Example #1
0
void label_classifier(char *datacfg, char *filename, char *weightfile)
{
    int i;
    network *net = load_network(filename, weightfile, 0);
    set_batch_network(net, 1);
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "names", "data/labels.list");
    char *test_list = option_find_str(options, "test", "data/train.list");
    int classes = option_find_int(options, "classes", 2);

    char **labels = get_labels(label_list);
    list *plist = get_paths(test_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    for(i = 0; i < m; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, net->w);
        image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
        float *pred = network_predict(net, crop.data);

        if(resized.data != im.data) free_image(resized);
        free_image(im);
        free_image(crop);
        int ind = max_index(pred, classes);

        printf("%s\n", labels[ind]);
    }
}
Example #2
0
void draw_label(image a, int r, int c, image label, image prob_label, const float *rgb)
{
    float ratio = (float) label.w / label.h;
    int h = label.h;
    int w = ratio * h;
    image rl = resize_image(label, w, h);
    if (r - h >= 0) r = r - h;
    float ratiop = (float) prob_label.w / prob_label.h;
    int hp = prob_label.h;
    int wp = ratiop * hp;
    image rpl = resize_image(prob_label, wp, hp);

    int i, j, k;
    for(j = 0; j < h && j + r < a.h; ++j){
        for(i = 0; i < w && i + c < a.w; ++i){
            for(k = 0; k < label.c; ++k){
                float val = get_pixel(rl, i, j, k);
                set_pixel(a, i+c+50, j+r, k, rgb[k] * val);
            }
        }
    }
    for(j = 0; j < hp && j + r < a.h; ++j){
        for(i = 0; i < wp && i + c < a.w; ++i){
            for(k = 0; k < prob_label.c; ++k){
                float val = get_pixel(rpl, i, j, k);
                set_pixel(a, i+c, j+r, k, rgb[k] * val);
            }
        }
    }
    free_image(rl);
    free_image(rpl);
}
Example #3
0
/*
 * do prediction
  *@param[in]: yoloctx, context
  *@param[in]: filename, input picture
  *@param[in]: thresh, threshold for probability x confidence level
  *@param[out]: predictions, store detected objects
*/
void yoloPredict(context_param_yolo_t *yoloctx, char *filename, float thresh, yoloPredictions *predictions)
{
	printf("YOLO predict\n");
	int	nwidth	= yoloctx->_nwidth;
	int nheight = yoloctx->_nheight;
	int side	= yoloctx->_grid.grids;
	int classes = yoloctx->_grid.classes;
	int bbs		= yoloctx->_grid.bbs;
	int sqrt	= yoloctx->_sqrt;
	float nms		= yoloctx->_nms;

	image im	= load_image_color(filename, 0, 0);
	image sized = resize_image(im, nwidth, nheight);
	
	resetData(yoloctx);

	float *x = sized.data;
	float *fpredictions = network_predict(yoloctx->_net, x);

	float	**probs = yoloctx->_grid.probs;
	box		*boxes = yoloctx->_grid.boxes;

	convertDetections(fpredictions, classes, bbs, sqrt, side, 1, 1, thresh, probs, boxes, 0); 
	if (nms) do_nms_sort(boxes, probs, side*side*bbs, classes, nms);
	convertResults(im.w, im.h, side*side*bbs, thresh, boxes, probs, class_names, 20, predictions);
	
	//free(predictions);
	free_image(sized);
	free_image(im);
}
Example #4
0
void predict_regressor(char *cfgfile, char *weightfile, char *filename)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image sized = letterbox_image(im, net->w, net->h);

        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("Predicted: %f\n", predictions[0]);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        free_image(im);
        free_image(sized);
        if (filename) break;
    }
    free_network(net);
}
Example #5
0
image collapse_images_horz(image *ims, int n)
{
    int color = 1;
    int border = 1;
    int h,w,c;
    int size = ims[0].h;
    h = size;
    w = (ims[0].w + border) * n - border;
    c = ims[0].c;
    if(c != 3 || !color){
        h = (h+border)*c - border;
        c = 1;
    }

    image filters = make_image(w, h, c);
    int i,j;
    for(i = 0; i < n; ++i){
        int w_offset = i*(size+border);
        image copy = copy_image(ims[i]);
        //normalize_image(copy);
        if(c == 3 && color){
            embed_image(copy, filters, w_offset, 0);
        }
        else{
            for(j = 0; j < copy.c; ++j){
                int h_offset = j*(size+border);
                image layer = get_image_layer(copy, j);
                embed_image(layer, filters, w_offset, h_offset);
                free_image(layer);
            }
        }
        free_image(copy);
    }
    return filters;
} 
Example #6
0
void
free_video (video_t *video)
/*
 *  Video struct destructor:
 *  Free memory of given 'video' struct.
 *
 *  No return value.
 *
 *  Side effects:
 *	'video' struct is discarded.
 */
{
   if (video->past)
      free_image (video->past);
   if (video->future)
      free_image (video->future);
   if (video->sfuture)
      free_image (video->sfuture);
   if (video->frame)
      free_image (video->frame);
   if (video->sframe)
      free_image (video->sframe);
   if (video->wfa)
      free_wfa (video->wfa);
   if (video->wfa_past)
      free_wfa (video->wfa_past);
   if (video->wfa_future)
      free_wfa (video->wfa_future);

   Free (video);
}
Example #7
0
void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
    network *net = load_network(cfgfile, weightfile, 0);
    image *ims = get_weights(net->layers[0]);
    int n = net->layers[0].n;
    int z;
    for(z = 0; z < num; ++z){
        image im = make_image(h, w, 3);
        fill_image(im, .5);
        int i;
        for(i = 0; i < 100; ++i){
            image r = copy_image(ims[rand()%n]);
            rotate_image_cw(r, rand()%4);
            random_distort_image(r, 1, 1.5, 1.5);
            int dx = rand()%(w-r.w);
            int dy = rand()%(h-r.h);
            ghost_image(r, im, dx, dy);
            free_image(r);
        }
        char buff[256];
        sprintf(buff, "%s/gen_%d", prefix, z);
        save_image(im, buff);
        free_image(im);
    }
    free_network(net);
}
Example #8
0
void
free_ship (RACE_DESC *raceDescPtr, BOOLEAN FreeIconData,
           BOOLEAN FreeBattleData)
{
    if (raceDescPtr->uninit_func != NULL)
        (*raceDescPtr->uninit_func) (raceDescPtr);

    if (FreeBattleData)
    {
        DATA_STUFF *shipData = &raceDescPtr->ship_data;

        free_image (shipData->special);
        free_image (shipData->weapon);
        free_image (shipData->ship);

        DestroyDrawable (
            ReleaseDrawable (shipData->captain_control.background));
        DestroyMusic (shipData->victory_ditty);
        DestroySound (ReleaseSound (shipData->ship_sounds));
    }

    if (FreeIconData)
    {
        SHIP_INFO *shipInfo = &raceDescPtr->ship_info;

        DestroyDrawable (ReleaseDrawable (shipInfo->melee_icon));
        DestroyDrawable (ReleaseDrawable (shipInfo->icons));
        DestroyStringTable (ReleaseStringTable (shipInfo->race_strings));
    }

    DestroyCodeRes (ReleaseCodeRes (raceDescPtr->CodeRef));
}
Example #9
0
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh)
{
	int show_flag = 1;
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    char **names = get_labels(name_list);

    image **alphabet = load_alphabet();
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    int j;
    float nms=.4;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        layer l = net.layers[net.n-1];

        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));

        float *X = sized.data;
        time=clock();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0, hier_thresh);
        if (l.softmax_tree && nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        else if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes, show_flag);
        save_image(im, "predictions");
        show_image(im, "predictions");

        free_image(im);
        free_image(sized);
        free(boxes);
        free_ptrs((void **)probs, l.w*l.h*l.n);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
Example #10
0
void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network net = parse_network_cfg(filename);
    set_batch_network(&net, 1);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);

    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));

    int size = net.w;
    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, size);
        resize_network(&net, resized.w, resized.h);
        //show_image(im, "orig");
        //show_image(crop, "cropped");
        //cvWaitKey(0);
        float *pred = network_predict(net, resized.data);
        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1, 1);

        free_image(im);
        free_image(resized);
        top_k(pred, classes, topk, indexes);

        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }

        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
Example #11
0
File: lsd.c Project: vaiv/OpenANPR
void test_lsd(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net.n; ++i) {
        if (net.layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }

    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image resized = resize_min(im, net.w);
        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
        //grayscale_image_3c(crop);

        float *X = crop.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        constrain_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        show_image(out, "out");
        show_image(crop, "crop");
        save_image(out, "out");
#ifdef OPENCV
        cvWaitKey(0);
#endif

        free_image(im);
        free_image(resized);
        free_image(crop);
        if (filename) break;
    }
}
Example #12
0
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    list *options = read_data_cfg(datacfg);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
    if(top == 0) top = option_find_int(options, "top", 1);

    int i = 0;
    char **names = get_labels(name_list);
    clock_t time;
    int *indexes = calloc(top, sizeof(int));
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image r = letterbox_image(im, net.w, net.h);
        //resize_network(&net, r.w, r.h);
        //printf("%d %d\n", r.w, r.h);

        float *X = r.data;
        time=clock();
        float *predictions = network_predict(net, X);
        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1, 1);
        top_k(predictions, net.outputs, top, indexes);
        fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        for(i = 0; i < top; ++i){
            int index = indexes[i];
            //if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root");
            //else printf("%s: %f\n",names[index], predictions[index]);
            printf("%5.2f%%: %s\n", predictions[index]*100, names[index]);
        }
        if(r.data != im.data) free_image(r);
        free_image(im);
        if (filename) break;
    }
}
Example #13
0
int main (int argc, char ** argv) {
    s_rand (42);
    image * from = init_to_value (make_image (HORZ, VERT), 0.0f);
    image * to = init_to_value (make_image (HORZ, VERT), 0.0f);
    TicTocTimer clock = tic();
    for (size_t i = 0; i < PERF_REPS; ++i)
        add (to, from, 42.0);
    printf("Elapsed time %f seconds.\n",toc(&clock));
    free_image (from);
    free_image (to);
    return 0;
}
Example #14
0
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
    printf("Regressor Demo\n");
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);

    srand(2222222);
    CvCapture * cap;

    if(filename){
        cap = cvCaptureFromFile(filename);
    }else{
        cap = cvCaptureFromCAM(cam_index);
    }

    if(!cap) error("Couldn't connect to webcam.\n");
    cvNamedWindow("Regressor", CV_WINDOW_NORMAL); 
    cvResizeWindow("Regressor", 512, 512);
    float fps = 0;

    while(1){
        struct timeval tval_before, tval_after, tval_result;
        gettimeofday(&tval_before, NULL);

        image in = get_image_from_stream(cap);
        image in_s = letterbox_image(in, net.w, net.h);
        show_image(in, "Regressor");

        float *predictions = network_predict(net, in_s.data);

        printf("\033[2J");
        printf("\033[1;1H");
        printf("\nFPS:%.0f\n",fps);

        printf("People: %f\n", predictions[0]);

        free_image(in_s);
        free_image(in);

        cvWaitKey(10);

        gettimeofday(&tval_after, NULL);
        timersub(&tval_after, &tval_before, &tval_result);
        float curr = 1000000.f/((long int)tval_result.tv_usec);
        fps = .9*fps + .1*curr;
    }
#endif
}
Example #15
0
File: init.c Project: intgr/sc2-uqm
void
UninitSpace (void)
{
	if (space_ini_cnt && --space_ini_cnt == 0)
	{
		free_image (blast);
		free_image (explosion);
		free_image (asteroid);

		DestroyDrawable (ReleaseDrawable (stars_in_space));
		stars_in_space = 0;
	}
}
Example #16
0
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    list *options = read_data_cfg(datacfg);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
    int top = option_find_int(options, "top", 1);

    int i = 0;
    char **names = get_labels(name_list);
    clock_t time;
    int *indexes = calloc(top, sizeof(int));
    char buff[256];
    char *input = buff;
    int size = net.w;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image r = resize_min(im, size);
        resize_network(&net, r.w, r.h);
        printf("%d %d\n", r.w, r.h);

        float *X = r.data;
        time=clock();
        float *predictions = network_predict(net, X);
        top_predictions(net, top, indexes);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        for(i = 0; i < top; ++i){
            int index = indexes[i];
            printf("%s: %f\n", names[index], predictions[index]);
        }
        if(r.data != im.data) free_image(r);
        free_image(im);
        if (filename) break;
    }
}
Example #17
0
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
{

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer l = net.layers[net.n-1];
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    int j;
    float nms=.5;
    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, 0, 20);
        show_image(im, "predictions");
        save_image(im, "predictions");

        show_image(sized, "resized");
        free_image(im);
        free_image(sized);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
Example #18
0
int ClassifyOcrSamples_Example()
{
	char *input = Examples::getPath_alloc(ocrSamples);
	char *output = Examples::getPath_alloc(ocrSamplesOutput);


	Image *img = ReadImage_STB(input);
	if (img == NULL) {
		NConsolePrint("\nClassify OCR Samples failed! input image not found!");
		return -1;
	}
	Image *subimage = 0;
	Image *subImageEdges = NULL;
	ImageClassificationData *icdTemp = 0;
	List *classes = list_create();

	int si = 0;
	for (int x = 0; x < 2000 - 20; x += 20)
	{
		for (int y = 700; y < 800; y += 20)
		{
			subimage = image_get_area(img, x, y, ocrSubimageSize, ocrSubimageSize);

			icdTemp = image_classify(subimage, 12);
			
			free_image(subimage);
			
			if (icdTemp == NULL)
				continue;
			list_put(classes, icdTemp);
			
			//free_image_classification_data(icdTemp);
			si++;
		}
	}

	char *csvContent = datas_get_format_csv(classes);

	file_write(output, csvContent);

	freeN(csvContent);
	//list_free_default(classes, free_l);
	
	list_free_custom(classes, free_l);
	
	freeN(input);
	freeN(output);
	free_image(img);

	return 0;
}
Example #19
0
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
    printf("Regressor Demo\n");
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);

    srand(2222222);
    list *options = read_data_cfg(datacfg);
    int classes = option_find_int(options, "classes", 1);
    char *name_list = option_find_str(options, "names", 0);
    char **names = get_labels(name_list);

    void * cap = open_video_stream(filename, cam_index, 0,0,0);
    if(!cap) error("Couldn't connect to webcam.\n");
    float fps = 0;

    while(1){
        struct timeval tval_before, tval_after, tval_result;
        gettimeofday(&tval_before, NULL);

        image in = get_image_from_stream(cap);
        image crop = center_crop_image(in, net->w, net->h);
        grayscale_image_3c(crop);

        float *predictions = network_predict(net, crop.data);

        printf("\033[2J");
        printf("\033[1;1H");
        printf("\nFPS:%.0f\n",fps);

        int i;
        for(i = 0; i < classes; ++i){
            printf("%s: %f\n", names[i], predictions[i]);
        }

        show_image(crop, "Regressor", 10);
        free_image(in);
        free_image(crop);

        gettimeofday(&tval_after, NULL);
        timersub(&tval_after, &tval_before, &tval_result);
        float curr = 1000000.f/((long int)tval_result.tv_usec);
        fps = .9*fps + .1*curr;
    }
    free_network(net);
#endif
}
Example #20
0
void test_writing(char *cfgfile, char *weightfile, char *filename)
{
    network * net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(net, weightfile);
    }
    set_batch_network(net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }

        image im = load_image_color(input, 0, 0);
        resize_network(net, im.w, im.h);
        printf("%d %d %d\n", im.h, im.w, im.c);
        float *X = im.data;
        time=clock();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        image pred = get_network_image(net);

        image upsampled = resize_image(pred, im.w, im.h);
        image thresh = threshold_image(upsampled, .5);
        pred = thresh;

        show_image(pred, "prediction");
        show_image(im, "orig");
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif

        free_image(upsampled);
        free_image(thresh);
        free_image(im);
        if (filename) break;
    }
}
Example #21
0
image_t *make_image(int width, int height, int rowbytes) {
	int y;

	image_t *image = malloc(sizeof(struct image));
	if (image == NULL)
		goto err;
	image->width = width;
	image->height = height;
	image->rows = NULL;

	image->rows = (png_bytep*) malloc(sizeof(png_bytep) * height);
	if (image->rows == NULL)
		goto err;

	for (y = 0; y < height; y++) {
		image->rows[y] = (png_byte*) malloc(rowbytes);
		if (image->rows[y] == NULL)
			goto err;
	}

	done: return image;
	err: free_image(image);
	image = NULL;
	goto done;
}
Example #22
0
void Darknet::yoloImage(const QString &filename, float thresh)
{
	const Mat ori = OpenCV::loadImage(getAbs(filename), -1);
	Mat img;
	cv::resize(ori, img, cv::Size(priv->net.w, priv->net.h));
	image im = toDarkImage(img);
	//image im = load_image_color((char *)qPrintable(getAbs(filename)), 0, 0);

	//image sized = resize_image(im, priv->net.w, priv->net.h);
	//float *X = sized.data;
	float *X = im.data;
	float *predictions = network_predict(priv->net, X);

	float nms=.5;
	const detection_layer l = priv->l;
	convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, priv->probs, priv->boxes, 0);
	if (nms) do_nms_sort(priv->boxes, priv->probs, l.side*l.side*l.n, l.classes, nms);
	draw_detections(im, l.side*l.side*l.n, thresh, priv->boxes, priv->probs, voc_names, 0, 20);
	show_image(im, "predictions");
	save_image(im, "predictions");

	//show_image(sized, "resized");
	free_image(im);
	//free_image(sized);
}
Example #23
0
void test_dice(char *cfgfile, char *weightfile, char *filename)
{
    network * net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(net, weightfile);
    }
    set_batch_network(net, 1);
    srand(2222222);
    int i = 0;
    char **names = dice_labels;
    char buff[256];
    char *input = buff;
    int indexes[6];
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, net->w, net->h);
        float *X = im.data;
        float *predictions = network_predict(net, X);
        top_predictions(net, 6, indexes);
        for(i = 0; i < 6; ++i){
            int index = indexes[i];
            printf("%s: %f\n", names[index], predictions[index]);
        }
        free_image(im);
        if (filename) break;
    }
}
Example #24
0
File: genpix.c Project: ags/genpix
void keyboardDown(unsigned char key, int x, int y) {
  switch(key) {
    case 'q':
      for(int i = 0; i < population_size; i++)
        free_image(population[i]);
      free(population);
      free_image(best_image);
      exit(0);
      break;
    case 'p':
      paused = !paused;
      break;
    default:
      break;
  }
}
Example #25
0
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    detection_layer l = net.layers[net.n-1];
    float *X = det_s.data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, FRAMES, l.outputs, avg);

    free_image(det_s);
    convert_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
    if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");

    images[demo_index] = det;
    det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
    demo_index = (demo_index + 1)%FRAMES;

    draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, demo_names, demo_labels, demo_classes);

    return 0;
}
Example #26
0
File: demo.c Project: vaiv/OpenANPR
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    layer l = net.layers[net.n-1];
    float *X = det_s.data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, FRAMES, l.outputs, avg);
    l.output = avg;

    free_image(det_s);
    if(l.type == DETECTION){
        get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
    } else if (l.type == REGION){
        get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0, 0, demo_hier_thresh);
    } else {
        error("Last layer must produce detections\n");
    }
    if (nms > 0) do_nms(boxes, probs, l.w*l.h*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");

    images[demo_index] = det;
    det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
    demo_index = (demo_index + 1)%FRAMES;

    draw_detections(det, l.w*l.h*l.n, demo_thresh, boxes, probs, demo_names, demo_alphabet, demo_classes);

    return 0;
}
Example #27
0
/**
 * @brief image_t型構造体のメモリを確保し初期化する。
 *
 * @param[in] width   画像の幅
 * @param[in] height  画像の高さ
 * @param[in] type    色表現の種別
 * @return 初期化済みimage_t型構造体
 */
image_t *allocate_image(uint32_t width, uint32_t height, uint8_t type) {
  uint32_t i;
  image_t *img;
  if ((img = calloc(1, sizeof(image_t))) == NULL) {
    return NULL;
  }
  img->width = width;
  img->height = height;
  img->color_type = type;
  if (type == COLOR_TYPE_INDEX) {
    if ((img->palette = calloc(256, sizeof(color_t))) == NULL) {
      goto error;
    }
  } else {
    img->palette = NULL;
  }
  img->palette_num = 0;
  if ((img->map = calloc(height, sizeof(pixcel_t*))) == NULL) {
    goto error;
  }
  for (i = 0; i < height; i++) {
    if ((img->map[i] = calloc(width, sizeof(pixcel_t))) == NULL) {
      goto error;
    }
  }
  return img;
  error:
  free_image(img);
  return NULL;
}
Example #28
0
std::vector< classification > ofxDarknet::classify( ofPixels & pix, int count )
{
	int *indexes = ( int* ) calloc( count, sizeof( int ) );

    ofPixels  pix2( pix );
    if (pix2.getImageType() != OF_IMAGE_COLOR) {
        pix2.setImageType(OF_IMAGE_COLOR);
    }
	if( pix2.getWidth() != net.w && pix2.getHeight() != net.h ) {
		pix2.resize( net.w, net.h );
	}

	image im = convert( pix2 );

	float *predictions = network_predict( net, im.data1 );

	top_k( predictions, net.outputs, count, indexes );
	std::vector< classification > classifications;
	for( int i = 0; i < count; ++i ) {
		int index = indexes[ i ];
		classification c;
        c.label = labelsAvailable ? names[ index ] : ofToString(index);
		c.probability = predictions[ index ];
		classifications.push_back( c );
	}
	free_image( im );
    free(indexes);
	return classifications;
}
Example #29
0
void test_cifar_multi(char *filename, char *weightfile)
{
    network net = parse_network_cfg(filename);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(time(0));

    float avg_acc = 0;
    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");

    int i;
    for(i = 0; i < test.X.rows; ++i){
        image im = float_to_image(32, 32, 3, test.X.vals[i]);

        float pred[10] = {0};

        float *p = network_predict(net, im.data);
        axpy_cpu(10, 1, p, 1, pred, 1);
        flip_image(im);
        p = network_predict(net, im.data);
        axpy_cpu(10, 1, p, 1, pred, 1);

        int index = max_index(pred, 10);
        int class = max_index(test.y.vals[i], 10);
        if(index == class) avg_acc += 1;
        free_image(im);
        printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
    }
}
Example #30
0
void malloc_image(Image* i) {
	i->pixel = i->red = i->green = i->blue = NULL;
	i->yadds = NULL;
	i->lookup_resx = NULL;

	i->width = width;
	i->height = height;

	i->yadds = (int*) malloc(height * sizeof(int));
	i->pixel = (float*) malloc(width*height*sizeof(float));

	if ( usecolors ) {
		i->red   = (float*) malloc(width*height*sizeof(float));
		i->green = (float*) malloc(width*height*sizeof(float));
		i->blue  = (float*) malloc(width*height*sizeof(float));
	}

	// we allocate one extra pixel for resx because of the src .. src_end stuff in process_scanline
	i->lookup_resx = (int*) malloc( (1 + width) * sizeof(int));

	if ( !(i->pixel && i->yadds && i->lookup_resx) ||
	     (usecolors && !(i->red && i->green && i->blue)) )
	{
		fprintf(stderr, "Not enough memory for given output dimension\n");
		free_image(i);
		exit(1);
	}
}