void sens(void f(double t, double z[], double param[], double zp[]),
    void fjac(double t, double z[], double param[], double** jac),
    int ijac, double param[], int neq, int np, double t, double y[],
    double sp[] )
{
  int i,j,k,nx;
  double **jac, sum;
  // allocate memory for Jacobian
  nx = neq/(1+np);
  jac = allocDoubleMatrix(nx, nx+np,false);
  //
  if (ijac == 1)
    fjac( t,y,param,jac );
  else
    findiff1(f,param,nx,np,t,y,jac);
  // righthandside of sensitivity equation
  for (i=0;i<np;i++) {
    for (k=0;k<nx;k++) {
      sum = 0.0;
      for (j=0;j<nx;j++)
	sum = sum + jac[k][j]*y[i*nx+j];
      sum = sum + jac[k][nx+i];
      sp[i*nx+k] = sum;
    }
  }
  // deallocate memory
  freeDoubleMatrix(jac,nx);
}
Example #2
0
    EndCriteria::Type LevenbergMarquardt::minimize(Problem& P,
                                                   const EndCriteria& endCriteria) {
        EndCriteria::Type ecType = EndCriteria::None;
        P.reset();
        Array x_ = P.currentValue();
        currentProblem_ = &P;
        initCostValues_ = P.costFunction().values(x_);
        int m = initCostValues_.size();
        int n = x_.size();
        boost::scoped_array<double> xx(new double[n]);
        std::copy(x_.begin(), x_.end(), xx.get());
        boost::scoped_array<double> fvec(new double[m]);
        boost::scoped_array<double> diag(new double[n]);
        int mode = 1;
        double factor = 1;
        int nprint = 0;
        int info = 0;
        int nfev =0;
        boost::scoped_array<double> fjac(new double[m*n]);
        int ldfjac = m;
        boost::scoped_array<int> ipvt(new int[n]);
        boost::scoped_array<double> qtf(new double[n]);
        boost::scoped_array<double> wa1(new double[n]);
        boost::scoped_array<double> wa2(new double[n]);
        boost::scoped_array<double> wa3(new double[n]);
        boost::scoped_array<double> wa4(new double[m]);
        // requirements; check here to get more detailed error messages.
        QL_REQUIRE(n > 0, "no variables given");
        QL_REQUIRE(m >= n,
                   "less functions (" << m <<
                   ") than available variables (" << n << ")");
        QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0,
                   "negative f tolerance");
        QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance");
        QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance");
        QL_REQUIRE(endCriteria.maxIterations() > 0,
                   "null number of evaluations");

        // call lmdif to minimize the sum of the squares of m functions
        // in n variables by the Levenberg-Marquardt algorithm.
        MINPACK::LmdifCostFunction lmdifCostFunction = 
            boost::bind(&LevenbergMarquardt::fcn, this, _1, _2, _3, _4, _5);
        MINPACK::lmdif(m, n, xx.get(), fvec.get(),
                       static_cast<double>(endCriteria.functionEpsilon()),
                       static_cast<double>(xtol_),
                       static_cast<double>(gtol_),
                       static_cast<int>(endCriteria.maxIterations()),
                       static_cast<double>(epsfcn_),
                       diag.get(), mode, factor,
                       nprint, &info, &nfev, fjac.get(),
                       ldfjac, ipvt.get(), qtf.get(),
                       wa1.get(), wa2.get(), wa3.get(), wa4.get(),
                       lmdifCostFunction);
        info_ = info;
        // check requirements & endCriteria evaluation
        QL_REQUIRE(info != 0, "MINPACK: improper input parameters");
        //QL_REQUIRE(info != 6, "MINPACK: ftol is too small. no further "
        //                               "reduction in the sum of squares "
        //                               "is possible.");
        if (info != 6) ecType = QuantLib::EndCriteria::StationaryFunctionValue;
        //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has "
        //                               "reached or exceeded maxfev.");
        endCriteria.checkMaxIterations(nfev, ecType);
        QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further "
                                       "improvement in the approximate "
                                       "solution x is possible.");
        QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is "
                                       "orthogonal to the columns of the "
                                       "jacobian to machine precision.");
        // set problem
        std::copy(xx.get(), xx.get()+n, x_.begin());
        P.setCurrentValue(x_);
        P.setFunctionValue(P.costFunction().value(x_));
        
        return ecType;
    }