Example #1
0
 boost::shared_ptr<BlackVolTermStructure>
 flatVol(const Date& today, Volatility vol,
         const DayCounter& dc) {
     return flatVol(today,
                    boost::shared_ptr<Quote>(new SimpleQuote(vol)),
                    dc);
 }
Example #2
0
// [[Rcpp::export]]
Rcpp::List europeanOptionArraysEngine(std::string type, Rcpp::NumericMatrix par) {

    QuantLib::Option::Type optionType = getOptionType(type);
    int n = par.nrow();
    Rcpp::NumericVector value(n), delta(n), gamma(n), vega(n), theta(n), rho(n), divrho(n);

    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;

    QuantLib::DayCounter dc = QuantLib::Actual360();

    for (int i=0; i<n; i++) {

        double underlying    = par(i, 0);    // first column
        double strike        = par(i, 1);    // second column
        QuantLib::Spread dividendYield = par(i, 2);    // third column
        QuantLib::Rate riskFreeRate    = par(i, 3);    // fourth column
        QuantLib::Time maturity        = par(i, 4);    // fifth column
#ifdef QL_HIGH_RESOLUTION_DATE    
        // in minutes
        boost::posix_time::time_duration length = boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)); 
#else
        int length           = int(maturity*360 + 0.5); // FIXME: this could be better
#endif
        double volatility    = par(i, 5);    // sixth column
    
        boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote( underlying ));
        boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote( volatility ));
        boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
        boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote( dividendYield ));
        boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
        boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote( riskFreeRate ));
        boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc);
        
#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else
    QuantLib::Date exDate = today + length;
#endif    
        boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
        
        boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike));
        boost::shared_ptr<QuantLib::VanillaOption> option = makeOption(payoff, exercise, spot, qTS, rTS, volTS);
        
        value[i]  = option->NPV();
        delta[i]  = option->delta();
        gamma[i]  = option->gamma();
        vega[i]   = option->vega();
        theta[i]  = option->theta();
        rho[i]    = option->rho();
        divrho[i] = option->dividendRho();
    }
    return Rcpp::List::create(Rcpp::Named("value")  = value,
                              Rcpp::Named("delta")  = delta,
                              Rcpp::Named("gamma")  = gamma,
                              Rcpp::Named("vega")   = vega,
                              Rcpp::Named("theta")  = theta,
                              Rcpp::Named("rho")    = rho,
                              Rcpp::Named("divRho") = divrho);
}
// dumped core when we tried last
// no longer under 0.3.10 and g++ 4.0.1 (Aug 2005)
// [[Rcpp::export]]
double binaryOptionImpliedVolatilityEngine(std::string type,
                                           double value,
                                           double underlying,
                                           double strike,
                                           double dividendYield, 
                                           double riskFreeRate,
                                           double maturity,
                                           double volatility,
                                           double cashPayoff) {

#ifdef QL_HIGH_RESOLUTION_DATE    
    // in minutes
    boost::posix_time::time_duration length = boost::posix_time::minutes(maturity * 360 * 24 * 60); 
#else
    int length = int(maturity*360 + 0.5); // FIXME: this could be better
#endif

    QuantLib::Option::Type optionType = getOptionType(type);

    // updated again for QuantLib 0.9.0, 
    // cf QuantLib-0.9.0/test-suite/digitaloption.cpp
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;
    QuantLib::DayCounter dc = QuantLib::Actual360();
    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
    
    boost::shared_ptr<QuantLib::StrikedTypePayoff> 
        payoff(new QuantLib::CashOrNothingPayoff(optionType, strike, cashPayoff));

#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else
    QuantLib::Date exDate = today + length;
#endif    
    
    boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));

    boost::shared_ptr<QuantLib::BlackScholesMertonProcess> 
        stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                             QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));
    //boost::shared_ptr<PricingEngine> engine(new AnalyticEuropeanEngine(stochProcess));
    boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::AnalyticBarrierEngine(stochProcess));

    QuantLib::VanillaOption opt(payoff, exercise);
    opt.setPricingEngine(engine);

    return opt.impliedVolatility(value, stochProcess);
}
Example #4
0
// [[Rcpp::export]]
double europeanOptionImpliedVolatilityEngine(std::string type,
                                             double value,
                                             double underlying,
                                             double strike,
                                             double dividendYield,
                                             double riskFreeRate,
                                             double maturity,
                                             double volatility) {

    const QuantLib::Size maxEvaluations = 100;
    const double tolerance = 1.0e-6;
  
    int length = int(maturity*360 + 0.5); // FIXME: this could be better

    QuantLib::Option::Type optionType = getOptionType(type);

    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;

    // new framework as per QuantLib 0.3.5
    // updated for 0.3.7
    QuantLib::DayCounter dc = QuantLib::Actual360();

    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today,qRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today,rRate,dc);
    QuantLib::Date exDate = today + length;
    boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
    boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike));
    boost::shared_ptr<QuantLib::VanillaOption> 
        option = makeOption(payoff, exercise, spot, qTS, rTS, 
                            volTS, Analytic, 
                            QuantLib::Null<QuantLib::Size>(), 
                            QuantLib::Null<QuantLib::Size>());

    boost::shared_ptr<QuantLib::GeneralizedBlackScholesProcess> 
        process = makeProcess(spot, qTS, rTS,volTS);

    double volguess = volatility;
    vol->setValue(volguess);

    return option->impliedVolatility(value, process, tolerance, maxEvaluations);
}
// [[Rcpp::export]]
Rcpp::List binaryOptionEngine(std::string binType,
                              std::string type,
                              std::string excType,
                              double underlying,
                              double strike,
                              double dividendYield, 
                              double riskFreeRate,
                              double maturity,
                              double volatility,
                              double cashPayoff) {

#ifdef QL_HIGH_RESOLUTION_DATE    
    // in minutes
    boost::posix_time::time_duration length = boost::posix_time::minutes(maturity * 360 * 24 * 60); 
#else
    int length = int(maturity*360 + 0.5); // FIXME: this could be better, but same rounding in QL
#endif
    QuantLib::Option::Type optionType = getOptionType(type);

    // new QuantLib 0.3.5 framework: digitals, updated for 0.3.7
    // updated again for QuantLib 0.9.0, 
    // cf QuantLib-0.9.0/test-suite/digitaloption.cpp
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;

    QuantLib::DayCounter dc = QuantLib::Actual360();
    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today,qRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today,rRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);

    boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff;
    if (binType=="cash") {
        boost::shared_ptr<QuantLib::StrikedTypePayoff> con(new QuantLib::CashOrNothingPayoff(optionType, strike, cashPayoff));
        payoff = con;
    } else if (binType=="asset") {
        boost::shared_ptr<QuantLib::StrikedTypePayoff> aon(new QuantLib::AssetOrNothingPayoff(optionType, strike));
        payoff = aon;
    } else if (binType=="gap") {
        boost::shared_ptr<QuantLib::StrikedTypePayoff> gap(new QuantLib::GapPayoff(optionType, strike, cashPayoff));
        payoff = gap;
    } else {
        throw std::range_error("Unknown binary option type " + binType);
    }

#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else
    QuantLib::Date exDate = today + length;
#endif    
    boost::shared_ptr<QuantLib::Exercise> exercise;
    if (excType=="american") {
        boost::shared_ptr<QuantLib::Exercise> amEx(new QuantLib::AmericanExercise(today, exDate));
        exercise = amEx;
    } else if (excType=="european") {
        boost::shared_ptr<QuantLib::Exercise> euEx(new QuantLib::EuropeanExercise(exDate));
        exercise = euEx;
    } else {
        throw std::range_error("Unknown binary exercise type " + excType);
    }

    boost::shared_ptr<QuantLib::BlackScholesMertonProcess> 
        stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                             QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));

    boost::shared_ptr<QuantLib::PricingEngine> engine;
    if (excType=="american") {
        boost::shared_ptr<QuantLib::PricingEngine> amEng(new QuantLib::AnalyticDigitalAmericanEngine(stochProcess));
        engine = amEng;
    } else if (excType=="european") {
        boost::shared_ptr<QuantLib::PricingEngine> euEng(new QuantLib::AnalyticEuropeanEngine(stochProcess));
        engine = euEng;
    } else {
        throw std::range_error("Unknown binary exercise type " + excType);
    }

    QuantLib::VanillaOption opt(payoff, exercise);
    opt.setPricingEngine(engine);

    Rcpp::List rl = Rcpp::List::create(Rcpp::Named("value") = opt.NPV(),
                                       Rcpp::Named("delta") = opt.delta(),
                                       Rcpp::Named("gamma") = opt.gamma(),
                                       Rcpp::Named("vega") = (excType=="european") ? opt.vega() : R_NaN,
                                       Rcpp::Named("theta") = (excType=="european") ? opt.theta() : R_NaN,
                                       Rcpp::Named("rho") = (excType=="european") ? opt.rho() : R_NaN,
                                       Rcpp::Named("divRho") = (excType=="european") ? opt.dividendRho() : R_NaN);
    return rl;
}
// [[Rcpp::export]]
Rcpp::List barrierOptionEngine(std::string barrType,
                               std::string type,
                               double underlying,
                               double strike,
                               double dividendYield, 
                               double riskFreeRate,
                               double maturity,
                               double volatility,
                               double barrier, 
                               double rebate) {

#ifdef QL_HIGH_RESOLUTION_DATE    
    // in minutes
    boost::posix_time::time_duration length = boost::posix_time::minutes(maturity * 360 * 24 * 60); 
#else
    int length = int(maturity*360 + 0.5); // FIXME: this could be better
#endif
        
    QuantLib::Barrier::Type barrierType = QuantLib::Barrier::DownIn;
    if (barrType=="downin") {
        barrierType = QuantLib::Barrier::DownIn;
    } else if (barrType=="upin") {
        barrierType = QuantLib::Barrier::UpIn;
    } else if (barrType=="downout") {
        barrierType = QuantLib::Barrier::DownOut;
    } else if (barrType=="upout") {
        barrierType = QuantLib::Barrier::UpOut;
    } else {
        throw std::range_error("Unknown barrier type " + type);
    }

    QuantLib::Option::Type optionType = getOptionType(type);

    // new QuantLib 0.3.5 framework, updated for 0.3.7
    // updated again for QuantLib 0.9.0, 
    // cf QuantLib-0.9.0/test-suite/barrieroption.cpp
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;
    QuantLib::DayCounter dc = QuantLib::Actual360();
    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today,rRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);

#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else
    QuantLib::Date exDate = today + length;
#endif    
    
    boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
        
    boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike));
    
    boost::shared_ptr<QuantLib::BlackScholesMertonProcess> 
        stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                             QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));

    // Size timeSteps = 1;
    // bool antitheticVariate = false;
    // bool controlVariate = false;
    // Size requiredSamples = 10000;
    // double requiredTolerance = 0.02;
    // Size maxSamples = 1000000;
    // bool isBiased = false;

    boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::AnalyticBarrierEngine(stochProcess));

    // need to explicitly reference BarrierOption from QuantLib here
    QuantLib::BarrierOption barrierOption(barrierType,
                                          barrier,
                                          rebate,
                                          payoff,
                                          exercise);
    barrierOption.setPricingEngine(engine);

    Rcpp::List rl = Rcpp::List::create(Rcpp::Named("value") = barrierOption.NPV(),
                                       Rcpp::Named("delta") = R_NaReal,
                                       Rcpp::Named("gamma") = R_NaReal,
                                       Rcpp::Named("vega") = R_NaReal,
                                       Rcpp::Named("theta") = R_NaReal,
                                       Rcpp::Named("rho") = R_NaReal,
                                       Rcpp::Named("divRho") = R_NaReal);
    return rl;
}
Example #7
0
// [[Rcpp::export]]
Rcpp::List asianOptionEngine(std::string averageType,
                             std::string type,
                             double underlying,
                             double strike,
                             double dividendYield,
                             double riskFreeRate,
                             double maturity,
                             double volatility,
                             double first,
                             double length,
                             size_t fixings) {

    QuantLib::Option::Type optionType = getOptionType(type);

    //from test-suite/asionoptions.cpp
    QuantLib::DayCounter dc = QuantLib::Actual360();
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;

    QuantLib::ext::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    QuantLib::ext::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    QuantLib::ext::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
    QuantLib::ext::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    QuantLib::ext::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc);
    QuantLib::ext::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    QuantLib::ext::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);

    QuantLib::ext::shared_ptr<QuantLib::BlackScholesMertonProcess>
        stochProcess(new
                     QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                         QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                         QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                         QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));

    QuantLib::ext::shared_ptr<QuantLib::StrikedTypePayoff>
        payoff(new QuantLib::PlainVanillaPayoff(optionType,strike));

    Rcpp::List rl = R_NilValue;

    if (averageType=="geometric"){
        QuantLib::ext::shared_ptr<QuantLib::PricingEngine>
            engine(new
                   QuantLib::AnalyticContinuousGeometricAveragePriceAsianEngine(stochProcess));

#ifdef QL_HIGH_RESOLUTION_DATE
        // in minutes
        QuantLib::Date exDate(today.dateTime() + boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)));
#else
        QuantLib::Date exDate = today + int(maturity * 360 + 0.5);
#endif
        boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
        QuantLib::ContinuousAveragingAsianOption option(QuantLib::Average::Geometric,
                                                        payoff, exercise);
        option.setPricingEngine(engine);

        rl = Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                Rcpp::Named("delta") = option.delta(),
                                Rcpp::Named("gamma") = option.gamma(),
                                Rcpp::Named("vega") = option.vega(),
                                Rcpp::Named("theta") = option.theta(),
                                Rcpp::Named("rho") = option.rho(),
                                Rcpp::Named("divRho") = option.dividendRho());

    } else if (averageType=="arithmetic") {

        // TODO:  check fixings > 1, first, length
        if (first < 0) Rcpp::stop("Parameter 'first' must be non-negative.");
        if (length < 0) Rcpp::stop("Parameter 'length' must be non-negative.");
        if (fixings <= 1) Rcpp::stop("Parameter 'fixings' must be larger than one.");

        boost::shared_ptr<QuantLib::PricingEngine> engine =
            QuantLib::MakeMCDiscreteArithmeticAPEngine<QuantLib::LowDiscrepancy>(stochProcess)
            .withSamples(2047)
            .withControlVariate();

        //boost::shared_ptr<PricingEngine> engine =
        //    MakeMCDiscreteArithmeticASEngine<LowDiscrepancy>(stochProcess)
        //    .withSeed(3456789)
        //    .withSamples(1023);

        QuantLib::Time dt = length / (fixings - 1);

        std::vector<QuantLib::Time> timeIncrements(fixings);
        std::vector<QuantLib::Date> fixingDates(fixings);
        timeIncrements[0] = first;
        fixingDates[0] = today + QuantLib::Integer(timeIncrements[0] * 360 + 0.5);
        for (QuantLib::Size i=1; i<fixings; i++) {
            timeIncrements[i] = i*dt + first;
#ifdef QL_HIGH_RESOLUTION_DATE
            fixingDates[i]= QuantLib::Date(today.dateTime() + boost::posix_time::minutes(boost::uint64_t(timeIncrements[i] * 360 * 24 * 60)));
#else
            fixingDates[i] = today + QuantLib::Integer(timeIncrements[i]*360+0.5);
#endif
        }
        QuantLib::Real runningSum = 0.0;
        QuantLib::Size pastFixing = 0;

        boost::shared_ptr<QuantLib::Exercise>
            exercise(new QuantLib::EuropeanExercise(fixingDates[fixings-1]));

        QuantLib::DiscreteAveragingAsianOption option(QuantLib::Average::Arithmetic,
                                                      runningSum,
                                                      pastFixing,
                                                      fixingDates,
                                                      payoff,
                                                      exercise);
        option.setPricingEngine(engine);
        rl = Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                Rcpp::Named("delta") = R_NaReal,
                                Rcpp::Named("gamma") = R_NaReal,
                                Rcpp::Named("vega") = R_NaReal,
                                Rcpp::Named("theta") = R_NaReal,
                                Rcpp::Named("rho") = R_NaReal,
                                Rcpp::Named("divRho") = R_NaReal);
    }
    return rl;
}
Example #8
0
RcppExport SEXP AsianOption(SEXP optionParameters){

    try{
        Rcpp::List rparam(optionParameters);

        std::string avgType = Rcpp::as<std::string>(rparam["averageType"]);
        std::string type = Rcpp::as<std::string>(rparam["type"]);
        double underlying = Rcpp::as<double>(rparam["underlying"]);
        double strike = Rcpp::as<double>(rparam["strike"]);
        QuantLib::Spread dividendYield = Rcpp::as<double>(rparam["dividendYield"]);
        QuantLib::Rate riskFreeRate = Rcpp::as<double>(rparam["riskFreeRate"]);
        QuantLib::Time maturity = Rcpp::as<double>(rparam["maturity"]);
        //        int length = int(maturity*360 + 0.5); // FIXME: this could be better
        double volatility = Rcpp::as<double>(rparam["volatility"]);

        QuantLib::Option::Type optionType = getOptionType(type);

        //from test-suite/asionoptions.cpp
        QuantLib::DayCounter dc = QuantLib::Actual360();
        QuantLib::Date today = QuantLib::Date::todaysDate();
        QuantLib::Settings::instance().evaluationDate() = today;

        boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
        boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
        boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
        boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
        boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc);
        boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
        boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
        
        boost::shared_ptr<QuantLib::BlackScholesMertonProcess>
            stochProcess(new
                         QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                             QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));

        boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType,strike));

      

        QuantLib::Average::Type averageType = QuantLib::Average::Geometric;
        Rcpp::List rl = R_NilValue;
   
        if (avgType=="geometric"){
            averageType = QuantLib::Average::Geometric;
            boost::shared_ptr<QuantLib::PricingEngine> 
                engine(new
                       QuantLib::AnalyticContinuousGeometricAveragePriceAsianEngine(stochProcess));
            
            QuantLib::Date exDate = today + int(maturity * 360 + 0.5);
            boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
            QuantLib::ContinuousAveragingAsianOption option(averageType, payoff, exercise);
            option.setPricingEngine(engine);
            
            rl = Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                    Rcpp::Named("delta") = option.delta(),
                                    Rcpp::Named("gamma") = option.gamma(),
                                    Rcpp::Named("vega") = option.vega(),
                                    Rcpp::Named("theta") = option.theta(),
                                    Rcpp::Named("rho") = option.rho(),
                                    Rcpp::Named("divRho") = option.dividendRho(),
                                    Rcpp::Named("parameters") = optionParameters);
            
        } else if (avgType=="arithmetic"){
            averageType = QuantLib::Average::Arithmetic;

            boost::shared_ptr<QuantLib::PricingEngine> engine =
                QuantLib::MakeMCDiscreteArithmeticAPEngine<QuantLib::LowDiscrepancy>(stochProcess)
                .withSamples(2047)
                .withControlVariate();
            
            //boost::shared_ptr<PricingEngine> engine =
            //    MakeMCDiscreteArithmeticASEngine<LowDiscrepancy>(stochProcess)
            //    .withSeed(3456789)
            //    .withSamples(1023);
            
            QuantLib::Size fixings = Rcpp::as<double>(rparam["fixings"]);
            QuantLib::Time length = Rcpp::as<double>(rparam["length"]);
            QuantLib::Time first = Rcpp::as<double>(rparam["first"]);
            QuantLib::Time dt = length / (fixings - 1);

            std::vector<QuantLib::Time> timeIncrements(fixings);
            std::vector<QuantLib::Date> fixingDates(fixings);
            timeIncrements[0] = first;
            fixingDates[0] = today + QuantLib::Integer(timeIncrements[0] * 360 + 0.5);
            for (QuantLib::Size i=1; i<fixings; i++) {
                timeIncrements[i] = i*dt + first;
                fixingDates[i] = today + QuantLib::Integer(timeIncrements[i]*360+0.5);
            }
            QuantLib::Real runningSum = 0.0;
            QuantLib::Size pastFixing = 0;

            boost::shared_ptr<QuantLib::Exercise> 
                exercise(new QuantLib::EuropeanExercise(fixingDates[fixings-1]));

            QuantLib::DiscreteAveragingAsianOption option(QuantLib::Average::Arithmetic, 
                                                          runningSum,
                                                          pastFixing, 
                                                          fixingDates,
                                                          payoff, 
                                                          exercise);
            option.setPricingEngine(engine);
            rl = Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                    Rcpp::Named("delta") = R_NaN,
                                    Rcpp::Named("gamma") = R_NaN,
                                    Rcpp::Named("vega") = R_NaN,
                                    Rcpp::Named("theta") = R_NaN,
                                    Rcpp::Named("rho") = R_NaN,
                                    Rcpp::Named("divRho") = R_NaN,
                                    Rcpp::Named("parameters") = optionParameters);
        } else {
            throw std::range_error("Unknown average type " + type);
        }      
    
        return rl;

    } catch(std::exception &ex) { 
        forward_exception_to_r(ex); 
    } catch(...) { 
        ::Rf_error("c++ exception (unknown reason)"); 
    }

    return R_NilValue;
}
    void BinomialVanillaEngine<T>::calculate() const {

        DayCounter rfdc  = process_->riskFreeRate()->dayCounter();
        DayCounter divdc = process_->dividendYield()->dayCounter();
        DayCounter voldc = process_->blackVolatility()->dayCounter();
        Calendar volcal = process_->blackVolatility()->calendar();

        Real s0 = process_->stateVariable()->value();
        QL_REQUIRE(s0 > 0.0, "negative or null underlying given");
        Volatility v = process_->blackVolatility()->blackVol(
            arguments_.exercise->lastDate(), s0);
        Date maturityDate = arguments_.exercise->lastDate();
        Rate r = process_->riskFreeRate()->zeroRate(maturityDate,
            rfdc, Continuous, NoFrequency);
        Rate q = process_->dividendYield()->zeroRate(maturityDate,
            divdc, Continuous, NoFrequency);
        Date referenceDate = process_->riskFreeRate()->referenceDate();

        // binomial trees with constant coefficient
        Handle<YieldTermStructure> flatRiskFree(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, r, rfdc)));
        Handle<YieldTermStructure> flatDividends(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, q, divdc)));
        Handle<BlackVolTermStructure> flatVol(
            boost::shared_ptr<BlackVolTermStructure>(
                new BlackConstantVol(referenceDate, volcal, v, voldc)));

        boost::shared_ptr<PlainVanillaPayoff> payoff =
            boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-plain payoff given");

        Time maturity = rfdc.yearFraction(referenceDate, maturityDate);

        boost::shared_ptr<StochasticProcess1D> bs(
                         new GeneralizedBlackScholesProcess(
                                      process_->stateVariable(),
                                      flatDividends, flatRiskFree, flatVol));

        TimeGrid grid(maturity, timeSteps_);

        boost::shared_ptr<T> tree(new T(bs, maturity, timeSteps_,
                                        payoff->strike()));

        boost::shared_ptr<BlackScholesLattice<T> > lattice(
            new BlackScholesLattice<T>(tree, r, maturity, timeSteps_));

        DiscretizedVanillaOption option(arguments_, *process_, grid);

        option.initialize(lattice, maturity);

        // Partial derivatives calculated from various points in the
        // binomial tree (Odegaard)

        // Rollback to third-last step, and get underlying price (s2) &
        // option values (p2) at this point
        option.rollback(grid[2]);
        Array va2(option.values());
        QL_ENSURE(va2.size() == 3, "Expect 3 nodes in grid at second step");
        Real p2h = va2[2]; // high-price
        Real s2 = lattice->underlying(2, 2); // high price

        // Rollback to second-last step, and get option value (p1) at
        // this point
        option.rollback(grid[1]);
        Array va(option.values());
        QL_ENSURE(va.size() == 2, "Expect 2 nodes in grid at first step");
        Real p1 = va[1];

        // Finally, rollback to t=0
        option.rollback(0.0);
        Real p0 = option.presentValue();
        Real s1 = lattice->underlying(1, 1);

        // Calculate partial derivatives
        Real delta0 = (p1-p0)/(s1-s0);   // dp/ds
        Real delta1 = (p2h-p1)/(s2-s1);  // dp/ds

        // Store results
        results_.value = p0;
        results_.delta = delta0;
        results_.gamma = 2.0*(delta1-delta0)/(s2-s0);    //d(delta)/ds
        results_.theta = blackScholesTheta(process_,
                                           results_.value,
                                           results_.delta,
                                           results_.gamma);
    }
Example #10
0
// [[Rcpp::export]]
Rcpp::List europeanOptionEngine(std::string type,
                                double underlying,
                                double strike,
                                double dividendYield,
                                double riskFreeRate,
                                double maturity,
                                double volatility,
                                Rcpp::Nullable<Rcpp::NumericVector> discreteDividends,
                                Rcpp::Nullable<Rcpp::NumericVector> discreteDividendsTimeUntil) {

#ifdef QL_HIGH_RESOLUTION_DATE    
    // in minutes
    boost::posix_time::time_duration length = boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)); 
#else
    int length           = int(maturity*360 + 0.5); // FIXME: this could be better
#endif
    
    QuantLib::Option::Type optionType = getOptionType(type);
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;

    // new framework as per QuantLib 0.3.5
    QuantLib::DayCounter dc = QuantLib::Actual360();
    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote( underlying ));
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote( volatility ));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote( dividendYield ));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote( riskFreeRate ));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc);

    bool withDividends = discreteDividends.isNotNull() && discreteDividendsTimeUntil.isNotNull();
    
#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else 
    QuantLib::Date exDate = today + length;
#endif

    boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate));
    boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike));
    
    if (withDividends) {
        Rcpp::NumericVector divvalues(discreteDividends), divtimes(discreteDividendsTimeUntil);
        int n = divvalues.size();
        std::vector<QuantLib::Date> discDivDates(n);
        std::vector<double> discDividends(n);
        for (int i = 0; i < n; i++) {
#ifdef QL_HIGH_RESOLUTION_DATE
            boost::posix_time::time_duration discreteDividendLength = boost::posix_time::minutes(boost::uint64_t(divtimes[i] * 360 * 24 * 60));
            discDivDates[i] = QuantLib::Date(today.dateTime() + discreteDividendLength);
#else
            discDivDates[i] = today + int(divtimes[i] * 360 + 0.5); 
#endif    
            discDividends[i] = divvalues[i];
        }
        
        boost::shared_ptr<QuantLib::BlackScholesMertonProcess> 
            stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                                 QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                                 QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                                 QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));
        
        boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::AnalyticDividendEuropeanEngine(stochProcess));
        
        QuantLib::DividendVanillaOption option(payoff, exercise, discDivDates, discDividends);
        option.setPricingEngine(engine);
        
        return Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                  Rcpp::Named("delta") = option.delta(),
                                  Rcpp::Named("gamma") = option.gamma(),
                                  Rcpp::Named("vega") = option.vega(),
                                  Rcpp::Named("theta") = option.theta(),
                                  Rcpp::Named("rho") = option.rho(),
                                  Rcpp::Named("divRho") = R_NaReal);
    }
    else {
        
        boost::shared_ptr<QuantLib::VanillaOption> option = makeOption(payoff, exercise, spot, qTS, rTS, volTS);
        
        return Rcpp::List::create(Rcpp::Named("value") = option->NPV(),
                                  Rcpp::Named("delta") = option->delta(),
                                  Rcpp::Named("gamma") = option->gamma(),
                                  Rcpp::Named("vega") = option->vega(),
                                  Rcpp::Named("theta") = option->theta(),
                                  Rcpp::Named("rho") = option->rho(),
                                  Rcpp::Named("divRho") = option->dividendRho());
    }
    
}
Example #11
0
// [[Rcpp::export]]
Rcpp::List americanOptionEngine(std::string type,
                                double underlying,
                                double strike,
                                double dividendYield,
                                double riskFreeRate,
                                double maturity,
                                double volatility,
                                int timeSteps,
                                int gridPoints,
                                std::string engine,
                                Rcpp::Nullable<Rcpp::NumericVector> discreteDividends,
                                Rcpp::Nullable<Rcpp::NumericVector> discreteDividendsTimeUntil) {

#ifdef QL_HIGH_RESOLUTION_DATE    
    // in minutes
    boost::posix_time::time_duration length = boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)); 
#else
    int length = int(maturity * 360 + 0.5); // FIXME: this could be better
    
#endif
    QuantLib::Option::Type optionType = getOptionType(type);

    // new framework as per QuantLib 0.3.5, updated for 0.3.7
    // updated again for 0.9.0, see eg test-suite/americanoption.cpp
    QuantLib::Date today = QuantLib::Date::todaysDate();
    QuantLib::Settings::instance().evaluationDate() = today;
    QuantLib::DayCounter dc = QuantLib::Actual360();
    boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying));
    boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield));
    boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today,qRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate));
    boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today,rRate,dc);
    boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility));
    boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc);
    
    bool withDividends = discreteDividends.isNotNull() && discreteDividendsTimeUntil.isNotNull();
    
#ifdef QL_HIGH_RESOLUTION_DATE
    QuantLib::Date exDate(today.dateTime() + length);
#else 
    QuantLib::Date exDate = today + length;
#endif

    boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike));
    boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::AmericanExercise(today, exDate));

    boost::shared_ptr<QuantLib::BlackScholesMertonProcess> 
        stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(qTS),
                                                             QuantLib::Handle<QuantLib::YieldTermStructure>(rTS),
                                                             QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS)));
    
    if (withDividends) {
        Rcpp::NumericVector divvalues(discreteDividends), divtimes(discreteDividendsTimeUntil);
        int n = divvalues.size();
        std::vector<QuantLib::Date> discDivDates(n);
        std::vector<double> discDividends(n);
        for (int i = 0; i < n; i++) {
#ifdef QL_HIGH_RESOLUTION_DATE
            boost::posix_time::time_duration discreteDividendLength = boost::posix_time::minutes(boost::uint64_t(divtimes[i] * 360 * 24 * 60));
            discDivDates[i] = QuantLib::Date(today.dateTime() + discreteDividendLength);
#else
            discDivDates[i] = today + int(divtimes[i] * 360 + 0.5); 
#endif    
            discDividends[i] = divvalues[i];
        }

        QuantLib::DividendVanillaOption option(payoff, exercise, discDivDates, discDividends);
        if (engine=="BaroneAdesiWhaley") { 
            Rcpp::warning("Discrete dividends, engine switched to CrankNicolson");
            engine = "CrankNicolson";
        }
       
        if (engine=="CrankNicolson") { // FDDividendAmericanEngine only works with CrankNicolson
            // suggestion by Bryan Lewis: use CrankNicolson for greeks
            boost::shared_ptr<QuantLib::PricingEngine> 
            fdcnengine(new QuantLib::FDDividendAmericanEngine<QuantLib::CrankNicolson>(stochProcess, timeSteps, gridPoints));
            option.setPricingEngine(fdcnengine);
            return Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                      Rcpp::Named("delta") = option.delta(),
                                      Rcpp::Named("gamma") = option.gamma(),
                                      Rcpp::Named("vega") = R_NaReal,
                                      Rcpp::Named("theta") = R_NaReal,
                                      Rcpp::Named("rho") = R_NaReal,
                                      Rcpp::Named("divRho") = R_NaReal);
        } else {
            throw std::range_error("Unknown engine " + engine);
        }
        
    } else {
        QuantLib::VanillaOption option(payoff, exercise);
        
        if (engine=="BaroneAdesiWhaley") {
            // new from 0.3.7 BaroneAdesiWhaley
            
            boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::BaroneAdesiWhaleyApproximationEngine(stochProcess));
            option.setPricingEngine(engine);
            return Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                      Rcpp::Named("delta") = R_NaReal,
                                      Rcpp::Named("gamma") = R_NaReal,
                                      Rcpp::Named("vega") = R_NaReal,
                                      Rcpp::Named("theta") = R_NaReal,
                                      Rcpp::Named("rho") = R_NaReal,
                                      Rcpp::Named("divRho") = R_NaReal);
        } else if (engine=="CrankNicolson") {
            // suggestion by Bryan Lewis: use CrankNicolson for greeks
            boost::shared_ptr<QuantLib::PricingEngine> 
            fdcnengine(new QuantLib::FDAmericanEngine<QuantLib::CrankNicolson>(stochProcess, timeSteps, gridPoints));
            option.setPricingEngine(fdcnengine);
            return Rcpp::List::create(Rcpp::Named("value") = option.NPV(),
                                      Rcpp::Named("delta") = option.delta(),
                                      Rcpp::Named("gamma") = option.gamma(),
                                      Rcpp::Named("vega") = R_NaReal,
                                      Rcpp::Named("theta") = R_NaReal,
                                      Rcpp::Named("rho") = R_NaReal,
                                      Rcpp::Named("divRho") = R_NaReal);
        } else {
            throw std::range_error("Unknown engine " + engine);
        }
    }
    
    
}
    void BinomialBarrierEngine<T,D>::calculate() const {

        DayCounter rfdc  = process_->riskFreeRate()->dayCounter();
        DayCounter divdc = process_->dividendYield()->dayCounter();
        DayCounter voldc = process_->blackVolatility()->dayCounter();
        Calendar volcal = process_->blackVolatility()->calendar();

        Real s0 = process_->stateVariable()->value();
        QL_REQUIRE(s0 > 0.0, "negative or null underlying given");
        Volatility v = process_->blackVolatility()->blackVol(
            arguments_.exercise->lastDate(), s0);
        Date maturityDate = arguments_.exercise->lastDate();
        Rate r = process_->riskFreeRate()->zeroRate(maturityDate,
            rfdc, Continuous, NoFrequency);
        Rate q = process_->dividendYield()->zeroRate(maturityDate,
            divdc, Continuous, NoFrequency);
        Date referenceDate = process_->riskFreeRate()->referenceDate();

        // binomial trees with constant coefficient
        Handle<YieldTermStructure> flatRiskFree(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, r, rfdc)));
        Handle<YieldTermStructure> flatDividends(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, q, divdc)));
        Handle<BlackVolTermStructure> flatVol(
            boost::shared_ptr<BlackVolTermStructure>(
                new BlackConstantVol(referenceDate, volcal, v, voldc)));

        boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-striked payoff given");

        Time maturity = rfdc.yearFraction(referenceDate, maturityDate);

        boost::shared_ptr<StochasticProcess1D> bs(
                         new GeneralizedBlackScholesProcess(
                                      process_->stateVariable(),
                                      flatDividends, flatRiskFree, flatVol));

        // correct timesteps to ensure a (local) minimum, using Boyle and Lau
        // approach. See Journal of Derivatives, 1/1994,
        // "Bumping up against the barrier with the binomial method"
        // Note: this approach works only for CoxRossRubinstein lattices, so
        // is disabled if T is not a CoxRossRubinstein or derived from it.
        Size optimum_steps = timeSteps_;
        if (boost::is_base_of<CoxRossRubinstein, T>::value && 
            maxTimeSteps_ > timeSteps_ && s0 > 0 && arguments_.barrier > 0) {
            Real divisor;
            if (s0 > arguments_.barrier)
               divisor = std::pow(std::log(s0 / arguments_.barrier), 2);
            else
               divisor = std::pow(std::log(arguments_.barrier / s0), 2);
            if (!close(divisor,0)) {
                for (Size i=1; i < timeSteps_ ; ++i) {
                    Size optimum = Size(( i*i * v*v * maturity) / divisor);
                    if (timeSteps_ < optimum) {
                        optimum_steps = optimum;
                        break; // found first minimum with iterations>=timesteps
                    }
                }
            }

            if (optimum_steps > maxTimeSteps_) 
               optimum_steps = maxTimeSteps_; // too high, limit
        }

        TimeGrid grid(maturity, optimum_steps);

        boost::shared_ptr<T> tree(new T(bs, maturity, optimum_steps,
                                        payoff->strike()));

        boost::shared_ptr<BlackScholesLattice<T> > lattice(
            new BlackScholesLattice<T>(tree, r, maturity, optimum_steps));

        D option(arguments_, *process_, grid);
        option.initialize(lattice, maturity);

        // Partial derivatives calculated from various points in the
        // binomial tree 
        // (see J.C.Hull, "Options, Futures and other derivatives", 6th edition, pp 397/398)

        // Rollback to third-last step, and get underlying prices (s2) &
        // option values (p2) at this point
        option.rollback(grid[2]);
        Array va2(option.values());
        QL_ENSURE(va2.size() == 3, "Expect 3 nodes in grid at second step");
        Real p2u = va2[2]; // up
        Real p2m = va2[1]; // mid
        Real p2d = va2[0]; // down (low)
        Real s2u = lattice->underlying(2, 2); // up price
        Real s2m = lattice->underlying(2, 1); // middle price
        Real s2d = lattice->underlying(2, 0); // down (low) price

        // calculate gamma by taking the first derivate of the two deltas
        Real delta2u = (p2u - p2m)/(s2u-s2m);
        Real delta2d = (p2m-p2d)/(s2m-s2d);
        Real gamma = (delta2u - delta2d) / ((s2u-s2d)/2);

        // Rollback to second-last step, and get option values (p1) at
        // this point
        option.rollback(grid[1]);
        Array va(option.values());
        QL_ENSURE(va.size() == 2, "Expect 2 nodes in grid at first step");
        Real p1u = va[1];
        Real p1d = va[0];
        Real s1u = lattice->underlying(1, 1); // up (high) price
        Real s1d = lattice->underlying(1, 0); // down (low) price

        Real delta = (p1u - p1d) / (s1u - s1d);

        // Finally, rollback to t=0
        option.rollback(0.0);
        Real p0 = option.presentValue();

        // Store results
        results_.value = p0;
        results_.delta = delta;
        results_.gamma = gamma;
        // theta can be approximated by calculating the numerical derivative
        // between mid value at third-last step and at t0. The underlying price
        // is the same, only time varies.
        results_.theta = (p2m - p0) / grid[2];
    }