Example #1
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (eepromConfig.useMs5611 == true)
            {
                if (newTemperatureReading && newPressureReading)
                {
                    d1Value = d1.value;
                    d2Value = d2.value;

                    calculateMs5611Temperature();
                    calculateMs5611PressureAltitude();

                    newTemperatureReading = false;
                    newPressureReading    = false;
                }
            }
            else
            {
                if (newTemperatureReading && newPressureReading)
                {
                    uncompensatedTemperatureValue = uncompensatedTemperature.value;
                    uncompensatedPressureValue    = uncompensatedPressure.value;

                    calculateBmp085Temperature();
                    calculateBmp085PressureAltitude();

                    newTemperatureReading = false;
                    newPressureReading    = false;
                }
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            sensors.mag10Hz[XAXIS] = -((float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS]);
            sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
            sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

            newMagData = false;
            magDataUpdate = true;

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
                mavlinkSendAttitude();
                mavlinkSendVfrHud();
            }

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            if (eepromConfig.useMpu6050 == true)
            {
                computeMpu6050TCBias();

                sensors.accel500Hz[XAXIS] =  ((float)accelData500Hz[XAXIS] - accelTCBias[XAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;
                sensors.accel500Hz[YAXIS] = -((float)accelData500Hz[YAXIS] - accelTCBias[YAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;
                sensors.accel500Hz[ZAXIS] = -((float)accelData500Hz[ZAXIS] - accelTCBias[ZAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;

                sensors.gyro500Hz[ROLL ] =  ((float)gyroData500Hz[ROLL ] - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * MPU6050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[PITCH] = -((float)gyroData500Hz[PITCH] - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * MPU6050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[YAW  ] = -((float)gyroData500Hz[YAW  ] - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * MPU6050_GYRO_SCALE_FACTOR;
            }
            else
            {
                sensors.accel500Hz[XAXIS] = -((float)accelData500Hz[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
                sensors.accel500Hz[YAXIS] = -((float)accelData500Hz[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
                sensors.accel500Hz[ZAXIS] = -((float)accelData500Hz[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

                // HJI sensors.accel500Hz[XAXIS] = firstOrderFilter(sensors.accel500Hz[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
                // HJI sensors.accel500Hz[YAXIS] = firstOrderFilter(sensors.accel500Hz[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
                // HJI sensors.accel500Hz[ZAXIS] = firstOrderFilter(sensors.accel500Hz[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

                computeMpu3050TCBias();

                sensors.gyro500Hz[ROLL ] =  ((float)gyroData500Hz[ROLL ]  - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * MPU3050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[PITCH] = -((float)gyroData500Hz[PITCH]  - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * MPU3050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[YAW  ] = -((float)gyroData500Hz[YAW  ]  - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * MPU3050_GYRO_SCALE_FACTOR;
            }

            MargAHRSupdate( sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                            sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            magDataUpdate,
                            dt500Hz );

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeMotors();

            if (eepromConfig.receiverType == SPEKTRUM)
                writeServos();

            executionTime500Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = sensors.accel500Hz[XAXIS];  // No sensor averaging so use the 500 Hz value
            sensors.accel100Hz[YAXIS] = sensors.accel500Hz[YAXIS];  // No sensor averaging so use the 500 Hz value
            sensors.accel100Hz[ZAXIS] = sensors.accel500Hz[ZAXIS];  // No sensor averaging so use the 500 Hz value

            // HJI sensors.accel100Hz[XAXIS] = firstOrderFilter(sensors.accel100Hz[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
            // HJI sensors.accel100Hz[YAXIS] = firstOrderFilter(sensors.accel100Hz[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
            // HJI sensors.accel100Hz[ZAXIS] = firstOrderFilter(sensors.accel100Hz[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
                if ( eepromConfig.activeTelemetry == 1 )
                {
                    // 500 Hz Accels
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
                                    sensors.accel500Hz[YAXIS],
                                    sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
                    // 500 Hz Gyros
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
                                    sensors.gyro500Hz[PITCH],
                                    sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
                    // 500 Hz Attitudes
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
                                    sensors.attitude500Hz[PITCH],
                                    sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
                    // Vertical Variables
                    telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f\n", earthAxisAccels[ZAXIS],
                                    sensors.pressureAlt50Hz,
                                    hDotEstimate,
                                    hEstimate);
                }

                if ( eepromConfig.activeTelemetry == 16 )
                {
                    // Vertical Variables
                    telemPortPrintF("%9.4f, %9.4f, %9.4f,%1d, %9.4f, %9.4f\n", verticalVelocityCmd,
                                    hDotEstimate,
                                    hEstimate,
                                    verticalModeState,
                                    throttleCmd,
                                    eepromConfig.PID[HDOT_PID].iTerm);
                }

            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (batMonVeryLowWarning > 0)
            {
                BEEP_TOGGLE;
                batMonVeryLowWarning--;
            }

            executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
                execUp = true;

                LED0_OFF;
                LED1_OFF;

                pwmEscInit();

                homeData.magHeading = sensors.attitude500Hz[YAW];
            }

            if (batMonLowWarning > 0)
            {
                BEEP_TOGGLE;
                batMonLowWarning--;
            }

            if (eepromConfig.mavlinkEnabled == true)
            {
                mavlinkSendHeartbeat();
                mavlinkSendSysStatus();
            }

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Example #2
0
void processPointingCommands(void)
{
    uint8_t channel;

    if (rcActive == true)
    {
        // Read receiver commands
        for (channel = 0; channel < 3; channel++)
            rxCommand[channel] = (float)rxRead(channel);

        rxCommand[ROLL]  -= eepromConfig.midCommand;                  // Roll Range    -1000:1000
        rxCommand[PITCH] -= eepromConfig.midCommand;                  // Pitch Range   -1000:1000
        rxCommand[YAW]   -= eepromConfig.midCommand;                  // Yaw Range     -1000:1000
    }

    // Set past command in detent values
    for (channel = 0; channel < 3; channel++)
        previousCommandInDetent[channel] = commandInDetent[channel];

    // Apply deadbands and set detent discretes
    for (channel = 0; channel < 3; channel++)
    {
        if ((rxCommand[channel] <= DEADBAND) && (rxCommand[channel] >= -DEADBAND))
        {
            rxCommand[channel] = 0;
            commandInDetent[channel] = true;
        }
        else
        {
            commandInDetent[channel] = false;

            if (rxCommand[channel] > 0)
            {
                rxCommand[channel] = (rxCommand[channel] - DEADBAND) * DEADBAND_SLOPE;
            }
            else
            {
                rxCommand[channel] = (rxCommand[channel] + DEADBAND) * DEADBAND_SLOPE;
            }
        }
    }

    ///////////////////////////////////

    rxCommand[ROLL]  *=  0.001f;  // Roll Range  -1:1
    rxCommand[PITCH] *= -0.001f;  // Pitch Range -1:1
    rxCommand[YAW]   *=  0.001f;  // Yaw Range   -1:1

    ///////////////////////////////////

    if (eepromConfig.rollRateCmdInput == true)
    {
        if ((rxCommand[ROLL] >= 0.0f) && (pointingCmd[ROLL] <=  eepromConfig.gimbalRollRightLimit))
            pointingCmd[ROLL] += rxCommand[ROLL] * eepromConfig.gimbalRollRate * 0.02f;  // Constant DT of 0.02 good enough here

        if ((rxCommand[ROLL] < 0.0f) && (pointingCmd[ROLL] >= -eepromConfig.gimbalRollLeftLimit))
            pointingCmd[ROLL] += rxCommand[ROLL] * eepromConfig.gimbalRollRate * 0.02f;  // Constant DT of 0.02 good enough here

        pointingCmd[ROLL] = firstOrderFilter(pointingCmd[ROLL], &firstOrderFilters[ROLL_RATE_POINTING_50HZ_LOWPASS]);
    }
    else
    {
        if (rxCommand[ROLL] >= 0.0f)
            pointingCmd[ROLL] = rxCommand[ROLL] * eepromConfig.gimbalRollRightLimit;
        else
            pointingCmd[ROLL] = rxCommand[ROLL] * eepromConfig.gimbalRollLeftLimit;

        pointingCmd[ROLL] = firstOrderFilter(pointingCmd[ROLL], &firstOrderFilters[ROLL_ATT_POINTING_50HZ_LOWPASS]);
    }

    pointingCmd[ROLL] = constrain(pointingCmd[ROLL], -eepromConfig.gimbalYawLeftLimit, eepromConfig.gimbalRollRightLimit);

    ///////////////////////////////////

    if (eepromConfig.pitchRateCmdInput == true)
    {
        if ((rxCommand[PITCH] >= 0.0f) && (pointingCmd[PITCH] <=  eepromConfig.gimbalPitchUpLimit))
            pointingCmd[PITCH] += rxCommand[PITCH] * eepromConfig.gimbalPitchRate * 0.02f;  // Constant DT of 0.02 good enough here

        if ((rxCommand[PITCH] < 0.0f) && (pointingCmd[PITCH] >= -eepromConfig.gimbalPitchDownLimit))
            pointingCmd[PITCH] += rxCommand[PITCH] * eepromConfig.gimbalPitchRate * 0.02f;  // Constant DT of 0.02 good enough here

        pointingCmd[PITCH] = firstOrderFilter(pointingCmd[PITCH], &firstOrderFilters[PITCH_RATE_POINTING_50HZ_LOWPASS]);
    }
    else
    {
        if (rxCommand[PITCH] >= 0.0f)
            pointingCmd[PITCH] = rxCommand[PITCH] * eepromConfig.gimbalPitchUpLimit;

        if (rxCommand[PITCH] < 0.0f)
            pointingCmd[PITCH] = rxCommand[PITCH] * eepromConfig.gimbalPitchDownLimit;

        pointingCmd[PITCH] = firstOrderFilter(pointingCmd[PITCH], &firstOrderFilters[PITCH_ATT_POINTING_50HZ_LOWPASS]);
    }

    pointingCmd[PITCH] = constrain(pointingCmd[PITCH], -eepromConfig.gimbalPitchDownLimit, eepromConfig.gimbalPitchUpLimit);

    ///////////////////////////////////

    if (eepromConfig.yawRateCmdInput == true)
    {
        if ((rxCommand[YAW] >= 0.0f) && (pointingCmd[YAW] <=  eepromConfig.gimbalYawRightLimit))
            pointingCmd[YAW] += rxCommand[YAW] * eepromConfig.gimbalYawRate * 0.02f;  // Constant DT of 0.02 good enough here

        if ((rxCommand[YAW] < 0.0f) && (pointingCmd[YAW] >= -eepromConfig.gimbalYawLeftLimit))
            pointingCmd[YAW] += rxCommand[YAW] * eepromConfig.gimbalYawRate * 0.02f;  // Constant DT of 0.02 good enough here

        pointingCmd[YAW] = firstOrderFilter(pointingCmd[YAW], &firstOrderFilters[YAW_RATE_POINTING_50HZ_LOWPASS]);
    }
    else
    {
        if (rxCommand[YAW] >= 0.0f)
            pointingCmd[YAW] = rxCommand[YAW] * eepromConfig.gimbalYawRightLimit;

        if (rxCommand[YAW] < 0.0f)
            pointingCmd[YAW] = rxCommand[YAW] * eepromConfig.gimbalYawLeftLimit;

        pointingCmd[YAW] = firstOrderFilter(pointingCmd[YAW], &firstOrderFilters[YAW_ATT_POINTING_50HZ_LOWPASS]);
    }

    pointingCmd[YAW] = constrain(pointingCmd[YAW], -eepromConfig.gimbalYawLeftLimit, eepromConfig.gimbalYawRightLimit);

    ///////////////////////////////////
}
Example #3
0
File: main.c Project: kh4/AQ32Plus
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            rssiMeasure();

            updateMax7456(currentTime, 0);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
                sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[XAXIS + eepromConfig.externalHMC5883];
                sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[YAXIS + eepromConfig.externalHMC5883];
                sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[ZAXIS + eepromConfig.externalHMC5883]);

                newMagData = false;
                magDataUpdate = true;
            }

            decodeUbloxMsg();

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();

            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] * 0.5f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] * 0.5f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                           sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                           sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                           eepromConfig.accelCutoff,
                           magDataUpdate,
                           dt500Hz);

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] =  ((float)accelSummedSamples100Hz[XAXIS] * 0.1f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] * 0.1f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
					telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
					        			                                          sensors.accel500Hz[YAXIS],
					        			                                          sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                     sensors.gyro500Hz[PITCH],
            	            					             sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                     sensors.attitude500Hz[PITCH],
            	            			                     sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                              sensors.pressureAlt50Hz,
            	    		                                              hDotEstimate,
            	    		                                              hEstimate,
            	    		                                              ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                          hDotEstimate,
            	    		                                                          hEstimate,
            	    		                                                          ms5611Temperature,
            	    		                                                          verticalModeState,
            	    		                                                          throttleCmd,
            	    		                                                          eepromConfig.PID[HDOT_PID].iTerm);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            gpsUpdated();

            //if (eepromConfig.mavlinkEnabled == true)
            //{
			//	mavlinkSendGpsRaw();
			//}

			if (batMonVeryLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonVeryLowWarning--;
			}

            if (execUp == true)
                BLUE_LED_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
				execUp = true;

                pwmEscInit();

                homeData.magHeading = sensors.attitude500Hz[YAW];
			}

            if (batMonLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Example #4
0
void mixTable(void)
{
    uint8_t i;

    ///////////////////////////////////

    switch ( eepromConfig.mixerConfiguration )
    {
        ///////////////////////////////

        case MIXERTYPE_TRI:
            motor[0] = PIDMIX(  1.0f, -0.666667f, 0.0f, 1.0f );  // Left  CW
            motor[1] = PIDMIX( -1.0f, -0.666667f, 0.0f, 1.0f );  // Right CCW
            motor[2] = PIDMIX(  0.0f,  1.333333f, 0.0f, 1.0f );  // Rear  CW or CCW

            motor[7] = eepromConfig.triYawServoMid + eepromConfig.yawDirection * ratePID[YAW];

            motor[7] = firstOrderFilter(motor[7], &firstOrderFilters[TRICOPTER_YAW_LOWPASS]);

            motor[7] = constrain(motor[7], eepromConfig.triYawServoMin, eepromConfig.triYawServoMax );

            break;

        ///////////////////////////////

        case MIXERTYPE_QUADX:
            motor[0] = PIDMIX(  1.0f, -1.0f, -1.0f, 1.0f );      // Front Left  CW
            motor[1] = PIDMIX( -1.0f, -1.0f,  1.0f, 1.0f );      // Front Right CCW
            motor[2] = PIDMIX( -1.0f,  1.0f, -1.0f, 1.0f );      // Rear Right  CW
            motor[3] = PIDMIX(  1.0f,  1.0f,  1.0f, 1.0f );      // Rear Left   CCW
            break;

        ///////////////////////////////

        case MIXERTYPE_HEX6X:
            motor[0] = PIDMIX(  0.866025f, -1.0f, -1.0f, 1.0f ); // Front Left  CW
            motor[1] = PIDMIX( -0.866025f, -1.0f,  1.0f, 1.0f ); // Front Right CCW
            motor[2] = PIDMIX( -0.866025f,  0.0f, -1.0f, 1.0f ); // Right       CW
            motor[3] = PIDMIX( -0.866025f,  1.0f,  1.0f, 1.0f ); // Rear Right  CCW
            motor[4] = PIDMIX(  0.866025f,  1.0f, -1.0f, 1.0f ); // Rear Left   CW
            motor[5] = PIDMIX(  0.866025f,  0.0f,  1.0f, 1.0f ); // Left        CCW
            break;

        ///////////////////////////////

        case MIXERTYPE_Y6:
            motor[0] = PIDMIX(  1.0f, -0.666667, -1.0f, 1.0f );  // Top Left     CW
            motor[1] = PIDMIX( -1.0f, -0.666667,  1.0f, 1.0f );  // Top Right    CCW
            motor[2] = PIDMIX(  0.0f,  1.333333,  1.0f, 1.0f );  // Top Rear     CCW
            motor[3] = PIDMIX(  1.0f, -0.666667,  1.0f, 1.0f );  // Bottom Left  CCW
            motor[4] = PIDMIX( -1.0f, -0.666667, -1.0f, 1.0f );  // Bottom Right CW
            motor[5] = PIDMIX(  0.0f,  1.333333, -1.0f, 1.0f );  // Bottom Rear  CW
            break;

        ///////////////////////////////

		case MIXERTYPE_FREE:
		    for ( i = 0; i < numberMotor; i++ )
		        motor[i] = PIDMIX ( eepromConfig.freeMix[i][ROLL], eepromConfig.freeMix[i][PITCH], eepromConfig.freeMix[i][YAW], eepromConfig.freeMix[i][THROTTLE] );

        	break;

        ///////////////////////////////
    }

    ///////////////////////////////////

    #if 0

    // this is a way to still have good gyro corrections if any motor reaches its max.

    int16_t maxMotor;

    maxMotor = motor[0];

    for (i = 1; i < numberMotor; i++)
        if (motor[i] > maxMotor)
            maxMotor = motor[i];

    for (i = 0; i < numberMotor; i++)
    {
        if (maxMotor > eepromConfig.maxThrottle)
            motor[i] -= maxMotor - eepromConfig.maxThrottle;

        motor[i] = constrain(motor[i], eepromConfig.minThrottle, eepromConfig.maxThrottle);

        if ((rxCommand[THROTTLE]) < eepromConfig.minCheck)
        {
            motor[i] = eepromConfig.minThrottle;
        }

        if ( armed == false )
            motor[i] = (float)MINCOMMAND;
    }

    #else

    float maxDeltaThrottle;
	float minDeltaThrottle;
	float deltaThrottle;

	maxDeltaThrottle = (float)MAXCOMMAND - rxCommand[THROTTLE];
	minDeltaThrottle = rxCommand[THROTTLE] - eepromConfig.minThrottle;
	deltaThrottle    = (minDeltaThrottle<maxDeltaThrottle) ? minDeltaThrottle : maxDeltaThrottle;

	for (i=0; i<numberMotor; i++)
	{
	    motor[i] = constrain(motor[i], rxCommand[THROTTLE] - deltaThrottle, rxCommand[THROTTLE] + deltaThrottle);

	    if ((rxCommand[THROTTLE]) < eepromConfig.minCheck)
	        motor[i] = eepromConfig.minThrottle;

	    if (armed == false)
	        motor[i] = (float)MINCOMMAND;
    }

    #endif
}
Example #5
0
int main(void)
{
    uint32_t currentTime;

    systemInit();

    systemReady = true;

    while (1)
    {
        ///////////////////////////////

        if (frame_50Hz)
        {
            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processPointingCommands();

            executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
                sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
                sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
                sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

                newMagData = false;
                magDataUpdate = true;
            }

            cliCom();

            if (!gimbalStateEnabled)
                LED1_TOGGLE;

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
#ifdef _DTIMING
            LA2_ENABLE;
#endif
            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM6, DISABLE);
            timerValue = TIM_GetCounter(TIM6);
            TIM_SetCounter(TIM6, 0);
            TIM_Cmd(TIM6, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6050TCBias();

            sensors.accel500Hz[XAXIS] =  ((float)accelData500Hz[XAXIS] - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[YAXIS] =  ((float)accelData500Hz[YAXIS] - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[ZAXIS] = -((float)accelData500Hz[ZAXIS] - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

            sensors.gyro500Hz[ROLL ] =  ((float)gyroData500Hz[ROLL ] - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] =  ((float)gyroData500Hz[PITCH] - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroData500Hz[YAW  ] - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            getOrientation(accAngleSmooth, sensors.evvgcCFAttitude500Hz, sensors.accel500Hz, sensors.gyro500Hz, dt500Hz);

            sensors.accel500Hz[ROLL ] = firstOrderFilter(sensors.accel500Hz[ROLL ], &firstOrderFilters[ACCEL_X_500HZ_LOWPASS ]);
            sensors.accel500Hz[PITCH] = firstOrderFilter(sensors.accel500Hz[PITCH], &firstOrderFilters[ACCEL_Y_500HZ_LOWPASS]);
            sensors.accel500Hz[YAW  ] = firstOrderFilter(sensors.accel500Hz[YAW  ], &firstOrderFilters[ACCEL_Z_500HZ_LOWPASS  ]);

            MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                           sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                           sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                           magDataUpdate,
                           dt500Hz);

            magDataUpdate = false;

            computeMotorCommands(dt500Hz);

            executionTime500Hz = micros() - currentTime;

#ifdef _DTIMING
            LA2_DISABLE;
#endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            LED2_TOGGLE;

            executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (gimbalStateEnabled)
                LED1_TOGGLE;

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Example #6
0
int main(void)
{
	///////////////////////////////////////////////////////////////////////////

	uint32_t currentTime;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
    	evrCheck();

    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			if (newMagData == true)
			{
				sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
			    sensors.mag10Hz[YAXIS] = -((float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS]);
			    sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

			    newMagData = false;
			    magDataUpdate = true;
            }

        	decodeUbloxMsg();

        	batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}
			else
			{
				rfCom();
			}

        	executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    TIM_Cmd(TIM6, DISABLE);
       	 	timerValue = TIM_GetCounter(TIM6);
       	 	TIM_SetCounter(TIM6, 0);
       	 	TIM_Cmd(TIM6, ENABLE);

       	 	dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

       	    computeMPU6000TCBias();

       	    sensors.accel500Hz[XAXIS] = -((float)accelSummedSamples500Hz[XAXIS] * 0.5f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel500Hz[YAXIS] =  ((float)accelSummedSamples500Hz[YAXIS] * 0.5f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            //sensors.accel500Hz[XAXIS] = firstOrderFilter(sensors.accel500Hz[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
            //sensors.accel500Hz[YAXIS] = firstOrderFilter(sensors.accel500Hz[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
            //sensors.accel500Hz[ZAXIS] = firstOrderFilter(sensors.accel500Hz[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

            sensors.gyro500Hz[ROLL ] = -((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] =  ((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate( sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                            sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            eepromConfig.accelCutoff,
                            magDataUpdate,
                            dt500Hz );

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			TIM_Cmd(TIM7, DISABLE);
			timerValue = TIM_GetCounter(TIM7);
			TIM_SetCounter(TIM7, 0);
			TIM_Cmd(TIM7, ENABLE);

			dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] * 0.1f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel100Hz[YAXIS] =  ((float)accelSummedSamples100Hz[YAXIS] * 0.1f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

			//sensors.accel100Hz[XAXIS] = firstOrderFilter(sensors.accel100Hz[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
			//sensors.accel100Hz[YAXIS] = firstOrderFilter(sensors.accel100Hz[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
			//sensors.accel100Hz[ZAXIS] = firstOrderFilter(sensors.accel100Hz[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

			createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
            	            			                     sensors.accel500Hz[YAXIS],
            	            			                     sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                     sensors.gyro500Hz[PITCH],
            	            					             sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                     sensors.attitude500Hz[PITCH],
            	            			                     sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                              sensors.pressureAlt50Hz,
            	    		                                              hDotEstimate,
            	    		                                              hEstimate,
            	    		                                              ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16 )
                {
               	    // Vertical Variables
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                          hDotEstimate,
            	    		                                                          hEstimate,
            	    		                                                          ms5611Temperature,
            	    		                                                          verticalModeState,
            	    		                                                          throttleCmd,
            	    		                                                          eepromConfig.PID[HDOT_PID].iTerm);
                }

            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

			gpsUpdated();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendGpsRaw();
			}

			if (batMonVeryLowWarning > 0)
			{
				BEEP_TOGGLE;
				batMonVeryLowWarning--;
			}

			if (execUp == true)
			    LED0_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

			if (execUp == false)
			    execUpCount++;

			if ((execUpCount == 5) && (execUp == false))
			{
			    execUp = true;

			    pwmEscInit();

			    homeData.magHeading = sensors.attitude500Hz[YAW];
			}

			if (batMonLowWarning > 0)
			{
				BEEP_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

			executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Example #7
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    uint32_t currentTime;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
                sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
                sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
                sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

                newMagData = false;
                magDataUpdate = true;
            }

            cliCom();

            rfCom();

            batMonTick();

            ///////////////////////////

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();
            /*
            sensorTemp1 = computeMPU6000SensorTemp();
            sensorTemp2 = sensorTemp1 * sensorTemp1;
            sensorTemp3 = sensorTemp2 * sensorTemp1;
            */

            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

            sensors.accel500HzMXR[XAXIS] = -(accelSummedSamples500HzMXR[XAXIS] / 2.0f - eepromConfig.accelBiasMXR[XAXIS]) * eepromConfig.accelScaleFactorMXR[XAXIS];
            sensors.accel500HzMXR[YAXIS] = -(accelSummedSamples500HzMXR[YAXIS] / 2.0f - eepromConfig.accelBiasMXR[YAXIS]) * eepromConfig.accelScaleFactorMXR[YAXIS];
            sensors.accel500HzMXR[ZAXIS] =  (accelSummedSamples500HzMXR[ZAXIS] / 2.0f - eepromConfig.accelBiasMXR[ZAXIS]) * eepromConfig.accelScaleFactorMXR[ZAXIS];
            /*
            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[XAXIS]               +
                                          eepromConfig.accelBiasP1[XAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[XAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[XAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[YAXIS]               +
                                          eepromConfig.accelBiasP1[YAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[YAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[YAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[ZAXIS]               +
                                          eepromConfig.accelBiasP1[ZAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[ZAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[ZAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;
            */
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            /*
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL ] / 2.0f  +
                                         gyroBiasP0[ROLL ]                            +
                                         eepromConfig.gyroBiasP1[ROLL ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[ROLL ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[ROLL ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f  +
                                         gyroBiasP0[PITCH]                            +
                                         eepromConfig.gyroBiasP1[PITCH] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[PITCH] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[PITCH] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f  +
                                         gyroBiasP0[YAW  ]                            +
                                         eepromConfig.gyroBiasP1[YAW  ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[YAW  ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[YAW  ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;
            */

            #if defined(MPU_ACCEL)
                MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                               sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                               sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                               eepromConfig.accelCutoff,
                               magDataUpdate,
                               dt500Hz);
            #endif

            #if defined(MXR_ACCEL)
                sensors.accel500HzMXR[XAXIS] = firstOrderFilter(sensors.accel500HzMXR[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
                sensors.accel500HzMXR[YAXIS] = firstOrderFilter(sensors.accel500HzMXR[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
                sensors.accel500HzMXR[ZAXIS] = firstOrderFilter(sensors.accel500HzMXR[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

                MargAHRSupdate(sensors.gyro500Hz[ROLL],      sensors.gyro500Hz[PITCH],     sensors.gyro500Hz[YAW],
                               sensors.accel500HzMXR[XAXIS], sensors.accel500HzMXR[YAXIS], sensors.accel500HzMXR[ZAXIS],
                               sensors.mag10Hz[XAXIS],       sensors.mag10Hz[YAXIS],       sensors.mag10Hz[ZAXIS],
                               eepromConfig.accelCutoff,
                               magDataUpdate,
                               dt500Hz);
            #endif

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] =  ((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

            sensors.accel100HzMXR[XAXIS] = -(accelSummedSamples100HzMXR[XAXIS] / 10.0f - eepromConfig.accelBiasMXR[XAXIS]) * eepromConfig.accelScaleFactorMXR[XAXIS];
            sensors.accel100HzMXR[YAXIS] = -(accelSummedSamples100HzMXR[YAXIS] / 10.0f - eepromConfig.accelBiasMXR[YAXIS]) * eepromConfig.accelScaleFactorMXR[YAXIS];
            sensors.accel100HzMXR[ZAXIS] =  (accelSummedSamples100HzMXR[ZAXIS] / 10.0f - eepromConfig.accelBiasMXR[ZAXIS]) * eepromConfig.accelScaleFactorMXR[ZAXIS];

            sensors.accel100HzMXR[XAXIS] = firstOrderFilter(sensors.accel100HzMXR[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
            sensors.accel100HzMXR[YAXIS] = firstOrderFilter(sensors.accel100HzMXR[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
            sensors.accel100HzMXR[ZAXIS] = firstOrderFilter(sensors.accel100HzMXR[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
					openLogPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
					        			                                        sensors.accel500Hz[YAXIS],
					        			                                        sensors.accel500Hz[ZAXIS],
					        			                                        sensors.accel500HzMXR[XAXIS],
					        			                                        sensors.accel500HzMXR[YAXIS],
					        			                                        sensors.accel500HzMXR[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    openLogPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                   sensors.gyro500Hz[PITCH],
            	            					           sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    openLogPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                   sensors.attitude500Hz[PITCH],
            	            			                   sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    openLogPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                            sensors.pressureAlt50Hz,
            	    		                                            hDotEstimate,
            	    		                                            hEstimate,
            	    		                                            ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    openLogPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                        hDotEstimate,
            	    		                                                        hEstimate,
            	    		                                                        ms5611Temperature,
            	    		                                                        verticalModeState,
            	    		                                                        throttleCmd,
            	    		                                                        eepromConfig.PID[HDOT_PID].iTerm);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (execUp == true)
                BLUE_LED_TOGGLE;

			while (batMonVeryLowWarning > 0)
			{
				//BEEP_TOGGLE;
				batMonVeryLowWarning--;
			}

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
                execUp = true;
                pwmEscInit(eepromConfig.escPwmRate);
            }

			while (batMonLowWarning > 0)
			{
				//BEEP_TOGGLE;
				batMonLowWarning--;
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Example #8
0
File: mixer.c Project: jihlein/FF32
void mixTable(void)
{
    int16_t maxMotor;
    uint8_t i;

    ///////////////////////////////////

    switch ( eepromConfig.mixerConfiguration )
    {
        ///////////////////////////////

        case MIXERTYPE_TRI:
            motor[0] = PIDMIX(  1.0f, -0.666667f, 0.0f );  // Left  CW
            motor[1] = PIDMIX( -1.0f, -0.666667f, 0.0f );  // Right CCW
            motor[2] = PIDMIX(  0.0f,  1.333333f, 0.0f );  // Rear  CW or CCW

            motor[7] = eepromConfig.triYawServoMid + eepromConfig.yawDirection * ratePID[YAW];

            motor[7] = firstOrderFilter(motor[7], &firstOrderFilters[TRICOPTER_YAW_LOWPASS]);

            motor[7] = constrain(motor[7], eepromConfig.triYawServoMin, eepromConfig.triYawServoMax );

            break;

        ///////////////////////////////

        case MIXERTYPE_QUADX:
            motor[0] = PIDMIX(  1.0f, -1.0f, -1.0f );      // Front Left  CW
            motor[1] = PIDMIX( -1.0f, -1.0f,  1.0f );      // Front Right CCW
            motor[2] = PIDMIX( -1.0f,  1.0f, -1.0f );      // Rear Right  CW
            motor[3] = PIDMIX(  1.0f,  1.0f,  1.0f );      // Rear Left   CCW
            break;

        ///////////////////////////////

        case MIXERTYPE_HEX6X:
            motor[0] = PIDMIX(  0.866025f, -1.0f, -1.0f ); // Front Left  CW
            motor[1] = PIDMIX( -0.866025f, -1.0f,  1.0f ); // Front Right CCW
            motor[2] = PIDMIX( -0.866025f,  0.0f, -1.0f ); // Right       CW
            motor[3] = PIDMIX( -0.866025f,  1.0f,  1.0f ); // Rear Right  CCW
            motor[4] = PIDMIX(  0.866025f,  1.0f, -1.0f ); // Rear Left   CW
            motor[5] = PIDMIX(  0.866025f,  0.0f,  1.0f ); // Left        CCW
            break;

        ///////////////////////////////

		case MIXERTYPE_FREE:
		    for ( i = 0; i < numberMotor; i++ )
		        motor[i] = PIDMIX ( eepromConfig.freeMix[i][ROLL], eepromConfig.freeMix[i][PITCH], eepromConfig.freeMix[i][YAW] );

        	break;

        ///////////////////////////////
    }

    ///////////////////////////////////

    // this is a way to still have good gyro corrections if any motor reaches its max.

    maxMotor = motor[0];

    for (i = 1; i < numberMotor; i++)
        if (motor[i] > maxMotor)
            maxMotor = motor[i];

    for (i = 0; i < numberMotor; i++)
    {
        if (maxMotor > eepromConfig.maxThrottle)
            motor[i] -= maxMotor - eepromConfig.maxThrottle;

        motor[i] = constrain(motor[i], eepromConfig.minThrottle, eepromConfig.maxThrottle);

        if ((rxCommand[THROTTLE] < eepromConfig.minCheck) && (verticalModeState == ALT_DISENGAGED_THROTTLE_ACTIVE))
        {
            motor[i] = eepromConfig.minThrottle;
        }

        if ( armed == false )
            motor[i] = (float)MINCOMMAND;
    }
}
Example #9
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

	arm_matrix_instance_f32 a;
	arm_matrix_instance_f32 b;
	arm_matrix_instance_f32 x;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    while (1)
    {
        checkUsbActive(false);

        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            rssiMeasure();

            updateMax7456(currentTime, 0);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
			    nonRotatedMagData[XAXIS] = (rawMag[XAXIS].value * magScaleFactor[XAXIS]) - eepromConfig.magBias[XAXIS + eepromConfig.externalHMC5883];
			    nonRotatedMagData[YAXIS] = (rawMag[YAXIS].value * magScaleFactor[YAXIS]) - eepromConfig.magBias[YAXIS + eepromConfig.externalHMC5883];
			    nonRotatedMagData[ZAXIS] = (rawMag[ZAXIS].value * magScaleFactor[ZAXIS]) - eepromConfig.magBias[ZAXIS + eepromConfig.externalHMC5883];

			    arm_mat_init_f32(&a, 3, 3, (float *)hmcOrientationMatrix);

			    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedMagData);

			    arm_mat_init_f32(&x, 3, 1,          sensors.mag10Hz);

			    arm_mat_mult_f32(&a, &b, &x);

				newMagData = false;
			    magDataUpdate = true;
            }

            decodeUbloxMsg();

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();

       	    nonRotatedAccelData[XAXIS] = ((float)accelSummedSamples500Hz[XAXIS] * 0.5f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[YAXIS] = ((float)accelSummedSamples500Hz[YAXIS] * 0.5f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[ZAXIS] = ((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedAccelData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.accel500Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            nonRotatedGyroData[ROLL ] = ((float)gyroSummedSamples500Hz[ROLL]  * 0.5f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            nonRotatedGyroData[PITCH] = ((float)gyroSummedSamples500Hz[PITCH] * 0.5f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            nonRotatedGyroData[YAW  ] = ((float)gyroSummedSamples500Hz[YAW]   * 0.5f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedGyroData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.gyro500Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                           sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                           sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                           eepromConfig.accelCutoff,
                           magDataUpdate,
                           dt500Hz);

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

       	    nonRotatedAccelData[XAXIS] = ((float)accelSummedSamples100Hz[XAXIS] * 0.1f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[YAXIS] = ((float)accelSummedSamples100Hz[YAXIS] * 0.1f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[ZAXIS] = ((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedAccelData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.accel100Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // Roll Loop
					openLogPortPrintF("1,%1d,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f\n", flightMode,
					        			                                             rateCmd[ROLL],
					        			                                             sensors.gyro500Hz[ROLL],
					        			                                             ratePID[ROLL],
                                                                                     attCmd[ROLL],
		                                                                             sensors.attitude500Hz[ROLL],
		                                                                             attPID[ROLL]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // Pitch Loop
					openLogPortPrintF("2,%1d,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f\n", flightMode,
					        			                                             rateCmd[PITCH],
					        			                                             sensors.gyro500Hz[PITCH],
					        			                                             ratePID[PITCH],
                                                                                     attCmd[PITCH],
	                                                                                 sensors.attitude500Hz[PITCH],
	                                                                                 attPID[PITCH]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // Sensors
					openLogPortPrintF("3,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,\n", sensors.accel500Hz[XAXIS],
					        			                                                                              sensors.accel500Hz[YAXIS],
					        			                                                                              sensors.accel500Hz[ZAXIS],
					        			                                                                              sensors.gyro500Hz[ROLL],
                                                                                                                      sensors.gyro500Hz[PITCH],
	                                                                                                                  sensors.gyro500Hz[YAW],
	                                                                                                                  sensors.mag10Hz[XAXIS],
	                                                                                                                  sensors.mag10Hz[YAXIS],
	                                                                                                                  sensors.mag10Hz[ZAXIS],
	                                                                                                                  sensors.attitude500Hz[ROLL],
	                                                                                                                  sensors.attitude500Hz[PITCH],
	                                                                                                                  sensors.attitude500Hz[YAW]);

                }

                if ( eepromConfig.activeTelemetry == 8 )
                {

                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    openLogPortPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f\n", verticalVelocityCmd,
            	    		                                                     hDotEstimate,
            	    		                                                     hEstimate,
            	    		                                                     ms5611Temperature,
            	    		                                                     verticalModeState,
            	    		                                                     throttleCmd);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (gpsValid() == true)
            {

			}

            //if (eepromConfig.mavlinkEnabled == true)
            //{
			//	mavlinkSendGpsRaw();
			//}

			if (batMonVeryLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonVeryLowWarning--;
			}

            if (execUp == true)
                BLUE_LED_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            // Initialize sensors after being warmed up
            if ((execUpCount == 20) && (execUp == false))
            {
            	computeMPU6000RTData();
                initMag();
                initPressure();
			}

            // Initialize PWM and set mag after sensor warmup
            if ((execUpCount == 25) && (execUp == false))
            {
    			execUp = true;
    			pwmEscInit();
                homeData.magHeading = sensors.attitude500Hz[YAW];
			}

            if (batMonLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}