Example #1
0
static void bt_audio_close(const void *buf, uint16_t len)
{
	const struct audio_cmd_close *cmd = buf;
	struct a2dp_endpoint *endpoint;

	DBG("");

	endpoint = find_endpoint(cmd->id);
	if (!endpoint) {
		error("Unable to find endpoint %u", cmd->id);
		ipc_send_rsp(audio_ipc, AUDIO_SERVICE_ID, AUDIO_OP_CLOSE,
							AUDIO_STATUS_FAILED);
		return;
	}

	endpoints = g_slist_remove(endpoints, endpoint);
	unregister_endpoint(endpoint);

	ipc_send_rsp(audio_ipc, AUDIO_SERVICE_ID, AUDIO_OP_CLOSE,
							AUDIO_STATUS_SUCCESS);
}
Example #2
0
int API_EXPORTED libusb_get_max_packet_size(libusb_device *dev,
	unsigned char endpoint)
{
	struct libusb_config_descriptor *config;
	const struct libusb_endpoint_descriptor *ep;
	int r;

	r = libusb_get_active_config_descriptor(dev, &config);
	if (r < 0) {
		usbi_err(DEVICE_CTX(dev),
			"could not retrieve active config descriptor");
		return LIBUSB_ERROR_OTHER;
	}

	ep = find_endpoint(config, endpoint);
	if (!ep)
		return LIBUSB_ERROR_NOT_FOUND;

	r = ep->wMaxPacketSize;
	libusb_free_config_descriptor(config);
	return r;
}
Example #3
0
/*
 * epm_Insert
 *
 * Add the specified entries to an endpoint map.
 */
error_status_t _epm_Insert(struct pipes_struct *p,
			   struct epm_Insert *r)
{
	TALLOC_CTX *tmp_ctx;
	error_status_t rc;
	NTSTATUS status;
	uint32_t i;
	struct dcerpc_binding *b;
	struct dcesrv_endpoint *ep;
	struct dcesrv_iface_list *iflist;
	struct dcesrv_iface *iface;
	bool add_ep;

	/* If this is not a priviledged users, return */
	if (p->transport != NCALRPC ||
	    !is_priviledged_pipe(p->session_info)) {
		p->fault_state = DCERPC_FAULT_OP_RNG_ERROR;
		return EPMAPPER_STATUS_CANT_PERFORM_OP;
	}

	tmp_ctx = talloc_stackframe();
	if (tmp_ctx == NULL) {
		return EPMAPPER_STATUS_NO_MEMORY;
	}

	DEBUG(3, ("_epm_Insert: Trying to add %u new entries.\n",
		  r->in.num_ents));

	for (i = 0; i < r->in.num_ents; i++) {
		add_ep = false;
		b = NULL;

		status = dcerpc_binding_from_tower(tmp_ctx,
						   &r->in.entries[i].tower->tower,
						   &b);
		if (NT_STATUS_EQUAL(status, NT_STATUS_NO_MEMORY)) {
			rc = EPMAPPER_STATUS_NO_MEMORY;
			goto done;
		}
		if (!NT_STATUS_IS_OK(status)) {
			rc = EPMAPPER_STATUS_CANT_PERFORM_OP;
			goto done;
		}

		DEBUG(3, ("_epm_Insert: Adding transport %s for %s\n",
			  derpc_transport_string_by_transport(b->transport),
			  r->in.entries[i].annotation));

		/* Check if the entry already exits */
		ep = find_endpoint(endpoint_table, b);
		if (ep == NULL) {
			/* No entry found, create it */
			ep = talloc_zero(NULL, struct dcesrv_endpoint);
			if (ep == NULL) {
				rc = EPMAPPER_STATUS_NO_MEMORY;
				goto done;
			}
			add_ep = true;

			ep->ep_description = talloc_steal(ep, b);
		}

		/* TODO Replace the entry if the replace flag is set */

		/* Create an interface */
		iface = talloc(tmp_ctx, struct dcesrv_iface);
		if (iface == NULL) {
			rc = EPMAPPER_STATUS_NO_MEMORY;
			goto done;
		}

		iface->name = talloc_strdup(iface, r->in.entries[i].annotation);
		if (iface->name == NULL) {
			rc = EPMAPPER_STATUS_NO_MEMORY;
			goto done;
		}
		iface->syntax_id = b->object;

		/*
		 * Check if the rpc service is alrady registered on the
		 * endpoint.
		 */
		if (find_interface(ep, iface) != NULL) {
			DEBUG(8, ("dcesrv_interface_register: interface '%s' "
				  "already registered on endpoint\n",
				  iface->name));
			/* FIXME wrong error code? */
			rc = EPMAPPER_STATUS_OK;
			goto done;
		}

		/* Create an entry for the interface */
		iflist = talloc(ep, struct dcesrv_iface_list);
		if (iflist == NULL) {
			rc = EPMAPPER_STATUS_NO_MEMORY;
			goto done;
		}
		iflist->iface = talloc_move(iflist, &iface);

		/* Finally add the interface on the endpoint */
		DLIST_ADD(ep->iface_list, iflist);

		/* If it's a new endpoint add it to the endpoint_table */
		if (add_ep) {
			DLIST_ADD(endpoint_table, ep);
		}
	}
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0))
        return -1;

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int sndhwm = 0;
        if (peer.socket == NULL)
            sndhwm = options.sndhwm;
        else if (options.sndhwm != 0 && peer.options.rcvhwm != 0)
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        int rcvhwm = 0;
        if (peer.socket == NULL)
            rcvhwm = options.rcvhwm;
        else if (options.rcvhwm != 0 && peer.options.sndhwm != 0)
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket == NULL ? this : peer.socket};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
                        (options.type == ZMQ_DEALER ||
                         options.type == ZMQ_PULL ||
                         options.type == ZMQ_PUSH ||
                         options.type == ZMQ_PUB ||
                         options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : sndhwm, conflate? -1 : rcvhwm};
        bool conflates [2] = {conflate, conflate};
        int rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (new_pipes [0]);

        if (!peer.socket) {
            //  The peer doesn't exist yet so we don't know whether
            //  to send the identity message or not. To resolve this,
            //  we always send our identity and drop it later if
            //  the peer doesn't expect it.
            msg_t id;
            rc = id.init_size (options.identity_size);
            errno_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = new_pipes [0]->write (&id);
            zmq_assert (written);
            new_pipes [0]->flush ();

            endpoint_t endpoint = {this, options};
            pending_connection_t pending_connection = {endpoint, new_pipes [0], new_pipes [1]};
            pend_connection (addr_, pending_connection);
        }
        else
        {
            //  If required, send the identity of the local socket to the peer.
            if (peer.options.recv_identity) {

                msg_t id;
                rc = id.init_size (options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), options.identity, options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [0]->write (&id);
                zmq_assert (written);
                new_pipes [0]->flush ();
            }

            //  If required, send the identity of the peer to the local socket.
            if (options.recv_identity) {
                msg_t id;
                rc = id.init_size (peer.options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), peer.options.identity, peer.options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [1]->write (&id);
                zmq_assert (written);
                new_pipes [1]->flush ();
            }

            //  Attach remote end of the pipe to the peer socket. Note that peer's
            //  seqnum was incremented in find_endpoint function. We don't need it
            //  increased here.
            send_bind (peer.socket, new_pipes [1], false);
        }

        // Save last endpoint URI
        last_endpoint.assign (addr_);

        // remember inproc connections for disconnect
        inprocs.insert (inprocs_t::value_type (std::string (addr_), new_pipes[0]));

        return 0;
    }
    bool is_single_connect = (options.type == ZMQ_DEALER ||
                              options.type == ZMQ_SUB ||
                              options.type == ZMQ_REQ);
    if (unlikely (is_single_connect)) {
        endpoints_t::iterator it = endpoints.find (addr_);
        if (it != endpoints.end ()) {
            // There is no valid use for multiple connects for SUB-PUB nor
            // DEALER-ROUTER nor REQ-REP. Multiple connects produces
            // nonsensical results.
            return 0;
        }
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    address_t *paddr = new (std::nothrow) address_t (protocol, address);
    alloc_assert (paddr);

    //  Resolve address (if needed by the protocol)
    if (protocol == "tcp") {
        // Defer resolution until a socket is opened
        paddr->resolved.tcp_addr = NULL;
    }
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    else if (protocol == "ipc") {
        paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
        alloc_assert (paddr->resolved.ipc_addr);
        int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#endif

// TBD - Should we check address for ZMQ_HAVE_NORM???

#ifdef ZMQ_HAVE_OPENPGM
    if (protocol == "pgm" || protocol == "epgm") {
        struct pgm_addrinfo_t *res = NULL;
        uint16_t port_number = 0;
        int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number);
        if (res != NULL)
            pgm_freeaddrinfo (res);
        if (rc != 0 || port_number == 0)
            return -1;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    else if (protocol == "tipc") {
        paddr->resolved.tipc_addr = new (std::nothrow) tipc_address_t ();
        alloc_assert (paddr->resolved.tipc_addr);
        int rc = paddr->resolved.tipc_addr->resolve (address.c_str());
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#endif

    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
                              options, paddr);
    errno_assert (session);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe. (same for NORM, currently?)
    bool subscribe_to_all = protocol == "pgm" || protocol == "epgm" || protocol == "norm";
    pipe_t *newpipe = NULL;

    if (options.immediate != 1 || subscribe_to_all) {
        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
                        (options.type == ZMQ_DEALER ||
                         options.type == ZMQ_PULL ||
                         options.type == ZMQ_PUSH ||
                         options.type == ZMQ_PUB ||
                         options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : options.sndhwm,
                        conflate? -1 : options.rcvhwm
                       };
        bool conflates [2] = {conflate, conflate};
        rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (new_pipes [0], subscribe_to_all);
        newpipe = new_pipes [0];

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (new_pipes [1]);
    }

    //  Save last endpoint URI
    paddr->to_string (last_endpoint);

    add_endpoint (addr_, (own_t *) session, newpipe);
    return 0;
}
Example #5
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0))
        return -1;

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int  sndhwm;
        int  rcvhwm;
        if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
            sndhwm = 0;
        else
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
            rcvhwm = 0;
        else
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0]);

        //  If required, send the identity of the local socket to the peer.
        if (options.send_identity) {
            msg_t id;
            rc = id.init_size (options.identity_size);
            zmq_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [0]->write (&id);
            zmq_assert (written);
            pipes [0]->flush ();
        }

        //  If required, send the identity of the peer to the local socket.
        if (peer.options.send_identity) {
            msg_t id;
            rc = id.init_size (peer.options.identity_size);
            zmq_assert (rc == 0);
            memcpy (id.data (), peer.options.identity, peer.options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [1]->write (&id);
            zmq_assert (written);
            pipes [1]->flush ();
        }

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], false);

        // Save last endpoint URI
        options.last_endpoint.assign (addr_);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    address_t *paddr = new (std::nothrow) address_t (protocol, address);
    zmq_assert (paddr);

    //  Resolve address (if needed by the protocol)
    if (protocol == "tcp") {
        paddr->resolved.tcp_addr = new (std::nothrow) tcp_address_t ();
        zmq_assert (paddr->resolved.tcp_addr);
        int rc = paddr->resolved.tcp_addr->resolve (
            address.c_str (), false, options.ipv4only ? true : false);
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    else if(protocol == "ipc") {
        paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
        zmq_assert (paddr->resolved.ipc_addr);
        int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#endif
    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, paddr);
    errno_assert (session);

    //  Create a bi-directional pipe.
    object_t *parents [2] = {this, session};
    pipe_t *pipes [2] = {NULL, NULL};
    int hwms [2] = {options.sndhwm, options.rcvhwm};
    bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
    rc = pipepair (parents, pipes, hwms, delays);
    errno_assert (rc == 0);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe.
    bool icanhasall = false;
    if (protocol == "pgm" || protocol == "epgm")
        icanhasall = true;

    //  Attach local end of the pipe to the socket object.
    attach_pipe (pipes [0], icanhasall);

    //  Attach remote end of the pipe to the session object later on.
    session->attach_pipe (pipes [1]);

    // Save last endpoint URI
    paddr->to_string (options.last_endpoint);

    add_endpoint (addr_, (own_t *) session);
    return 0;
}
Example #6
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        reader_t *inpipe_reader = NULL;
        writer_t *inpipe_writer = NULL;
        reader_t *outpipe_reader = NULL;
        writer_t *outpipe_writer = NULL;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.  (Similarly for the
        // SWAP.)
        int64_t  hwm;
        if (options.hwm == 0 || peer.options.hwm == 0)
            hwm = 0;
        else
            hwm = options.hwm + peer.options.hwm;
        int64_t swap;
        if (options.swap == 0 && peer.options.swap == 0)
            swap = 0;
        else
            swap = options.swap + peer.options.swap;

        //  Create inbound pipe, if required.
        if (options.requires_in)
            create_pipe (this, peer.socket, hwm, swap,
                &inpipe_reader, &inpipe_writer);

        //  Create outbound pipe, if required.
        if (options.requires_out)
            create_pipe (peer.socket, this, hwm, swap,
                &outpipe_reader, &outpipe_writer);

        //  Attach the pipes to this socket object.
        attach_pipes (inpipe_reader, outpipe_writer, peer.options.identity);

        //  Attach the pipes to the peer socket. Note that peer's seqnum
        //  was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, outpipe_reader, inpipe_writer,
            options.identity, false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    connect_session_t *session = new (std::nothrow) connect_session_t (
        io_thread, this, options, protocol.c_str (), address.c_str ());
    alloc_assert (session);

    //  If 'immediate connect' feature is required, we'll create the pipes
    //  to the session straight away. Otherwise, they'll be created by the
    //  session once the connection is established.
    if (options.immediate_connect) {

        reader_t *inpipe_reader = NULL;
        writer_t *inpipe_writer = NULL;
        reader_t *outpipe_reader = NULL;
        writer_t *outpipe_writer = NULL;

        //  Create inbound pipe, if required.
        if (options.requires_in)
            create_pipe (this, session, options.hwm, options.swap,
                &inpipe_reader, &inpipe_writer);

        //  Create outbound pipe, if required.
        if (options.requires_out)
            create_pipe (session, this, options.hwm, options.swap,
                &outpipe_reader, &outpipe_writer);

        //  Attach the pipes to the socket object.
        attach_pipes (inpipe_reader, outpipe_writer, blob_t ());

        //  Attach the pipes to the session object.
        session->attach_pipes (outpipe_reader, inpipe_writer, blob_t ());
    }

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}
Example #7
0
int zmq::socket_base_t::connect (const char *addr_)
{
    ENTER_MUTEX();

    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        EXIT_MUTEX();
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0)) {
        EXIT_MUTEX();
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    if (parse_uri (addr_, protocol, address) || check_protocol (protocol)) {
        EXIT_MUTEX();
        return -1;
    }

    if (protocol == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int sndhwm = 0;
        if (peer.socket == NULL)
            sndhwm = options.sndhwm;
        else if (options.sndhwm != 0 && peer.options.rcvhwm != 0)
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        int rcvhwm = 0;
        if (peer.socket == NULL)
            rcvhwm = options.rcvhwm;
        else
        if (options.rcvhwm != 0 && peer.options.sndhwm != 0)
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket == NULL ? this : peer.socket};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
            (options.type == ZMQ_DEALER ||
             options.type == ZMQ_PULL ||
             options.type == ZMQ_PUSH ||
             options.type == ZMQ_PUB ||
             options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : sndhwm, conflate? -1 : rcvhwm};
        bool conflates [2] = {conflate, conflate};
        int rc = pipepair (parents, new_pipes, hwms, conflates);
        if (!conflate) {
            new_pipes[0]->set_hwms_boost(peer.options.sndhwm, peer.options.rcvhwm);
            new_pipes[1]->set_hwms_boost(options.sndhwm, options.rcvhwm);
        }

        errno_assert (rc == 0);

        if (!peer.socket) {
            //  The peer doesn't exist yet so we don't know whether
            //  to send the identity message or not. To resolve this,
            //  we always send our identity and drop it later if
            //  the peer doesn't expect it.
            msg_t id;
            rc = id.init_size (options.identity_size);
            errno_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = new_pipes [0]->write (&id);
            zmq_assert (written);
            new_pipes [0]->flush ();

            const endpoint_t endpoint = {this, options};
            pend_connection (std::string (addr_), endpoint, new_pipes);
        }
        else {
            //  If required, send the identity of the local socket to the peer.
            if (peer.options.recv_identity) {
                msg_t id;
                rc = id.init_size (options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), options.identity, options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [0]->write (&id);
                zmq_assert (written);
                new_pipes [0]->flush ();
            }

            //  If required, send the identity of the peer to the local socket.
            if (options.recv_identity) {
                msg_t id;
                rc = id.init_size (peer.options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), peer.options.identity, peer.options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [1]->write (&id);
                zmq_assert (written);
                new_pipes [1]->flush ();
            }

            //  Attach remote end of the pipe to the peer socket. Note that peer's
            //  seqnum was incremented in find_endpoint function. We don't need it
            //  increased here.
            send_bind (peer.socket, new_pipes [1], false);
        }

        //  Attach local end of the pipe to this socket object.
        attach_pipe (new_pipes [0]);

        // Save last endpoint URI
        last_endpoint.assign (addr_);

        // remember inproc connections for disconnect
        inprocs.insert (inprocs_t::value_type (std::string (addr_), new_pipes [0]));

        options.connected = true;
        EXIT_MUTEX();
        return 0;
    }
    bool is_single_connect = (options.type == ZMQ_DEALER ||
                              options.type == ZMQ_SUB ||
                              options.type == ZMQ_REQ);
    if (unlikely (is_single_connect)) {
        const endpoints_t::iterator it = endpoints.find (addr_);
        if (it != endpoints.end ()) {
            // There is no valid use for multiple connects for SUB-PUB nor
            // DEALER-ROUTER nor REQ-REP. Multiple connects produces
            // nonsensical results.
            EXIT_MUTEX();
            return 0;
        }
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        EXIT_MUTEX();
        return -1;
    }

    address_t *paddr = new (std::nothrow) address_t (protocol, address);
    alloc_assert (paddr);

    //  Resolve address (if needed by the protocol)
    if (protocol == "tcp") {
        //  Do some basic sanity checks on tcp:// address syntax
        //  - hostname starts with digit or letter, with embedded '-' or '.'
        //  - IPv6 address may contain hex chars and colons.
        //  - IPv4 address may contain decimal digits and dots.
        //  - Address must end in ":port" where port is *, or numeric
        //  - Address may contain two parts separated by ':'
        //  Following code is quick and dirty check to catch obvious errors,
        //  without trying to be fully accurate.
        const char *check = address.c_str ();
        if (isalnum (*check) || isxdigit (*check) || *check == '[') {
            check++;
            while (isalnum  (*check)
                || isxdigit (*check)
                || *check == '.' || *check == '-' || *check == ':'|| *check == ';'
                || *check == ']')
                check++;
        }
        //  Assume the worst, now look for success
        rc = -1;
        //  Did we reach the end of the address safely?
        if (*check == 0) {
            //  Do we have a valid port string? (cannot be '*' in connect
            check = strrchr (address.c_str (), ':');
            if (check) {
                check++;
                if (*check && (isdigit (*check)))
                    rc = 0;     //  Valid
            }
        }
        if (rc == -1) {
            errno = EINVAL;
            LIBZMQ_DELETE(paddr);
            EXIT_MUTEX();
            return -1;
        }
        //  Defer resolution until a socket is opened
        paddr->resolved.tcp_addr = NULL;
    }
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    else
    if (protocol == "ipc") {
        paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
        alloc_assert (paddr->resolved.ipc_addr);
        int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
        if (rc != 0) {
            LIBZMQ_DELETE(paddr);
            EXIT_MUTEX();
            return -1;
        }
    }
#endif

// TBD - Should we check address for ZMQ_HAVE_NORM???

#ifdef ZMQ_HAVE_OPENPGM
    if (protocol == "pgm" || protocol == "epgm") {
        struct pgm_addrinfo_t *res = NULL;
        uint16_t port_number = 0;
        int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number);
        if (res != NULL)
            pgm_freeaddrinfo (res);
        if (rc != 0 || port_number == 0) {
          EXIT_MUTEX();
          return -1;
        }
    }
#endif
#if defined ZMQ_HAVE_TIPC
    else
    if (protocol == "tipc") {
        paddr->resolved.tipc_addr = new (std::nothrow) tipc_address_t ();
        alloc_assert (paddr->resolved.tipc_addr);
        int rc = paddr->resolved.tipc_addr->resolve (address.c_str());
        if (rc != 0) {
            LIBZMQ_DELETE(paddr);
            EXIT_MUTEX();
            return -1;
        }
    }
#endif

    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, paddr);
    errno_assert (session);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe. (same for NORM, currently?)
    bool subscribe_to_all = protocol == "pgm" || protocol == "epgm" || protocol == "norm";
    pipe_t *newpipe = NULL;

    if (options.immediate != 1 || subscribe_to_all) {
        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
            (options.type == ZMQ_DEALER ||
             options.type == ZMQ_PULL ||
             options.type == ZMQ_PUSH ||
             options.type == ZMQ_PUB ||
             options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : options.sndhwm,
            conflate? -1 : options.rcvhwm};
        bool conflates [2] = {conflate, conflate};
        rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (new_pipes [0], subscribe_to_all);
        newpipe = new_pipes [0];

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (new_pipes [1]);
    }

    //  Save last endpoint URI
    paddr->to_string (last_endpoint);

    add_endpoint (addr_, (own_t *) session, newpipe);
    EXIT_MUTEX();
    return 0;
}
Example #8
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (app_thread->is_terminated ())) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string addr_type;
    std::string addr_args;

    std::string addr (addr_);
    std::string::size_type pos = addr.find ("://");

    if (pos == std::string::npos) {
        errno = EINVAL;
        return -1;
    }

    addr_type = addr.substr (0, pos);
    addr_args = addr.substr (pos + 3);

    if (addr_type == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer socket.
        socket_base_t *peer = find_endpoint (addr_args.c_str ());
        if (!peer)
            return -1;

        pipe_t *in_pipe = NULL;
        pipe_t *out_pipe = NULL;

        //  Create inbound pipe, if required.
        if (options.requires_in) {
            in_pipe = new (std::nothrow) pipe_t (this, peer, options.hwm);
            zmq_assert (in_pipe);
        }

        //  Create outbound pipe, if required.
        if (options.requires_out) {
            out_pipe = new (std::nothrow) pipe_t (peer, this, options.hwm);
            zmq_assert (out_pipe);
        }

        //  Attach the pipes to this socket object.
        attach_pipes (in_pipe ? &in_pipe->reader : NULL,
            out_pipe ? &out_pipe->writer : NULL, blob_t ());

        //  Attach the pipes to the peer socket. Note that peer's seqnum
        //  was incremented in find_endpoint function. The callee is notified
        //  about the fact via the last parameter.
        send_bind (peer, out_pipe ? &out_pipe->reader : NULL,
            in_pipe ? &in_pipe->writer : NULL, options.identity, false);

        return 0;
    }

    //  Create unnamed session.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    session_t *session = new (std::nothrow) session_t (io_thread,
        this, options);
    zmq_assert (session);

    //  If 'immediate connect' feature is required, we'll created the pipes
    //  to the session straight away. Otherwise, they'll be created by the
    //  session once the connection is established.
    if (options.immediate_connect) {

        pipe_t *in_pipe = NULL;
        pipe_t *out_pipe = NULL;

        //  Create inbound pipe, if required.
        if (options.requires_in) {
            in_pipe = new (std::nothrow) pipe_t (this, session, options.hwm);
            zmq_assert (in_pipe);

        }

        //  Create outbound pipe, if required.
        if (options.requires_out) {
            out_pipe = new (std::nothrow) pipe_t (session, this, options.hwm);
            zmq_assert (out_pipe);
        }

        //  Attach the pipes to the socket object.
        attach_pipes (in_pipe ? &in_pipe->reader : NULL,
            out_pipe ? &out_pipe->writer : NULL, blob_t ());

        //  Attach the pipes to the session object.
        session->attach_pipes (out_pipe ? &out_pipe->reader : NULL,
            in_pipe ? &in_pipe->writer : NULL, blob_t ());
    }

    //  Activate the session.
    send_plug (session);
    send_own (this, session);

    if (addr_type == "tcp" || addr_type == "ipc") {

#if defined ZMQ_HAVE_WINDOWS || defined ZMQ_HAVE_OPENVMS
        //  Windows named pipes are not compatible with Winsock API.
        //  There's no UNIX domain socket implementation on OpenVMS.
        if (addr_type == "ipc") {
            errno = EPROTONOSUPPORT;
            return -1;
        }
#endif

        //  Create the connecter object. Supply it with the session name
        //  so that it can bind the new connection to the session once
        //  it is established.
        zmq_connecter_t *connecter = new (std::nothrow) zmq_connecter_t (
            choose_io_thread (options.affinity), this, options,
            session->get_ordinal (), false);
        zmq_assert (connecter);
        int rc = connecter->set_address (addr_type.c_str(), addr_args.c_str ());
        if (rc != 0) {
            delete connecter;
            return -1;
        }
        send_plug (connecter);
        send_own (this, connecter);

        return 0;
    }

#if defined ZMQ_HAVE_OPENPGM
    if (addr_type == "pgm" || addr_type == "epgm") {

        //  If the socket type requires bi-directional communication
        //  multicast is not an option (it is uni-directional).
        if (options.requires_in && options.requires_out) {
            errno = ENOCOMPATPROTO;
            return -1;
        }

        //  For epgm, pgm transport with UDP encapsulation is used.
        bool udp_encapsulation = (addr_type == "epgm");

        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with PGM anyway.
        if (options.requires_out) {

            //  PGM sender.
            pgm_sender_t *pgm_sender =  new (std::nothrow) pgm_sender_t (
                choose_io_thread (options.affinity), options);
            zmq_assert (pgm_sender);

            int rc = pgm_sender->init (udp_encapsulation, addr_args.c_str ());
            if (rc != 0) {
                delete pgm_sender;
                return -1;
            }

            send_attach (session, pgm_sender, blob_t ());
        }
        else if (options.requires_in) {

            //  PGM receiver.
            pgm_receiver_t *pgm_receiver =  new (std::nothrow) pgm_receiver_t (
                choose_io_thread (options.affinity), options);
            zmq_assert (pgm_receiver);

            int rc = pgm_receiver->init (udp_encapsulation, addr_args.c_str ());
            if (rc != 0) {
                delete pgm_receiver;
                return -1;
            }

            send_attach (session, pgm_receiver, blob_t ());
        }
        else
            zmq_assert (false);

        return 0;
    }
#endif

    //  Unknown protoco.
    errno = EPROTONOSUPPORT;
    return -1;
}
Example #9
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int  sndhwm;
        int  rcvhwm;
        if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
            sndhwm = 0;
        else
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
            rcvhwm = 0;
        else
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0]);

        //  If required, send the identity of the local socket to the peer.
        if (options.send_identity) {
            msg_t id;
            rc = id.init_size (options.identity_size);
            zmq_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [0]->write (&id);
            zmq_assert (written);
        }

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, protocol.c_str (), address.c_str ());
    errno_assert (session);

    //  Create a bi-directional pipe.
    object_t *parents [2] = {this, session};
    pipe_t *pipes [2] = {NULL, NULL};
    int hwms [2] = {options.sndhwm, options.rcvhwm};
    bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
    rc = pipepair (parents, pipes, hwms, delays);
    errno_assert (rc == 0);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe.
    bool icanhasall = false;
    if (protocol == "pgm" || protocol == "epgm")
        icanhasall = true;

    //  Attach local end of the pipe to the socket object.
    attach_pipe (pipes [0], icanhasall);

    //  Attach remote end of the pipe to the session object later on.
    session->attach_pipe (pipes [1]);

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}
Example #10
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    //  Checks that protocol is valid and supported on this system
    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    //  Parsed address for validation
    sockaddr_storage addr;
    socklen_t addr_len;

    if (protocol == "tcp")
        rc = resolve_ip_hostname (&addr, &addr_len, address.c_str ());
    else
    if (protocol == "ipc")
        rc = resolve_local_path (&addr, &addr_len, address.c_str ());
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int  sndhwm;
        int  rcvhwm;
        if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
            sndhwm = 0;
        else
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
            rcvhwm = 0;
        else
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0], peer.options.identity);

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], options.identity, false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    connect_session_t *session = new (std::nothrow) connect_session_t (
        io_thread, this, options, protocol.c_str (), address.c_str ());
    alloc_assert (session);

    //  If 'immediate connect' feature is required, we'll create the pipes
    //  to the session straight away. Otherwise, they'll be created by the
    //  session once the connection is established.
    if (options.immediate_connect) {

        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {options.sndhwm, options.rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (pipes [0], blob_t ());

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (pipes [1]);
    }

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}