static VALUE float_decode(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); return rb_assoc_new(f, n); }
static VALUE float_to_r(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); return f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)); }
/* * call-seq: * flt.to_r -> rational * * Returns the value as a rational. * * NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is * equivalent to '3/10'.to_r, but the former isn't so. * * For example: * * 2.0.to_r #=> (2/1) * 2.5.to_r #=> (5/2) * -0.75.to_r #=> (-3/4) * 0.0.to_r #=> (0/1) */ static VALUE float_to_r(VALUE self, SEL sel) { VALUE f, n; float_decode_internal(self, &f, &n); #if FLT_RADIX == 2 { long ln = FIX2LONG(n); if (ln == 0) return f_to_r(f); if (ln > 0) return f_to_r(f_lshift(f, n)); ln = -ln; return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln))); } #else return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n))); #endif }