Example #1
0
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
{
    int n = 1 << nbits;
    int i;

    s->nbits    = nbits;
    s->inverse  = inverse;

    ff_init_ff_cos_tabs(nbits+2);

    s->costab = ff_cos_tabs[nbits+2];

    s->csc2 = av_malloc(n/2 * sizeof(FFTSample));

    if (ff_rdft_init(&s->rdft, nbits, inverse == DCT_III) < 0) {
        av_free(s->csc2);
        return -1;
    }

    for (i = 0; i < n/2; i++)
        s->csc2[i] = 0.5 / sin((M_PI / (2*n) * (2*i + 1)));

    switch(inverse) {
    case DCT_I  : s->dct_calc = ff_dct_calc_I_c; break;
    case DCT_II : s->dct_calc = ff_dct_calc_II_c ; break;
    case DCT_III: s->dct_calc = ff_dct_calc_III_c; break;
    case DST_I  : s->dct_calc = ff_dst_calc_I_c; break;
    }
    return 0;
}
Example #2
0
static inline void rdft_init(RDFTContext **r, int nbits, enum RDFTransformType trans)
{
#if AVFFT
    *r = av_rdft_init(nbits, trans);
#else
    ff_rdft_init(*r, nbits, trans);
#endif
}
Example #3
0
RDFTContext *av_rdft_init(int nbits, enum RDFTransformType trans)
{
    RDFTContext *s = av_malloc(sizeof(*s));

    if (s)
        ff_rdft_init(s, nbits, trans);

    return s;
}
Example #4
0
File: dct.c Project: brunomsg/libav
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
{
    int n = 1 << nbits;
    int i;

    memset(s, 0, sizeof(*s));

    s->nbits    = nbits;
    s->inverse  = inverse;

    if (inverse == DCT_II && nbits == 5) {
        s->dct_calc = dct32_func;
    } else {
        ff_init_ff_cos_tabs(nbits+2);

        s->costab = ff_cos_tabs[nbits+2];

        s->csc2 = av_malloc(n/2 * sizeof(FFTSample));

        if (ff_rdft_init(&s->rdft, nbits, inverse == DCT_III) < 0) {
            av_free(s->csc2);
            return -1;
        }

        for (i = 0; i < n/2; i++)
            s->csc2[i] = 0.5 / sin((M_PI / (2*n) * (2*i + 1)));

        switch(inverse) {
        case DCT_I  :
            s->dct_calc = ff_dct_calc_I_c;
            break;
        case DCT_II :
            s->dct_calc = ff_dct_calc_II_c ;
            break;
        case DCT_III:
            s->dct_calc = ff_dct_calc_III_c;
            break;
        case DST_I  :
            s->dct_calc = ff_dst_calc_I_c;
            break;
        }
    }

    s->dct32 = ff_dct32_float;
    if (HAVE_MMX)     ff_dct_init_mmx(s);

    return 0;
}
Example #5
0
static av_cold int decode_init(AVCodecContext *avctx)
{
    BinkAudioContext *s = avctx->priv_data;
    int sample_rate = avctx->sample_rate;
    int sample_rate_half;
    int i;
    int frame_len_bits;

    /* determine frame length */
    if (avctx->sample_rate < 22050) {
        frame_len_bits = 9;
    } else if (avctx->sample_rate < 44100) {
        frame_len_bits = 10;
    } else {
        frame_len_bits = 11;
    }

    if (avctx->channels > MAX_CHANNELS) {
        av_log(avctx, AV_LOG_ERROR, "too many channels: %d\n", avctx->channels);
        return -1;
    }
    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO :
                            AV_CH_LAYOUT_STEREO;

    s->version_b = avctx->extradata && avctx->extradata[3] == 'b';

    if (avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT) {
        // audio is already interleaved for the RDFT format variant
        avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
        sample_rate  *= avctx->channels;
        s->channels = 1;
        if (!s->version_b)
            frame_len_bits += av_log2(avctx->channels);
    } else {
        s->channels = avctx->channels;
        avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
    }

    s->frame_len     = 1 << frame_len_bits;
    s->overlap_len   = s->frame_len / 16;
    s->block_size    = (s->frame_len - s->overlap_len) * s->channels;
    sample_rate_half = (sample_rate + 1) / 2;
    if (avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT)
        s->root = 2.0 / (sqrt(s->frame_len) * 32768.0);
    else
        s->root = s->frame_len / (sqrt(s->frame_len) * 32768.0);
    for (i = 0; i < 96; i++) {
        /* constant is result of 0.066399999/log10(M_E) */
        quant_table[i] = expf(i * 0.15289164787221953823f) * s->root;
    }

    /* calculate number of bands */
    for (s->num_bands = 1; s->num_bands < 25; s->num_bands++)
        if (sample_rate_half <= ff_wma_critical_freqs[s->num_bands - 1])
            break;

    s->bands = av_malloc((s->num_bands + 1) * sizeof(*s->bands));
    if (!s->bands)
        return AVERROR(ENOMEM);

    /* populate bands data */
    s->bands[0] = 2;
    for (i = 1; i < s->num_bands; i++)
        s->bands[i] = (ff_wma_critical_freqs[i - 1] * s->frame_len / sample_rate_half) & ~1;
    s->bands[s->num_bands] = s->frame_len;

    s->first = 1;

    if (CONFIG_BINKAUDIO_RDFT_DECODER && avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT)
        ff_rdft_init(&s->trans.rdft, frame_len_bits, DFT_C2R);
    else if (CONFIG_BINKAUDIO_DCT_DECODER)
        ff_dct_init(&s->trans.dct, frame_len_bits, DCT_III);
    else
        return -1;

    return 0;
}
Example #6
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tab2;
    int it, i, c;
    int do_speed = 0;
    int err = 1;
    enum tf_transform transform = TRANSFORM_FFT;
    int do_inverse = 0;
    FFTContext s1, *s = &s1;
    FFTContext m1, *m = &m1;
    RDFTContext r1, *r = &r1;
    DCTContext d1, *d = &d1;
    int fft_nbits, fft_size, fft_size_2;
    double scale = 1.0;
    AVLFG prng;
    av_lfg_init(&prng, 1);

    fft_nbits = 9;
    for(;;) {
        c = getopt(argc, argv, "hsimrdn:f:");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            transform = TRANSFORM_MDCT;
            break;
        case 'r':
            transform = TRANSFORM_RDFT;
            break;
        case 'd':
            transform = TRANSFORM_DCT;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        case 'f':
            scale = atof(optarg);
            break;
        }
    }

    fft_size = 1 << fft_nbits;
    fft_size_2 = fft_size >> 1;
    tab = av_malloc(fft_size * sizeof(FFTComplex));
    tab1 = av_malloc(fft_size * sizeof(FFTComplex));
    tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
    tab2 = av_malloc(fft_size * sizeof(FFTSample));

    switch (transform) {
    case TRANSFORM_MDCT:
        av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IMDCT");
        else
            av_log(NULL, AV_LOG_INFO,"MDCT");
        ff_mdct_init(m, fft_nbits, do_inverse, scale);
        break;
    case TRANSFORM_FFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IFFT");
        else
            av_log(NULL, AV_LOG_INFO,"FFT");
        ff_fft_init(s, fft_nbits, do_inverse);
        fft_ref_init(fft_nbits, do_inverse);
        break;
    case TRANSFORM_RDFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
        else
            av_log(NULL, AV_LOG_INFO,"DFT_R2C");
        ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
        fft_ref_init(fft_nbits, do_inverse);
        break;
    case TRANSFORM_DCT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"DCT_III");
        else
            av_log(NULL, AV_LOG_INFO,"DCT_II");
        ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
        break;
    }
    av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);

    /* generate random data */

    for (i = 0; i < fft_size; i++) {
        tab1[i].re = frandom(&prng);
        tab1[i].im = frandom(&prng);
    }

    /* checking result */
    av_log(NULL, AV_LOG_INFO,"Checking...\n");

    switch (transform) {
    case TRANSFORM_MDCT:
        if (do_inverse) {
            imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
            ff_imdct_calc(m, tab2, (float *)tab1);
            err = check_diff((float *)tab_ref, tab2, fft_size, scale);
        } else {
            mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);

            ff_mdct_calc(m, tab2, (float *)tab1);

            err = check_diff((float *)tab_ref, tab2, fft_size / 2, scale);
        }
        break;
    case TRANSFORM_FFT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        ff_fft_permute(s, tab);
        ff_fft_calc(s, tab);

        fft_ref(tab_ref, tab1, fft_nbits);
        err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 1.0);
        break;
    case TRANSFORM_RDFT:
        if (do_inverse) {
            tab1[         0].im = 0;
            tab1[fft_size_2].im = 0;
            for (i = 1; i < fft_size_2; i++) {
                tab1[fft_size_2+i].re =  tab1[fft_size_2-i].re;
                tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
            }

            memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
            tab2[1] = tab1[fft_size_2].re;

            ff_rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            for (i = 0; i < fft_size; i++) {
                tab[i].re = tab2[i];
                tab[i].im = 0;
            }
            err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
        } else {
            for (i = 0; i < fft_size; i++) {
                tab2[i]    = tab1[i].re;
                tab1[i].im = 0;
            }
            ff_rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            tab_ref[0].im = tab_ref[fft_size_2].re;
            err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
        }
        break;
    case TRANSFORM_DCT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        ff_dct_calc(d, tab);
        if (do_inverse) {
            idct_ref(tab_ref, tab1, fft_nbits);
        } else {
            dct_ref(tab_ref, tab1, fft_nbits);
        }
        err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
        break;
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        av_log(NULL, AV_LOG_INFO,"Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for(;;) {
            time_start = gettime();
            for (it = 0; it < nb_its; it++) {
                switch (transform) {
                case TRANSFORM_MDCT:
                    if (do_inverse) {
                        ff_imdct_calc(m, (float *)tab, (float *)tab1);
                    } else {
                        ff_mdct_calc(m, (float *)tab, (float *)tab1);
                    }
                    break;
                case TRANSFORM_FFT:
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    ff_fft_calc(s, tab);
                    break;
                case TRANSFORM_RDFT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    ff_rdft_calc(r, tab2);
                    break;
                case TRANSFORM_DCT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    ff_dct_calc(d, tab2);
                    break;
                }
            }
            duration = gettime() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
               (double)duration / nb_its,
               (double)duration / 1000000.0,
               nb_its);
    }

    switch (transform) {
    case TRANSFORM_MDCT:
        ff_mdct_end(m);
        break;
    case TRANSFORM_FFT:
        ff_fft_end(s);
        break;
    case TRANSFORM_RDFT:
        ff_rdft_end(r);
        break;
    case TRANSFORM_DCT:
        ff_dct_end(d);
        break;
    }

    av_free(tab);
    av_free(tab1);
    av_free(tab2);
    av_free(tab_ref);
    av_free(exptab);

    return err;
}
Example #7
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tab2;
    enum tf_transform transform = TRANSFORM_FFT;
    FFTContext m, s;
#if FFT_FLOAT
    RDFTContext r;
    DCTContext d;
#if CONFIG_LIBFFTW3
    FFTWContext fftw;
    FFTWComplex *tab_fftw, *tab_fftw_copy;
#endif /* CONFIG_LIBFFTW3 */
#endif /* FFT_FLOAT */
    int it, i, err = 1;
    int do_speed = 0, do_inverse = 0;
    int fft_nbits = 9, fft_size;
    double scale = 1.0;
    AVLFG prng;

    av_lfg_init(&prng, 1);

    for (;;) {
        int c = getopt(argc, argv, "hsitmrdn:f:c:");
        if (c == -1)
            break;
        switch (c) {
        case 'h':
            help();
            return 1;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
#if CONFIG_LIBFFTW3
        case 't':
            transform = TRANSFORM_FFTW;
            break;
#endif /* CONFIG_LIBFFTW3 */
        case 'm':
            transform = TRANSFORM_MDCT;
            break;
        case 'r':
            transform = TRANSFORM_RDFT;
            break;
        case 'd':
            transform = TRANSFORM_DCT;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        case 'f':
            scale = atof(optarg);
            break;
        case 'c':
        {
            unsigned cpuflags = av_get_cpu_flags();

            if (av_parse_cpu_caps(&cpuflags, optarg) < 0)
                return 1;

            av_force_cpu_flags(cpuflags);
            break;
        }
        }
    }

    fft_size = 1 << fft_nbits;
    tab      = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab1     = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab_ref  = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab2     = av_malloc_array(fft_size, sizeof(FFTSample));
#if CONFIG_LIBFFTW3 && FFT_FLOAT
    tab_fftw      = av_malloc_array(fft_size, sizeof(*tab_fftw));
    tab_fftw_copy = av_malloc_array(fft_size, sizeof(*tab_fftw_copy));
    if (!(tab_fftw && tab_fftw_copy))
        goto cleanup_fftw;
#endif /* CONFIG_LIBFFTW3 */

    if (!(tab && tab1 && tab_ref && tab2))
        goto cleanup;

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        av_log(NULL, AV_LOG_INFO, "Scale factor is set to %f\n", scale);
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IMDCT");
        else
            av_log(NULL, AV_LOG_INFO, "MDCT");
        ff_mdct_init(&m, fft_nbits, do_inverse, scale);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IFFT");
        else
            av_log(NULL, AV_LOG_INFO, "FFT");
        ff_fft_init(&s, fft_nbits, do_inverse);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#if CONFIG_LIBFFTW3 && FFT_FLOAT
    case TRANSFORM_FFTW:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IFFTW");
        else
            av_log(NULL, AV_LOG_INFO, "FFTW");
        ff_fftw_init(&fftw, fft_size, do_inverse);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#endif /* CONFIG_LIBFFTW3 */
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IDFT_C2R");
        else
            av_log(NULL, AV_LOG_INFO, "DFT_R2C");
        ff_rdft_init(&r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "DCT_III");
        else
            av_log(NULL, AV_LOG_INFO, "DCT_II");
        ff_dct_init(&d, fft_nbits, do_inverse ? DCT_III : DCT_II);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    default:
        av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
        goto cleanup;
    }
    av_log(NULL, AV_LOG_INFO, " %d test\n", fft_size);

    /* generate random data */

    for (i = 0; i < fft_size; i++) {
        tab1[i].re = frandom(&prng);
        tab1[i].im = frandom(&prng);
#if CONFIG_LIBFFTW3 && FFT_FLOAT
        tab_fftw[i][0] = tab1[i].re;
        tab_fftw[i][1] = tab1[i].im;
#endif /* CONFIG_LIBFFTW3 */
    }
#if CONFIG_LIBFFTW3 && FFT_FLOAT
    memcpy(tab_fftw_copy, tab_fftw, fft_size * sizeof(*tab_fftw));
#endif

    /* checking result */
    av_log(NULL, AV_LOG_INFO, "Checking...\n");

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        if (do_inverse) {
            imdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            m.imdct_calc(&m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size, scale);
        } else {
            mdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            m.mdct_calc(&m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size / 2, scale);
        }
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        s.fft_permute(&s, tab);
        s.fft_calc(&s, tab);

        fft_ref(tab_ref, tab1, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 1.0);
        break;
#if CONFIG_LIBFFTW3 && FFT_FLOAT
    case TRANSFORM_FFTW:
        fftw.fft_calc(&fftw, tab_fftw);
        fft_ref(tab_ref, tab1, fft_nbits);
        for (i = 0; i < fft_size; i++) {
            tab[i].re = tab_fftw[i][0];
            tab[i].im = tab_fftw[i][1];
        }
        err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 1.0);
        break;
#endif /* CONFIG_LIBFFTW3 */
#if FFT_FLOAT
#if CONFIG_RDFT
    case TRANSFORM_RDFT:
    {
        int fft_size_2 = fft_size >> 1;
        if (do_inverse) {
            tab1[0].im          = 0;
            tab1[fft_size_2].im = 0;
            for (i = 1; i < fft_size_2; i++) {
                tab1[fft_size_2 + i].re =  tab1[fft_size_2 - i].re;
                tab1[fft_size_2 + i].im = -tab1[fft_size_2 - i].im;
            }

            memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
            tab2[1] = tab1[fft_size_2].re;

            r.rdft_calc(&r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            for (i = 0; i < fft_size; i++) {
                tab[i].re = tab2[i];
                tab[i].im = 0;
            }
            err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 0.5);
        } else {
            for (i = 0; i < fft_size; i++) {
                tab2[i]    = tab1[i].re;
                tab1[i].im = 0;
            }
            r.rdft_calc(&r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            tab_ref[0].im = tab_ref[fft_size_2].re;
            err = check_diff(&tab_ref->re, tab2, fft_size, 1.0);
        }
        break;
    }
#endif /* CONFIG_RDFT */
#if CONFIG_DCT
    case TRANSFORM_DCT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        d.dct_calc(&d, &tab->re);
        if (do_inverse)
            idct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        else
            dct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size, 1.0);
        break;
#endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        av_log(NULL, AV_LOG_INFO, "Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for (;;) {
            time_start = av_gettime_relative();
            for (it = 0; it < nb_its; it++) {
                switch (transform) {
                case TRANSFORM_MDCT:
                    if (do_inverse)
                        m.imdct_calc(&m, &tab->re, &tab1->re);
                    else
                        m.mdct_calc(&m, &tab->re, &tab1->re);
                    break;
                case TRANSFORM_FFT:
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    s.fft_permute(&s, tab);
                    s.fft_calc(&s, tab);
                    break;
#if CONFIG_LIBFFTW3 && FFT_FLOAT
                case TRANSFORM_FFTW:
                    memcpy(tab_fftw, tab_fftw_copy, fft_size * sizeof(*tab_fftw));
                    fftw.fft_calc(&fftw, tab_fftw);
                    break;
#endif /* CONFIG_LIBFFTW3 */
#if FFT_FLOAT
                case TRANSFORM_RDFT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    r.rdft_calc(&r, tab2);
                    break;
                case TRANSFORM_DCT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    d.dct_calc(&d, tab2);
                    break;
#endif /* FFT_FLOAT */
                }
            }
            duration = av_gettime_relative() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        av_log(NULL, AV_LOG_INFO,
               "time: %0.2f us/transform [total time=%0.2f s its=%d]\n",
               (double) duration / nb_its,
               (double) duration / 1000000.0,
               nb_its);
    }

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        ff_mdct_end(&m);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        ff_fft_end(&s);
        break;
#if CONFIG_LIBFFTW3 && FFT_FLOAT
    case TRANSFORM_FFTW:
        ff_fftw_deinit(&fftw);
        break;
#endif /* CONFIG_LIBFFTW3 */
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        ff_rdft_end(&r);
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        ff_dct_end(&d);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

#if CONFIG_LIBFFTW3 && FFT_FLOAT
cleanup_fftw:
    av_freep(&tab_fftw);
#endif /* CONFIG_LIBFFTW3 */
cleanup:
    av_freep(&tab);
    av_freep(&tab1);
    av_freep(&tab2);
    av_freep(&tab_ref);
    av_freep(&exptab);

    if (err)
        printf("Error: %d.\n", err);

    return !!err;
}
Example #8
0
int BIKPlayer::sound_init(bool need_init)
{
	int sample_rate = header.samplerate;
	int sample_rate_half;
	unsigned int i;
	int frame_len_bits;
	int ret;

	if(need_init) {
		s_stream = setAudioStream();
	} else {
		s_stream = -1;
		return 0;
	}

	if(s_stream<0) {
		return 0;
	}

	if(header.audioflag&BINK_AUD_STEREO) {
		header.channels=2;
	}

	/* determine frame length */
	if (sample_rate < 22050) {
		frame_len_bits = 9;
	} else if (sample_rate < 44100) {
		frame_len_bits = 10;
	} else {
		frame_len_bits = 11;
	}
	//audio frame length
	s_frame_len = 1 << frame_len_bits;

	if (header.channels > MAX_CHANNELS) {
		//av_log(s->avctx, AV_LOG_ERROR, "too many channels: %d\n", s->channels);
		return -1;
	}

	if (header.audioflag&BINK_AUD_USEDCT) {
		s_channels = header.channels;
	} else {
		// audio is already interleaved for the RDFT format variant
		sample_rate *= header.channels;
		s_frame_len *= header.channels;
		s_channels = 1;
		if (header.channels == 2)
			frame_len_bits++;
	}

	s_overlap_len   = s_frame_len / 16;
	s_block_size    = (s_frame_len - s_overlap_len) * s_channels;
	sample_rate_half = (sample_rate + 1) / 2;
	s_root	  = (float) (2.0 / sqrt((float) s_frame_len));

	/* calculate number of bands */
	for (s_num_bands = 1; s_num_bands < 25; s_num_bands++) {
		if (sample_rate_half <= ff_wma_critical_freqs[s_num_bands - 1]) {
			break;
		}
	}

	s_bands = (unsigned int *) av_malloc((s_num_bands + 1) * sizeof(*s_bands));
	if (!s_bands) {
		return -2;
	}

	/* populate bands data */
	s_bands[0] = 1;
	for (i = 1; i < s_num_bands; i++)
	s_bands[i] = ff_wma_critical_freqs[i - 1] * (s_frame_len / 2) / sample_rate_half;
	s_bands[s_num_bands] = s_frame_len / 2;

	s_first = 1;

	for (i = 0; i < s_channels; i++)
		s_coeffs_ptr[i] = s_coeffs + i * s_frame_len;

	if (header.audioflag&BINK_AUD_USEDCT)
		ret = ff_dct_init(&s_trans.dct, frame_len_bits, 1);
	else
		ret = ff_rdft_init(&s_trans.rdft, frame_len_bits, IRIDFT);

	return ret;
}