIMEXINO) && defined(SONAR) if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER)) { featureClear(FEATURE_CURRENT_METER); } #endif useRxConfig(&masterConfig.rxConfig); serialConfig_t *serialConfig = &masterConfig.serialConfig; applySerialConfigToPortFunctions(serialConfig); if (!isSerialConfigValid(serialConfig)) { resetSerialConfig(serialConfig); } }