static val_ptr run_extend(val_ptr v[]) { // TODO: Check v[1] is multiz poly. field_ptr fx = (field_ptr)pbc_malloc(sizeof(*fx)); field_init_poly(fx, v[0]->field); element_ptr poly = element_new(fx); element_set_multiz(poly, (multiz)(v[1]->elem->data)); field_ptr f = (field_ptr)pbc_malloc(sizeof(*f)); field_init_polymod(f, poly); element_free(poly); return val_new_field(f); }
void pbc_param_init_d_gen(pbc_param_ptr p, pbc_cm_ptr cm) { d_param_init(p); d_param_ptr param = p->data; field_t Fq, Fqx, Fqd; element_t irred, nqr; int d = cm->k / 2; int i; compute_cm_curve(param, cm); field_init_fp(Fq, param->q); field_init_poly(Fqx, Fq); element_init(irred, Fqx); do { poly_random_monic(irred, d); } while (!poly_is_irred(irred)); field_init_polymod(Fqd, irred); // Find a quadratic nonresidue of Fqd lying in Fq. element_init(nqr, Fqd); do { element_random(((element_t *) nqr->data)[0]); } while (element_is_sqr(nqr)); param->coeff = pbc_realloc(param->coeff, sizeof(mpz_t) * d); for (i=0; i<d; i++) { mpz_init(param->coeff[i]); element_to_mpz(param->coeff[i], element_item(irred, i)); } element_to_mpz(param->nqr, ((element_t *) nqr->data)[0]); element_clear(nqr); element_clear(irred); field_clear(Fqx); field_clear(Fqd); field_clear(Fq); }
static val_ptr run_polymod(val_ptr v[]) { // TODO: Check v[0] is a poly. field_ptr f = (field_ptr)pbc_malloc(sizeof(*f)); field_init_polymod(f, v[0]->elem); return val_new_field(f); }
static void f_init_pairing(pairing_t pairing, void *data) { f_param_ptr param = data; f_pairing_data_ptr p; element_t irred; element_t e0, e1, e2; p = pairing->data = pbc_malloc(sizeof(f_pairing_data_t)); mpz_init(pairing->r); mpz_set(pairing->r, param->r); field_init_fp(pairing->Zr, pairing->r); field_init_fp(p->Fq, param->q); p->Fq->nqr = pbc_malloc(sizeof(element_t)); element_init(p->Fq->nqr, p->Fq); element_set_mpz(p->Fq->nqr, param->beta); field_init_quadratic(p->Fq2, p->Fq); field_init_poly(p->Fq2x, p->Fq2); element_init(irred, p->Fq2x); // Call poly_set_coeff1() first so we can use element_item() for the other // coefficients. poly_set_coeff1(irred, 6); element_init(p->negalpha, p->Fq2); element_init(p->negalphainv, p->Fq2); element_set_mpz(element_x(p->negalpha), param->alpha0); element_set_mpz(element_y(p->negalpha), param->alpha1); element_set(element_item(irred, 0), p->negalpha); field_init_polymod(p->Fq12, irred); element_neg(p->negalpha, p->negalpha); element_invert(p->negalphainv, p->negalpha); element_clear(irred); element_init(e0, p->Fq); element_init(e1, p->Fq); element_init(e2, p->Fq2); // Initialize the curve Y^2 = X^3 + b. element_set_mpz(e1, param->b); field_init_curve_ab(p->Eq, e0, e1, pairing->r, NULL); // Initialize the curve Y^2 = X^3 - alpha0 b - alpha1 sqrt(beta) b. element_set_mpz(e0, param->alpha0); element_neg(e0, e0); element_mul(element_x(e2), e0, e1); element_set_mpz(e0, param->alpha1); element_neg(e0, e0); element_mul(element_y(e2), e0, e1); element_clear(e0); element_init(e0, p->Fq2); field_init_curve_ab(p->Etwist, e0, e2, pairing->r, NULL); element_clear(e0); element_clear(e1); element_clear(e2); mpz_t ndonr; mpz_init(ndonr); // ndonr temporarily holds the trace. mpz_sub(ndonr, param->q, param->r); mpz_add_ui(ndonr, ndonr, 1); // TODO: We can use a smaller quotient_cmp, but I have to figure out // BN curves again. pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, 12); mpz_divexact(ndonr, ndonr, param->r); mpz_divexact(ndonr, ndonr, param->r); field_curve_set_quotient_cmp(p->Etwist, ndonr); mpz_clear(ndonr); pairing->G1 = p->Eq; pairing->G2 = p->Etwist; pairing_GT_init(pairing, p->Fq12); pairing->finalpow = f_finalpow; pairing->map = f_pairing; pairing->clear_func = f_pairing_clear; mpz_init(p->tateexp); /* unoptimized tate exponent mpz_pow_ui(p->tateexp, param->q, 12); mpz_sub_ui(p->tateexp, p->tateexp, 1); mpz_divexact(p->tateexp, p->tateexp, param->r); */ mpz_ptr z = p->tateexp; mpz_mul(z, param->q, param->q); mpz_sub_ui(z, z, 1); mpz_mul(z, z, param->q); mpz_mul(z, z, param->q); mpz_add_ui(z, z, 1); mpz_divexact(z, z, param->r); element_init(p->xpowq2, p->Fq2); element_init(p->xpowq6, p->Fq2); element_init(p->xpowq8, p->Fq2); element_t xpowq; element_init(xpowq, p->Fq12); //there are smarter ways since we know q = 1 mod 6 //and that x^6 = -alpha //but this is fast enough element_set1(element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq2, element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq6, element_item(xpowq, 1)); element_pow_mpz(xpowq, xpowq, param->q); element_pow_mpz(xpowq, xpowq, param->q); element_set(p->xpowq8, element_item(xpowq, 1)); element_clear(xpowq); }
static void d_init_pairing(pairing_ptr pairing, void *data) { d_param_ptr param = data; pptr p; element_t a, b; element_t irred; int d = param->k / 2; int i; if (param->k % 2) pbc_die("k must be even"); mpz_init(pairing->r); mpz_set(pairing->r, param->r); field_init_fp(pairing->Zr, pairing->r); pairing->map = cc_pairing; pairing->prod_pairings = cc_pairings_affine; pairing->is_almost_coddh = cc_is_almost_coddh; p = pairing->data = pbc_malloc(sizeof(*p)); field_init_fp(p->Fq, param->q); element_init(a, p->Fq); element_init(b, p->Fq); element_set_mpz(a, param->a); element_set_mpz(b, param->b); field_init_curve_ab(p->Eq, a, b, pairing->r, param->h); field_init_poly(p->Fqx, p->Fq); element_init(irred, p->Fqx); poly_set_coeff1(irred, d); for (i = 0; i < d; i++) { element_set_mpz(element_item(irred, i), param->coeff[i]); } field_init_polymod(p->Fqd, irred); element_clear(irred); p->Fqd->nqr = pbc_malloc(sizeof(element_t)); element_init(p->Fqd->nqr, p->Fqd); element_set_mpz(((element_t *) p->Fqd->nqr->data)[0], param->nqr); field_init_quadratic(p->Fqk, p->Fqd); // Compute constants involved in the final powering. if (param->k == 6) { mpz_ptr q = param->q; mpz_ptr z = pairing->phikonr; mpz_init(z); mpz_mul(z, q, q); mpz_sub(z, z, q); mpz_add_ui(z, z, 1); mpz_divexact(z, z, pairing->r); element_ptr e = p->xpowq; element_init(e, p->Fqd); element_set1(((element_t *) e->data)[1]); element_pow_mpz(e, e, q); element_init(p->xpowq2, p->Fqd); element_square(p->xpowq2, e); } else { mpz_init(p->tateexp); mpz_sub_ui(p->tateexp, p->Fqk->order, 1); mpz_divexact(p->tateexp, p->tateexp, pairing->r); } field_init_curve_ab_map(p->Etwist, p->Eq, element_field_to_polymod, p->Fqd, pairing->r, NULL); field_reinit_curve_twist(p->Etwist); mpz_t ndonr; mpz_init(ndonr); // ndonr temporarily holds the trace. mpz_sub(ndonr, param->q, param->n); mpz_add_ui(ndonr, ndonr, 1); // Negate it because we want the trace of the twist. mpz_neg(ndonr, ndonr); pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, d); mpz_divexact(ndonr, ndonr, param->r); field_curve_set_quotient_cmp(p->Etwist, ndonr); mpz_clear(ndonr); element_init(p->nqrinv, p->Fqd); element_invert(p->nqrinv, field_get_nqr(p->Fqd)); element_init(p->nqrinv2, p->Fqd); element_square(p->nqrinv2, p->nqrinv); pairing->G1 = p->Eq; pairing->G2 = p->Etwist; p->k = param->k; pairing_GT_init(pairing, p->Fqk); pairing->finalpow = cc_finalpow; // By default use affine coordinates. cc_miller_no_denom_fn = cc_miller_no_denom_affine; pairing->option_set = d_pairing_option_set; pairing->pp_init = d_pairing_pp_init; pairing->pp_clear = d_pairing_pp_clear; pairing->pp_apply = d_pairing_pp_apply; pairing->clear_func = d_pairing_clear; element_clear(a); element_clear(b); }