Example #1
0
struct fp_ext *
fp_fcosh(struct fp_ext *dest, struct fp_ext *src)
{
	uprint("fcosh\n");

	fp_monadic_check(dest, src);

	return dest;
}
Example #2
0
File: fp_log.c Project: E-LLP/n900
struct fp_ext *
fp_flog2(struct fp_ext *dest, struct fp_ext *src)
{
	uprint("flog2\n");

	fp_monadic_check(dest, src);

	return dest;
}
Example #3
0
struct fp_ext *
fp_fatan(struct fp_ext *dest, struct fp_ext *src)
{
	uprint("fatan\n");

	fp_monadic_check(dest, src);

	return dest;
}
Example #4
0
File: fp_log.c Project: E-LLP/n900
struct fp_ext *
fp_ftentox(struct fp_ext *dest, struct fp_ext *src)
{
	uprint("ftentox\n");

	fp_monadic_check(dest, src);

	return dest;
}
Example #5
0
File: fp_log.c Project: 08opt/linux
struct fp_ext *
fp_fetoxm1(struct fp_ext *dest, struct fp_ext *src)
{
	uprint("fetoxm1\n");

	fp_monadic_check(dest, src);

	return dest;
}
struct fp_ext *
fp_fneg(struct fp_ext *dest, struct fp_ext *src)
{
	dprint(PINSTR, "fneg\n");

	fp_monadic_check(dest, src);

	dest->sign = !dest->sign;

	return dest;
}
struct fp_ext *
fp_fabs(struct fp_ext *dest, struct fp_ext *src)
{
	dprint(PINSTR, "fabs\n");

	fp_monadic_check(dest, src);

	dest->sign = 0;

	return dest;
}
Example #8
0
File: fp_log.c Project: E-LLP/n900
struct fp_ext *
fp_fgetman(struct fp_ext *dest, struct fp_ext *src)
{
	dprint(PINSTR, "fgetman\n");

	fp_monadic_check(dest, src);

	if (IS_ZERO(dest))
		return dest;

	if (IS_INF(dest))
		return dest;

	dest->exp = 0x3FFF;

	return dest;
}
Example #9
0
File: fp_log.c Project: E-LLP/n900
struct fp_ext *
fp_fgetexp(struct fp_ext *dest, struct fp_ext *src)
{
	dprint(PINSTR, "fgetexp\n");

	fp_monadic_check(dest, src);

	if (IS_INF(dest)) {
		fp_set_nan(dest);
		return dest;
	}
	if (IS_ZERO(dest))
		return dest;

	fp_conv_long2ext(dest, (int)dest->exp - 0x3FFF);

	fp_normalize_ext(dest);

	return dest;
}
Example #10
0
File: fp_log.c Project: E-LLP/n900
struct fp_ext *
fp_fsqrt(struct fp_ext *dest, struct fp_ext *src)
{
	struct fp_ext tmp, src2;
	int i, exp;

	dprint(PINSTR, "fsqrt\n");

	fp_monadic_check(dest, src);

	if (IS_ZERO(dest))
		return dest;

	if (dest->sign) {
		fp_set_nan(dest);
		return dest;
	}
	if (IS_INF(dest))
		return dest;

	/*
	 *		 sqrt(m) * 2^(p)	, if e = 2*p
	 * sqrt(m*2^e) =
	 *		 sqrt(2*m) * 2^(p)	, if e = 2*p + 1
	 *
	 * So we use the last bit of the exponent to decide wether to
	 * use the m or 2*m.
	 *
	 * Since only the fractional part of the mantissa is stored and
	 * the integer part is assumed to be one, we place a 1 or 2 into
	 * the fixed point representation.
	 */
	exp = dest->exp;
	dest->exp = 0x3FFF;
	if (!(exp & 1))		/* lowest bit of exponent is set */
		dest->exp++;
	fp_copy_ext(&src2, dest);

	/*
	 * The taylor row around a for sqrt(x) is:
	 *	sqrt(x) = sqrt(a) + 1/(2*sqrt(a))*(x-a) + R
	 * With a=1 this gives:
	 *	sqrt(x) = 1 + 1/2*(x-1)
	 *		= 1/2*(1+x)
	 */
	fp_fadd(dest, &fp_one);
	dest->exp--;		/* * 1/2 */

	/*
	 * We now apply the newton rule to the function
	 *	f(x) := x^2 - r
	 * which has a null point on x = sqrt(r).
	 *
	 * It gives:
	 *	x' := x - f(x)/f'(x)
	 *	    = x - (x^2 -r)/(2*x)
	 *	    = x - (x - r/x)/2
	 *          = (2*x - x + r/x)/2
	 *	    = (x + r/x)/2
	 */
	for (i = 0; i < 9; i++) {
		fp_copy_ext(&tmp, &src2);

		fp_fdiv(&tmp, dest);
		fp_fadd(dest, &tmp);
		dest->exp--;
	}

	dest->exp += (exp - 0x3FFF) / 2;

	return dest;
}