Example #1
0
/*
 * Different types of UFS hold fs_cstotal in different
 * places, and use different data structure for it.
 * To make things simpler we just copy fs_cstotal to ufs_sb_private_info
 */
static void ufs_setup_cstotal(struct super_block *sb)
{
	struct ufs_sb_info *sbi = UFS_SB(sb);
	struct ufs_sb_private_info *uspi = sbi->s_uspi;
	struct ufs_super_block_first *usb1;
	struct ufs_super_block_second *usb2;
	struct ufs_super_block_third *usb3;
	unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;

	UFSD("ENTER, mtype=%u\n", mtype);
	usb1 = ubh_get_usb_first(uspi);
	usb2 = ubh_get_usb_second(uspi);
	usb3 = ubh_get_usb_third(uspi);

	if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
	     (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
	    mtype == UFS_MOUNT_UFSTYPE_UFS2) {
		/*we have statistic in different place, then usual*/
		uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
		uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
		uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
		uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
	} else {
		uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
		uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
		uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
		uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
	}
	UFSD("EXIT\n");
}
Example #2
0
/**
 * befs_find_key - Search for a key within a node
 * @sb: Filesystem superblock
 * @node: Node to find the key within
 * @findkey: Keystring to search for
 * @value: If key is found, the value stored with the key is put here
 *
 * Finds exact match if one exists, and returns BEFS_BT_MATCH.
 * If there is no match and node's value array is too small for key, return
 * BEFS_BT_OVERFLOW.
 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
 *
 * Uses binary search instead of a linear.
 */
static int
befs_find_key(struct super_block *sb, struct befs_btree_node *node,
	      const char *findkey, befs_off_t * value)
{
	int first, last, mid;
	int eq;
	u16 keylen;
	int findkey_len;
	char *thiskey;
	fs64 *valarray;

	befs_debug(sb, "---> %s %s", __func__, findkey);

	findkey_len = strlen(findkey);

	/* if node can not contain key, just skip this node */
	last = node->head.all_key_count - 1;
	thiskey = befs_bt_get_key(sb, node, last, &keylen);

	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
	if (eq < 0) {
		befs_debug(sb, "<--- node can't contain %s", findkey);
		return BEFS_BT_OVERFLOW;
	}

	valarray = befs_bt_valarray(node);

	/* simple binary search */
	first = 0;
	mid = 0;
	while (last >= first) {
		mid = (last + first) / 2;
		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
			   mid);
		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
		eq = befs_compare_strings(thiskey, keylen, findkey,
					  findkey_len);

		if (eq == 0) {
			befs_debug(sb, "<--- %s found %s at %d",
				   __func__, thiskey, mid);

			*value = fs64_to_cpu(sb, valarray[mid]);
			return BEFS_BT_MATCH;
		}
		if (eq > 0)
			last = mid - 1;
		else
			first = mid + 1;
	}

	/* return an existing value so caller can arrive to a leaf node */
	if (eq < 0)
		*value = fs64_to_cpu(sb, valarray[mid + 1]);
	else
		*value = fs64_to_cpu(sb, valarray[mid]);
	befs_error(sb, "<--- %s %s not found", __func__, findkey);
	befs_debug(sb, "<--- %s ERROR", __func__);
	return BEFS_BT_NOT_FOUND;
}
static int
befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
		  befs_btree_node * node, befs_off_t node_off)
{
	uint off = 0;

	befs_debug(sb, "---> befs_bt_read_node()");

	if (node->bh)
		brelse(node->bh);

	node->bh = befs_read_datastream(sb, ds, node_off, &off);
	if (!node->bh) {
		befs_error(sb, "befs_bt_read_node() failed to read "
			   "node at %Lu", node_off);
		befs_debug(sb, "<--- befs_bt_read_node() ERROR");

		return BEFS_ERR;
	}
	node->od_node =
	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);

	befs_dump_index_node(sb, node->od_node);

	node->head.left = fs64_to_cpu(sb, node->od_node->left);
	node->head.right = fs64_to_cpu(sb, node->od_node->right);
	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
	node->head.all_key_count =
	    fs16_to_cpu(sb, node->od_node->all_key_count);
	node->head.all_key_length =
	    fs16_to_cpu(sb, node->od_node->all_key_length);

	befs_debug(sb, "<--- befs_btree_read_node()");
	return BEFS_OK;
}
Example #4
0
/**
 * load_befs_sb -- Read from disk and properly byteswap all the fields
 * of the befs superblock
 *
 *
 *
 *
 */
int
befs_load_sb(struct super_block *sb, befs_super_block * disk_sb)
{
	befs_sb_info *befs_sb = BEFS_SB(sb);

	/* Check the byte order of the filesystem */
	if (le32_to_cpu(disk_sb->fs_byte_order) == BEFS_BYTEORDER_NATIVE)
		befs_sb->byte_order = BEFS_BYTESEX_LE;
	else if (be32_to_cpu(disk_sb->fs_byte_order) == BEFS_BYTEORDER_NATIVE)
		befs_sb->byte_order = BEFS_BYTESEX_BE;

	befs_sb->magic1 = fs32_to_cpu(sb, disk_sb->magic1);
	befs_sb->magic2 = fs32_to_cpu(sb, disk_sb->magic2);
	befs_sb->magic3 = fs32_to_cpu(sb, disk_sb->magic3);
	befs_sb->block_size = fs32_to_cpu(sb, disk_sb->block_size);
	befs_sb->block_shift = fs32_to_cpu(sb, disk_sb->block_shift);
	befs_sb->num_blocks = fs64_to_cpu(sb, disk_sb->num_blocks);
	befs_sb->used_blocks = fs64_to_cpu(sb, disk_sb->used_blocks);
	befs_sb->inode_size = fs32_to_cpu(sb, disk_sb->inode_size);

	befs_sb->blocks_per_ag = fs32_to_cpu(sb, disk_sb->blocks_per_ag);
	befs_sb->ag_shift = fs32_to_cpu(sb, disk_sb->ag_shift);
	befs_sb->num_ags = fs32_to_cpu(sb, disk_sb->num_ags);

	befs_sb->log_blocks = fsrun_to_cpu(sb, disk_sb->log_blocks);
	befs_sb->log_start = fs64_to_cpu(sb, disk_sb->log_start);
	befs_sb->log_end = fs64_to_cpu(sb, disk_sb->log_end);

	befs_sb->root_dir = fsrun_to_cpu(sb, disk_sb->root_dir);
	befs_sb->indices = fsrun_to_cpu(sb, disk_sb->indices);
	befs_sb->nls = NULL;

	return BEFS_OK;
}
/**
 * befs_find_key - Search for a key within a node
 * @sb: Filesystem superblock
 * @node: Node to find the key within
 * @key: Keystring to search for
 * @value: If key is found, the value stored with the key is put here
 *
 * finds exact match if one exists, and returns BEFS_BT_MATCH
 * If no exact match, finds first key in node that is greater
 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
 * (for partial match, I guess). Can you think of something better to
 * call it?
 *
 * If no key was a match or greater than the search key, return
 * BEFS_BT_NOT_FOUND.
 *
 * Use binary search instead of a linear.
 */
static int
befs_find_key(struct super_block *sb, befs_btree_node * node,
	      const char *findkey, befs_off_t * value)
{
	int first, last, mid;
	int eq;
	u16 keylen;
	int findkey_len;
	char *thiskey;
	fs64 *valarray;

	befs_debug(sb, "---> befs_find_key() %s", findkey);

	*value = 0;

	findkey_len = strlen(findkey);

	/* if node can not contain key, just skeep this node */
	last = node->head.all_key_count - 1;
	thiskey = befs_bt_get_key(sb, node, last, &keylen);

	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
	if (eq < 0) {
		befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
		return BEFS_BT_NOT_FOUND;
	}

	valarray = befs_bt_valarray(node);

	/* simple binary search */
	first = 0;
	mid = 0;
	while (last >= first) {
		mid = (last + first) / 2;
		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
			   mid);
		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
		eq = befs_compare_strings(thiskey, keylen, findkey,
					  findkey_len);

		if (eq == 0) {
			befs_debug(sb, "<--- befs_find_key() found %s at %d",
				   thiskey, mid);

			*value = fs64_to_cpu(sb, valarray[mid]);
			return BEFS_BT_MATCH;
		}
		if (eq > 0)
			last = mid - 1;
		else
			first = mid + 1;
	}
	if (eq < 0)
		*value = fs64_to_cpu(sb, valarray[mid + 1]);
	else
		*value = fs64_to_cpu(sb, valarray[mid]);
	befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
	return BEFS_BT_PARMATCH;
}
Example #6
0
void
befs_dump_super_block(const struct super_block *sb, befs_super_block *sup)
{
#ifdef CONFIG_BEFS_DEBUG

	befs_block_run tmp_run;

	befs_debug(sb, "befs_super_block information");

	befs_debug(sb, "  name %s", sup->name);
	befs_debug(sb, "  magic1 %08x", fs32_to_cpu(sb, sup->magic1));
	befs_debug(sb, "  fs_byte_order %08x",
		   fs32_to_cpu(sb, sup->fs_byte_order));

	befs_debug(sb, "  block_size %u", fs32_to_cpu(sb, sup->block_size));
	befs_debug(sb, "  block_shift %u", fs32_to_cpu(sb, sup->block_shift));

	befs_debug(sb, "  num_blocks %llu", fs64_to_cpu(sb, sup->num_blocks));
	befs_debug(sb, "  used_blocks %llu", fs64_to_cpu(sb, sup->used_blocks));
	befs_debug(sb, "  inode_size %u", fs32_to_cpu(sb, sup->inode_size));

	befs_debug(sb, "  magic2 %08x", fs32_to_cpu(sb, sup->magic2));
	befs_debug(sb, "  blocks_per_ag %u",
		   fs32_to_cpu(sb, sup->blocks_per_ag));
	befs_debug(sb, "  ag_shift %u", fs32_to_cpu(sb, sup->ag_shift));
	befs_debug(sb, "  num_ags %u", fs32_to_cpu(sb, sup->num_ags));

	befs_debug(sb, "  flags %08x", fs32_to_cpu(sb, sup->flags));

	tmp_run = fsrun_to_cpu(sb, sup->log_blocks);
	befs_debug(sb, "  log_blocks %u, %hu, %hu",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

	befs_debug(sb, "  log_start %lld", fs64_to_cpu(sb, sup->log_start));
	befs_debug(sb, "  log_end %lld", fs64_to_cpu(sb, sup->log_end));

	befs_debug(sb, "  magic3 %08x", fs32_to_cpu(sb, sup->magic3));

	tmp_run = fsrun_to_cpu(sb, sup->root_dir);
	befs_debug(sb, "  root_dir %u, %hu, %hu",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

	tmp_run = fsrun_to_cpu(sb, sup->indices);
	befs_debug(sb, "  indices %u, %hu, %hu",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

#endif				//CONFIG_BEFS_DEBUG
}
Example #7
0
void
befs_dump_index_node(const struct super_block *sb, befs_btree_nodehead * node)
{
#ifdef CONFIG_BEFS_DEBUG

	befs_debug(sb, "Btree node structure");
	befs_debug(sb, "  left %016LX", fs64_to_cpu(sb, node->left));
	befs_debug(sb, "  right %016LX", fs64_to_cpu(sb, node->right));
	befs_debug(sb, "  overflow %016LX", fs64_to_cpu(sb, node->overflow));
	befs_debug(sb, "  all_key_count %hu",
		   fs16_to_cpu(sb, node->all_key_count));
	befs_debug(sb, "  all_key_length %hu",
		   fs16_to_cpu(sb, node->all_key_length));

#endif				//CONFIG_BEFS_DEBUG
}
Example #8
0
static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	struct super_block *sb = dentry->d_sb;
	struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
	unsigned  flags = UFS_SB(sb)->s_flags;
	struct ufs_super_block_third *usb3;
	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);

	mutex_lock(&UFS_SB(sb)->s_lock);
	usb3 = ubh_get_usb_third(uspi);
	
	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
		buf->f_type = UFS2_MAGIC;
		buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
	} else {
		buf->f_type = UFS_MAGIC;
		buf->f_blocks = uspi->s_dsize;
	}
	buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
		uspi->cs_total.cs_nffree;
	buf->f_ffree = uspi->cs_total.cs_nifree;
	buf->f_bsize = sb->s_blocksize;
	buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
		? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
	buf->f_files = uspi->s_ncg * uspi->s_ipg;
	buf->f_namelen = UFS_MAXNAMLEN;
	buf->f_fsid.val[0] = (u32)id;
	buf->f_fsid.val[1] = (u32)(id >> 32);

	mutex_unlock(&UFS_SB(sb)->s_lock);

	return 0;
}
Example #9
0
static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
    struct super_block *sb = dentry->d_sb;
    struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
    unsigned  flags = UFS_SB(sb)->s_flags;
    struct ufs_super_block_first *usb1;
    struct ufs_super_block_second *usb2;
    struct ufs_super_block_third *usb3;

    lock_kernel();

    usb1 = ubh_get_usb_first(uspi);
    usb2 = ubh_get_usb_second(uspi);
    usb3 = ubh_get_usb_third(uspi);

    if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
        buf->f_type = UFS2_MAGIC;
        buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
    } else {
        buf->f_type = UFS_MAGIC;
        buf->f_blocks = uspi->s_dsize;
    }
    buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
                   uspi->cs_total.cs_nffree;
    buf->f_ffree = uspi->cs_total.cs_nifree;
    buf->f_bsize = sb->s_blocksize;
    buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
                    ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
    buf->f_files = uspi->s_ncg * uspi->s_ipg;
    buf->f_namelen = UFS_MAXNAMLEN;

    unlock_kernel();

    return 0;
}
Example #10
0
void
befs_dump_index_entry(const struct super_block *sb, befs_btree_super * super)
{
#ifdef CONFIG_BEFS_DEBUG

	befs_debug(sb, "Btree super structure");
	befs_debug(sb, "  magic %08x", fs32_to_cpu(sb, super->magic));
	befs_debug(sb, "  node_size %u", fs32_to_cpu(sb, super->node_size));
	befs_debug(sb, "  max_depth %08x", fs32_to_cpu(sb, super->max_depth));

	befs_debug(sb, "  data_type %08x", fs32_to_cpu(sb, super->data_type));
	befs_debug(sb, "  root_node_pointer %016LX",
		   fs64_to_cpu(sb, super->root_node_ptr));
	befs_debug(sb, "  free_node_pointer %016LX",
		   fs64_to_cpu(sb, super->free_node_ptr));
	befs_debug(sb, "  maximum size %016LX",
		   fs64_to_cpu(sb, super->max_size));

#endif				//CONFIG_BEFS_DEBUG
}
Example #11
0
/*
 * Print contents of ufs2 ufs_super_block, useful for debugging
 */
void ufs2_print_super_stuff(
     struct super_block *sb,
      struct ufs_super_block *usb)
{
	printk("ufs_print_super_stuff\n");
	printk("size of usb:     %u\n", sizeof(struct ufs_super_block));
	printk("  magic:         0x%x\n", fs32_to_cpu(sb, usb->fs_magic));
	printk("  fs_size:   %u\n",fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_size));
	printk("  fs_dsize:  %u\n",fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_dsize));
	printk("  bsize:         %u\n", fs32_to_cpu(usb, usb->fs_bsize));
	printk("  fsize:         %u\n", fs32_to_cpu(usb, usb->fs_fsize));
	printk("  fs_volname:  %s\n", usb->fs_u11.fs_u2.fs_volname);
	printk("  fs_fsmnt:  %s\n", usb->fs_u11.fs_u2.fs_fsmnt);
	printk("  fs_sblockloc: %u\n",fs64_to_cpu(sb,
			usb->fs_u11.fs_u2.fs_sblockloc));
	printk("  cs_ndir(No of dirs):  %u\n",fs64_to_cpu(sb,
			usb->fs_u11.fs_u2.fs_cstotal.cs_ndir));
	printk("  cs_nbfree(No of free blocks):  %u\n",fs64_to_cpu(sb,
			usb->fs_u11.fs_u2.fs_cstotal.cs_nbfree));
	printk("\n");
}
/**
 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
 * @sb: Filesystem superblock
 * @ds: Datastream to read from
 * @sup: Buffer in which to place the btree superblock
 *
 * Calls befs_read_datastream to read in the btree superblock and
 * makes sure it is in cpu byteorder, byteswapping if necessary.
 *
 * On success, returns BEFS_OK and *@sup contains the btree superblock,
 * in cpu byte order.
 *
 * On failure, BEFS_ERR is returned.
 */
static int
befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
		   befs_btree_super * sup)
{
	struct buffer_head *bh = NULL;
	befs_disk_btree_super *od_sup = NULL;

	befs_debug(sb, "---> befs_btree_read_super()");

	bh = befs_read_datastream(sb, ds, 0, NULL);

	if (!bh) {
		befs_error(sb, "Couldn't read index header.");
		goto error;
	}
	od_sup = (befs_disk_btree_super *) bh->b_data;
	befs_dump_index_entry(sb, od_sup);

	sup->magic = fs32_to_cpu(sb, od_sup->magic);
	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
	sup->max_size = fs64_to_cpu(sb, od_sup->max_size);

	brelse(bh);
	if (sup->magic != BEFS_BTREE_MAGIC) {
		befs_error(sb, "Index header has bad magic.");
		goto error;
	}

	befs_debug(sb, "<--- befs_btree_read_super()");
	return BEFS_OK;

      error:
	befs_debug(sb, "<--- befs_btree_read_super() ERROR");
	return BEFS_ERR;
}
Example #13
0
/**
 * befs_btree_seekleaf - Find the first leafnode in the btree
 * @sb: Filesystem superblock
 * @ds: Datastream containing btree
 * @bt_super: Pointer to the superblock of the btree
 * @this_node: Buffer to return the leafnode in
 * @node_off: Pointer to offset of current node within datastream. Modified
 * 		by the function.
 *
 *
 * Helper function for btree traverse. Moves the current position to the 
 * start of the first leaf node.
 *
 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
 */
static int
befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
		    befs_btree_super *bt_super,
		    struct befs_btree_node *this_node,
		    befs_off_t * node_off)
{

	befs_debug(sb, "---> %s", __func__);

	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
		befs_error(sb, "%s failed to read "
			   "node at %llu", __func__, *node_off);
		goto error;
	}
	befs_debug(sb, "Seekleaf to root node %llu", *node_off);

	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
		return BEFS_BT_EMPTY;
	}

	while (!befs_leafnode(this_node)) {

		if (this_node->head.all_key_count == 0) {
			befs_debug(sb, "%s encountered "
				   "an empty interior node: %llu. Using Overflow "
				   "node: %llu", __func__, *node_off,
				   this_node->head.overflow);
			*node_off = this_node->head.overflow;
		} else {
			fs64 *valarray = befs_bt_valarray(this_node);
			*node_off = fs64_to_cpu(sb, valarray[0]);
		}
		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
			befs_error(sb, "%s failed to read "
				   "node at %llu", __func__, *node_off);
			goto error;
		}

		befs_debug(sb, "Seekleaf to child node %llu", *node_off);
	}
	befs_debug(sb, "Node %llu is a leaf node", *node_off);

	return BEFS_OK;

      error:
	befs_debug(sb, "<--- %s ERROR", __func__);
	return BEFS_ERR;
}
Example #14
0
/*
 * Print contents of ufs_super_block, useful for debugging
 */
static void ufs_print_super_stuff(struct super_block *sb,
				  struct ufs_super_block_first *usb1,
				  struct ufs_super_block_second *usb2,
				  struct ufs_super_block_third *usb3)
{
	u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

	pr_debug("ufs_print_super_stuff\n");
	pr_debug("  magic:     0x%x\n", magic);
	if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
		pr_debug("  fs_size:   %llu\n", (unsigned long long)
			 fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
		pr_debug("  fs_dsize:  %llu\n", (unsigned long long)
			 fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
		pr_debug("  bsize:         %u\n",
			 fs32_to_cpu(sb, usb1->fs_bsize));
		pr_debug("  fsize:         %u\n",
			 fs32_to_cpu(sb, usb1->fs_fsize));
		pr_debug("  fs_volname:  %s\n", usb2->fs_un.fs_u2.fs_volname);
		pr_debug("  fs_sblockloc: %llu\n", (unsigned long long)
			 fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
		pr_debug("  cs_ndir(No of dirs):  %llu\n", (unsigned long long)
			 fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
		pr_debug("  cs_nbfree(No of free blocks):  %llu\n",
			 (unsigned long long)
			 fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
		pr_info("  cs_nifree(Num of free inodes): %llu\n",
			(unsigned long long)
			fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
		pr_info("  cs_nffree(Num of free frags): %llu\n",
			(unsigned long long)
			fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
		pr_info("  fs_maxsymlinklen: %u\n",
			fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
	} else {
		pr_debug(" sblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
		pr_debug(" cblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
		pr_debug(" iblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
		pr_debug(" dblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
		pr_debug(" cgoffset:    %u\n",
			 fs32_to_cpu(sb, usb1->fs_cgoffset));
		pr_debug(" ~cgmask:     0x%x\n",
			 ~fs32_to_cpu(sb, usb1->fs_cgmask));
		pr_debug(" size:        %u\n", fs32_to_cpu(sb, usb1->fs_size));
		pr_debug(" dsize:       %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
		pr_debug(" ncg:         %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
		pr_debug(" bsize:       %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
		pr_debug(" fsize:       %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
		pr_debug(" frag:        %u\n", fs32_to_cpu(sb, usb1->fs_frag));
		pr_debug(" fragshift:   %u\n",
			 fs32_to_cpu(sb, usb1->fs_fragshift));
		pr_debug(" ~fmask:      %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
		pr_debug(" fshift:      %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
		pr_debug(" sbsize:      %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
		pr_debug(" spc:         %u\n", fs32_to_cpu(sb, usb1->fs_spc));
		pr_debug(" cpg:         %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
		pr_debug(" ipg:         %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
		pr_debug(" fpg:         %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
		pr_debug(" csaddr:      %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
		pr_debug(" cssize:      %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
		pr_debug(" cgsize:      %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
		pr_debug(" fstodb:      %u\n",
			 fs32_to_cpu(sb, usb1->fs_fsbtodb));
		pr_debug(" nrpos:       %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
		pr_debug(" ndir         %u\n",
			 fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
		pr_debug(" nifree       %u\n",
			 fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
		pr_debug(" nbfree       %u\n",
			 fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
		pr_debug(" nffree       %u\n",
			 fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
	}
	pr_debug("\n");
}
struct qnx6_super_block *qnx6_mmi_fill_super(struct super_block *s, int silent)
{
    struct buffer_head *bh1, *bh2 = NULL;
    struct qnx6_mmi_super_block *sb1, *sb2;
    struct qnx6_super_block *qsb = NULL;
    struct qnx6_sb_info *sbi;
    __u64 offset;

    bh1 = sb_bread(s, 0);
    if (!bh1) {
        printk(KERN_ERR "qnx6: Unable to read first mmi superblock\n");
        return NULL;
    }
    sb1 = (struct qnx6_mmi_super_block *)bh1->b_data;
    sbi = QNX6_SB(s);
    if (fs32_to_cpu(sbi, sb1->sb_magic) != QNX6_SUPER_MAGIC) {
        if (!silent) {
            printk(KERN_ERR "qnx6: wrong signature (magic) in"
                   " superblock #1.\n");
            goto out;
        }
    }


    if (fs32_to_cpu(sbi, sb1->sb_checksum) !=
            crc32_be(0, (char *)(bh1->b_data + 8), 504)) {
        printk(KERN_ERR "qnx6: superblock #1 checksum error\n");
        goto out;
    }


    offset = fs32_to_cpu(sbi, sb1->sb_num_blocks) + QNX6_SUPERBLOCK_AREA /
             fs32_to_cpu(sbi, sb1->sb_blocksize);


    if (!sb_set_blocksize(s, fs32_to_cpu(sbi, sb1->sb_blocksize))) {
        printk(KERN_ERR "qnx6: unable to set blocksize\n");
        goto out;
    }

    brelse(bh1);
    bh1 = sb_bread(s, 0);
    if (!bh1)
        goto out;
    sb1 = (struct qnx6_mmi_super_block *)bh1->b_data;


    bh2 = sb_bread(s, offset);
    if (!bh2) {
        printk(KERN_ERR "qnx6: unable to read the second superblock\n");
        goto out;
    }
    sb2 = (struct qnx6_mmi_super_block *)bh2->b_data;
    if (fs32_to_cpu(sbi, sb2->sb_magic) != QNX6_SUPER_MAGIC) {
        if (!silent)
            printk(KERN_ERR "qnx6: wrong signature (magic) in"
                   " superblock #2.\n");
        goto out;
    }


    if (fs32_to_cpu(sbi, sb2->sb_checksum)
            != crc32_be(0, (char *)(bh2->b_data + 8), 504)) {
        printk(KERN_ERR "qnx6: superblock #1 checksum error\n");
        goto out;
    }

    qsb = kmalloc(sizeof(*qsb), GFP_KERNEL);
    if (!qsb) {
        printk(KERN_ERR "qnx6: unable to allocate memory.\n");
        goto out;
    }

    if (fs64_to_cpu(sbi, sb1->sb_serial) >
            fs64_to_cpu(sbi, sb2->sb_serial)) {

        qnx6_mmi_copy_sb(qsb, sb1);
#ifdef CONFIG_QNX6FS_DEBUG
        qnx6_superblock_debug(qsb, s);
#endif
        memcpy(bh1->b_data, qsb, sizeof(struct qnx6_super_block));

        sbi->sb_buf = bh1;
        sbi->sb = (struct qnx6_super_block *)bh1->b_data;
        brelse(bh2);
        printk(KERN_INFO "qnx6: superblock #1 active\n");
    } else {

        qnx6_mmi_copy_sb(qsb, sb2);
#ifdef CONFIG_QNX6FS_DEBUG
        qnx6_superblock_debug(qsb, s);
#endif
        memcpy(bh2->b_data, qsb, sizeof(struct qnx6_super_block));

        sbi->sb_buf = bh2;
        sbi->sb = (struct qnx6_super_block *)bh2->b_data;
        brelse(bh1);
        printk(KERN_INFO "qnx6: superblock #2 active\n");
    }
    kfree(qsb);


    sbi->s_blks_off = QNX6_SUPERBLOCK_AREA / s->s_blocksize;


    return sbi->sb;

out:
    if (bh1 != NULL)
        brelse(bh1);
    if (bh2 != NULL)
        brelse(bh2);
    return NULL;
}
/**
 * befs_btree_read - Traverse leafnodes of a btree
 * @sb: Filesystem superblock
 * @ds: Datastream containing btree
 * @key_no: Key number (alphabetical order) of key to read
 * @bufsize: Size of the buffer to return key in
 * @keybuf: Pointer to a buffer to put the key in
 * @keysize: Length of the returned key
 * @value: Value stored with the returned key
 *
 * Heres how it works: Key_no is the index of the key/value pair to 
 * return in keybuf/value.
 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 
 * the number of charecters in the key (just a convenience).
 *
 * Algorithm:
 *   Get the first leafnode of the tree. See if the requested key is in that
 *   node. If not, follow the node->right link to the next leafnode. Repeat 
 *   until the (key_no)th key is found or the tree is out of keys.
 */
int
befs_btree_read(struct super_block *sb, befs_data_stream * ds,
		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
		befs_off_t * value)
{
	befs_btree_node *this_node;
	befs_btree_super bt_super;
	befs_off_t node_off = 0;
	int cur_key;
	fs64 *valarray;
	char *keystart;
	u16 keylen;
	int res;

	uint key_sum = 0;

	befs_debug(sb, "---> befs_btree_read()");

	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
		befs_error(sb,
			   "befs_btree_read() failed to read index superblock");
		goto error;
	}

	if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
		befs_error(sb, "befs_btree_read() failed to allocate %u "
			   "bytes of memory", sizeof (befs_btree_node));
		goto error;
	}

	node_off = bt_super.root_node_ptr;
	this_node->bh = NULL;

	/* seeks down to first leafnode, reads it into this_node */
	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
	if (res == BEFS_BT_EMPTY) {
		brelse(this_node->bh);
		kfree(this_node);
		*value = 0;
		*keysize = 0;
		befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
		return BEFS_BT_EMPTY;
	} else if (res == BEFS_ERR) {
		goto error_alloc;
	}

	/* find the leaf node containing the key_no key */

	while (key_sum + this_node->head.all_key_count <= key_no) {

		/* no more nodes to look in: key_no is too large */
		if (this_node->head.right == befs_bt_inval) {
			*keysize = 0;
			*value = 0;
			befs_debug(sb,
				   "<--- befs_btree_read() END of keys at %Lu",
				   key_sum + this_node->head.all_key_count);
			brelse(this_node->bh);
			kfree(this_node);
			return BEFS_BT_END;
		}

		key_sum += this_node->head.all_key_count;
		node_off = this_node->head.right;

		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
			befs_error(sb, "befs_btree_read() failed to read "
				   "node at %Lu", node_off);
			goto error_alloc;
		}
	}

	/* how many keys into this_node is key_no */
	cur_key = key_no - key_sum;

	/* get pointers to datastructures within the node body */
	valarray = befs_bt_valarray(this_node);

	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);

	befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);

	if (bufsize < keylen + 1) {
		befs_error(sb, "befs_btree_read() keybuf too small (%u) "
			   "for key of size %d", bufsize, keylen);
		brelse(this_node->bh);
		goto error_alloc;
	};

	strncpy(keybuf, keystart, keylen);
	*value = fs64_to_cpu(sb, valarray[cur_key]);
	*keysize = keylen;
	keybuf[keylen] = '\0';

	befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
		   cur_key, keylen, keybuf, *value);

	brelse(this_node->bh);
	kfree(this_node);

	befs_debug(sb, "<--- befs_btree_read()");

	return BEFS_OK;

      error_alloc:
	kfree(this_node);

      error:
	*keysize = 0;
	*value = 0;
	befs_debug(sb, "<--- befs_btree_read() ERROR");
	return BEFS_ERR;
}
Example #17
0
void
befs_dump_inode(const struct super_block *sb, befs_inode * inode)
{
#ifdef CONFIG_BEFS_DEBUG

	befs_block_run tmp_run;

	befs_debug(sb, "befs_inode information");

	befs_debug(sb, "  magic1 %08x", fs32_to_cpu(sb, inode->magic1));

	tmp_run = fsrun_to_cpu(sb, inode->inode_num);
	befs_debug(sb, "  inode_num %u, %hu, %hu",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

	befs_debug(sb, "  uid %u", fs32_to_cpu(sb, inode->uid));
	befs_debug(sb, "  gid %u", fs32_to_cpu(sb, inode->gid));
	befs_debug(sb, "  mode %08x", fs32_to_cpu(sb, inode->mode));
	befs_debug(sb, "  flags %08x", fs32_to_cpu(sb, inode->flags));
	befs_debug(sb, "  create_time %Lu",
		   fs64_to_cpu(sb, inode->create_time));
	befs_debug(sb, "  last_modified_time %Lu",
		   fs64_to_cpu(sb, inode->last_modified_time));

	tmp_run = fsrun_to_cpu(sb, inode->parent);
	befs_debug(sb, "  parent [%u, %hu, %hu]",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

	tmp_run = fsrun_to_cpu(sb, inode->attributes);
	befs_debug(sb, "  attributes [%u, %hu, %hu]",
		   tmp_run.allocation_group, tmp_run.start, tmp_run.len);

	befs_debug(sb, "  type %08x", fs32_to_cpu(sb, inode->type));
	befs_debug(sb, "  inode_size %u", fs32_to_cpu(sb, inode->inode_size));

	if (S_ISLNK(inode->mode)) {
		befs_debug(sb, "  Symbolic link [%s]", inode->data.symlink);
	} else {
		int i;

		for (i = 0; i < BEFS_NUM_DIRECT_BLOCKS; i++) {
			tmp_run =
			    fsrun_to_cpu(sb, inode->data.datastream.direct[i]);
			befs_debug(sb, "  direct %d [%u, %hu, %hu]", i,
				   tmp_run.allocation_group, tmp_run.start,
				   tmp_run.len);
		}
		befs_debug(sb, "  max_direct_range %Lu",
			   fs64_to_cpu(sb,
				       inode->data.datastream.
				       max_direct_range));

		tmp_run = fsrun_to_cpu(sb, inode->data.datastream.indirect);
		befs_debug(sb, "  indirect [%u, %hu, %hu]",
			   tmp_run.allocation_group,
			   tmp_run.start, tmp_run.len);

		befs_debug(sb, "  max_indirect_range %Lu",
			   fs64_to_cpu(sb,
				       inode->data.datastream.
				       max_indirect_range));

		tmp_run =
		    fsrun_to_cpu(sb, inode->data.datastream.double_indirect);
		befs_debug(sb, "  double indirect [%u, %hu, %hu]",
			   tmp_run.allocation_group, tmp_run.start,
			   tmp_run.len);

		befs_debug(sb, "  max_double_indirect_range %Lu",
			   fs64_to_cpu(sb,
				       inode->data.datastream.
				       max_double_indirect_range));

		befs_debug(sb, "  size %Lu",
			   fs64_to_cpu(sb, inode->data.datastream.size));
	}

#endif				//CONFIG_BEFS_DEBUG
}
Example #18
0
/*
 * Read on-disk structures associated with cylinder groups
 */
static int ufs_read_cylinder_structures(struct super_block *sb)
{
    struct ufs_sb_info *sbi = UFS_SB(sb);
    struct ufs_sb_private_info *uspi = sbi->s_uspi;
    unsigned flags = sbi->s_flags;
    struct ufs_buffer_head * ubh;
    unsigned char * base, * space;
    unsigned size, blks, i;
    struct ufs_super_block_third *usb3;

    UFSD("ENTER\n");

    usb3 = ubh_get_usb_third(uspi);
    /*
     * Read cs structures from (usually) first data block
     * on the device.
     */
    size = uspi->s_cssize;
    blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
    base = space = kmalloc(size, GFP_KERNEL);
    if (!base)
        goto failed;
    sbi->s_csp = (struct ufs_csum *)space;
    for (i = 0; i < blks; i += uspi->s_fpb) {
        size = uspi->s_bsize;
        if (i + uspi->s_fpb > blks)
            size = (blks - i) * uspi->s_fsize;

        if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
            ubh = ubh_bread(sb,
                            fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr) + i, size);
        else
            ubh = ubh_bread(sb, uspi->s_csaddr + i, size);

        if (!ubh)
            goto failed;

        ubh_ubhcpymem (space, ubh, size);

        space += size;
        ubh_brelse (ubh);
        ubh = NULL;
    }

    /*
     * Read cylinder group (we read only first fragment from block
     * at this time) and prepare internal data structures for cg caching.
     */
    if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL)))
        goto failed;
    for (i = 0; i < uspi->s_ncg; i++)
        sbi->s_ucg[i] = NULL;
    for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
        sbi->s_ucpi[i] = NULL;
        sbi->s_cgno[i] = UFS_CGNO_EMPTY;
    }
    for (i = 0; i < uspi->s_ncg; i++) {
        UFSD("read cg %u\n", i);
        if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
            goto failed;
        if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
            goto failed;

        ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
    }
    for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
        if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL)))
            goto failed;
        sbi->s_cgno[i] = UFS_CGNO_EMPTY;
    }
    sbi->s_cg_loaded = 0;
    UFSD("EXIT\n");
    return 1;

failed:
    kfree (base);
    if (sbi->s_ucg) {
        for (i = 0; i < uspi->s_ncg; i++)
            if (sbi->s_ucg[i])
                brelse (sbi->s_ucg[i]);
        kfree (sbi->s_ucg);
        for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
            kfree (sbi->s_ucpi[i]);
    }
    UFSD("EXIT (FAILED)\n");
    return 0;
}
Example #19
0
static int ufs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct ufs_sb_info * sbi;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_super_block_second * usb2;
	struct ufs_super_block_third * usb3;
	struct ufs_buffer_head * ubh;	
	struct inode *inode;
	unsigned block_size, super_block_size;
	unsigned flags;
	unsigned super_block_offset;
	unsigned maxsymlen;
	int ret = -EINVAL;

	uspi = NULL;
	ubh = NULL;
	flags = 0;
	
	UFSD("ENTER\n");

#ifndef CONFIG_UFS_FS_WRITE
	if (!(sb->s_flags & MS_RDONLY)) {
		pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
		return -EROFS;
	}
#endif
		
	sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
	if (!sbi)
		goto failed_nomem;
	sb->s_fs_info = sbi;
	sbi->sb = sb;

	UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
	
	mutex_init(&sbi->s_lock);
	spin_lock_init(&sbi->work_lock);
	INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
	/*
	 * Set default mount options
	 * Parse mount options
	 */
	sbi->s_mount_opt = 0;
	ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
	if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
		pr_err("wrong mount options\n");
		goto failed;
	}
	if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
		if (!silent)
			pr_err("You didn't specify the type of your ufs filesystem\n\n"
			"mount -t ufs -o ufstype="
			"sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
			">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
			"default is ufstype=old\n");
		ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
	}

	uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
	sbi->s_uspi = uspi;
	if (!uspi)
		goto failed;
	uspi->s_dirblksize = UFS_SECTOR_SIZE;
	super_block_offset=UFS_SBLOCK;

	/* Keep 2Gig file limit. Some UFS variants need to override 
	   this but as I don't know which I'll let those in the know loosen
	   the rules */
	switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
	case UFS_MOUNT_UFSTYPE_44BSD:
		UFSD("ufstype=44bsd\n");
		uspi->s_fsize = block_size = 512;
		uspi->s_fmask = ~(512 - 1);
		uspi->s_fshift = 9;
		uspi->s_sbsize = super_block_size = 1536;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		break;
	case UFS_MOUNT_UFSTYPE_UFS2:
		UFSD("ufstype=ufs2\n");
		super_block_offset=SBLOCK_UFS2;
		uspi->s_fsize = block_size = 512;
		uspi->s_fmask = ~(512 - 1);
		uspi->s_fshift = 9;
		uspi->s_sbsize = super_block_size = 1536;
		uspi->s_sbbase =  0;
		flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		break;
		
	case UFS_MOUNT_UFSTYPE_SUN:
		UFSD("ufstype=sun\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_SUNOS:
		UFSD("ufstype=sunos\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = 2048;
		super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_SUNx86:
		UFSD("ufstype=sunx86\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_OLD:
		UFSD("ufstype=old\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=old is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_NEXTSTEP:
		UFSD("ufstype=nextstep\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=nextstep is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
		UFSD("ufstype=nextstep-cd\n");
		uspi->s_fsize = block_size = 2048;
		uspi->s_fmask = ~(2048 - 1);
		uspi->s_fshift = 11;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=nextstep-cd is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_OPENSTEP:
		UFSD("ufstype=openstep\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=openstep is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_HP:
		UFSD("ufstype=hp\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=hp is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
 		}
 		break;
	default:
		if (!silent)
			pr_err("unknown ufstype\n");
		goto failed;
	}
	
again:	
	if (!sb_set_blocksize(sb, block_size)) {
		pr_err("failed to set blocksize\n");
		goto failed;
	}

	/*
	 * read ufs super block from device
	 */

	ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
	
	if (!ubh) 
            goto failed;

	usb1 = ubh_get_usb_first(uspi);
	usb2 = ubh_get_usb_second(uspi);
	usb3 = ubh_get_usb_third(uspi);

	/* Sort out mod used on SunOS 4.1.3 for fs_state */
	uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
	if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
	    (uspi->s_postblformat != UFS_42POSTBLFMT)) {
		flags &= ~UFS_ST_MASK;
		flags |=  UFS_ST_SUN;
	}

	/*
	 * Check ufs magic number
	 */
	sbi->s_bytesex = BYTESEX_LE;
	switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
		case UFS_MAGIC:
		case UFS_MAGIC_BW:
		case UFS2_MAGIC:
		case UFS_MAGIC_LFN:
	        case UFS_MAGIC_FEA:
	        case UFS_MAGIC_4GB:
			goto magic_found;
	}
	sbi->s_bytesex = BYTESEX_BE;
	switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
		case UFS_MAGIC:
		case UFS_MAGIC_BW:
		case UFS2_MAGIC:
		case UFS_MAGIC_LFN:
	        case UFS_MAGIC_FEA:
	        case UFS_MAGIC_4GB:
			goto magic_found;
	}

	if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP) 
	  || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD) 
	  || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP)) 
	  && uspi->s_sbbase < 256) {
		ubh_brelse_uspi(uspi);
		ubh = NULL;
		uspi->s_sbbase += 8;
		goto again;
	}
	if (!silent)
		pr_err("%s(): bad magic number\n", __func__);
	goto failed;

magic_found:
	/*
	 * Check block and fragment sizes
	 */
	uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
	uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
	uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
	uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
	uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);

	if (!is_power_of_2(uspi->s_fsize)) {
		pr_err("%s(): fragment size %u is not a power of 2\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize < 512) {
		pr_err("%s(): fragment size %u is too small\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize > 4096) {
		pr_err("%s(): fragment size %u is too large\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (!is_power_of_2(uspi->s_bsize)) {
		pr_err("%s(): block size %u is not a power of 2\n",
		       __func__, uspi->s_bsize);
		goto failed;
	}
	if (uspi->s_bsize < 4096) {
		pr_err("%s(): block size %u is too small\n",
		       __func__, uspi->s_bsize);
		goto failed;
	}
	if (uspi->s_bsize / uspi->s_fsize > 8) {
		pr_err("%s(): too many fragments per block (%u)\n",
		       __func__, uspi->s_bsize / uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
		ubh_brelse_uspi(uspi);
		ubh = NULL;
		block_size = uspi->s_fsize;
		super_block_size = uspi->s_sbsize;
		UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
		goto again;
	}

	sbi->s_flags = flags;/*after that line some functions use s_flags*/
	ufs_print_super_stuff(sb, usb1, usb2, usb3);

	/*
	 * Check, if file system was correctly unmounted.
	 * If not, make it read only.
	 */
	if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
	  ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
	  (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
	    (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
	  (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
	  (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
		switch(usb1->fs_clean) {
		case UFS_FSCLEAN:
			UFSD("fs is clean\n");
			break;
		case UFS_FSSTABLE:
			UFSD("fs is stable\n");
			break;
		case UFS_FSLOG:
			UFSD("fs is logging fs\n");
			break;
		case UFS_FSOSF1:
			UFSD("fs is DEC OSF/1\n");
			break;
		case UFS_FSACTIVE:
			pr_err("%s(): fs is active\n", __func__);
			sb->s_flags |= MS_RDONLY;
			break;
		case UFS_FSBAD:
			pr_err("%s(): fs is bad\n", __func__);
			sb->s_flags |= MS_RDONLY;
			break;
		default:
			pr_err("%s(): can't grok fs_clean 0x%x\n",
			       __func__, usb1->fs_clean);
			sb->s_flags |= MS_RDONLY;
			break;
		}
	} else {
		pr_err("%s(): fs needs fsck\n", __func__);
		sb->s_flags |= MS_RDONLY;
	}

	/*
	 * Read ufs_super_block into internal data structures
	 */
	sb->s_op = &ufs_super_ops;
	sb->s_export_op = &ufs_export_ops;

	sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);

	uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
	uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
	uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
	uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
	uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
	uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);

	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
		uspi->s_u2_size  = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
		uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
	} else {
		uspi->s_size  =  fs32_to_cpu(sb, usb1->fs_size);
		uspi->s_dsize =  fs32_to_cpu(sb, usb1->fs_dsize);
	}

	uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
	/* s_bsize already set */
	/* s_fsize already set */
	uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
	uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
	uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
	uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
	uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
	uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
	UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
		uspi->s_fshift);
	uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
	uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
	/* s_sbsize already set */
	uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
	uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
	uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
	uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
	uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
	uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
	uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
	uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);

	if (uspi->fs_magic == UFS2_MAGIC)
		uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
	else
		uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);

	uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
	uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
	uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
	uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
	uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
	uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
	uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
	uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
	uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
	uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
	uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
	uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
	uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
	uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);

	/*
	 * Compute another frequently used values
	 */
	uspi->s_fpbmask = uspi->s_fpb - 1;
	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
		uspi->s_apbshift = uspi->s_bshift - 3;
	else
		uspi->s_apbshift = uspi->s_bshift - 2;

	uspi->s_2apbshift = uspi->s_apbshift * 2;
	uspi->s_3apbshift = uspi->s_apbshift * 3;
	uspi->s_apb = 1 << uspi->s_apbshift;
	uspi->s_2apb = 1 << uspi->s_2apbshift;
	uspi->s_3apb = 1 << uspi->s_3apbshift;
	uspi->s_apbmask = uspi->s_apb - 1;
	uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
	uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
	uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
	uspi->s_bpf = uspi->s_fsize << 3;
	uspi->s_bpfshift = uspi->s_fshift + 3;
	uspi->s_bpfmask = uspi->s_bpf - 1;
	if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
	    (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
		uspi->s_maxsymlinklen =
		    fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);

	if (uspi->fs_magic == UFS2_MAGIC)
		maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
	else
		maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
	if (uspi->s_maxsymlinklen > maxsymlen) {
		ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
			    "fast symlink size (%u)\n", uspi->s_maxsymlinklen);
		uspi->s_maxsymlinklen = maxsymlen;
	}
	sb->s_max_links = UFS_LINK_MAX;

	inode = ufs_iget(sb, UFS_ROOTINO);
	if (IS_ERR(inode)) {
		ret = PTR_ERR(inode);
		goto failed;
	}
	sb->s_root = d_make_root(inode);
	if (!sb->s_root) {
		ret = -ENOMEM;
		goto failed;
	}

	ufs_setup_cstotal(sb);
	/*
	 * Read cylinder group structures
	 */
	if (!(sb->s_flags & MS_RDONLY))
		if (!ufs_read_cylinder_structures(sb))
			goto failed;

	UFSD("EXIT\n");
	return 0;

failed:
	if (ubh)
		ubh_brelse_uspi (uspi);
	kfree (uspi);
	kfree(sbi);
	sb->s_fs_info = NULL;
	UFSD("EXIT (FAILED)\n");
	return ret;

failed_nomem:
	UFSD("EXIT (NOMEM)\n");
	return -ENOMEM;
}
static struct dentry *ufs_get_parent(struct dentry *child)
{
	struct qstr dot_dot = {
		.name	= "..",
		.len	= 2,
	};
	ino_t ino;

	ino = ufs_inode_by_name(child->d_inode, &dot_dot);
	if (!ino)
		return ERR_PTR(-ENOENT);
	return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino));
}

static const struct export_operations ufs_export_ops = {
	.fh_to_dentry	= ufs_fh_to_dentry,
	.fh_to_parent	= ufs_fh_to_parent,
	.get_parent	= ufs_get_parent,
};

#ifdef CONFIG_UFS_DEBUG
static void ufs_print_super_stuff(struct super_block *sb,
				  struct ufs_super_block_first *usb1,
				  struct ufs_super_block_second *usb2,
				  struct ufs_super_block_third *usb3)
{
	u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

	printk("ufs_print_super_stuff\n");
	printk("  magic:     0x%x\n", magic);
	if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
		printk("  fs_size:   %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
		printk("  fs_dsize:  %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
		printk("  bsize:         %u\n",
		       fs32_to_cpu(sb, usb1->fs_bsize));
		printk("  fsize:         %u\n",
		       fs32_to_cpu(sb, usb1->fs_fsize));
		printk("  fs_volname:  %s\n", usb2->fs_un.fs_u2.fs_volname);
		printk("  fs_sblockloc: %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
		printk("  cs_ndir(No of dirs):  %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
		printk("  cs_nbfree(No of free blocks):  %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
		printk(KERN_INFO"  cs_nifree(Num of free inodes): %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
		printk(KERN_INFO"  cs_nffree(Num of free frags): %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
		printk(KERN_INFO"  fs_maxsymlinklen: %u\n",
		       fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
	} else {
		printk(" sblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
		printk(" cblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
		printk(" iblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
		printk(" dblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
		printk(" cgoffset:    %u\n",
		       fs32_to_cpu(sb, usb1->fs_cgoffset));
		printk(" ~cgmask:     0x%x\n",
		       ~fs32_to_cpu(sb, usb1->fs_cgmask));
		printk(" size:        %u\n", fs32_to_cpu(sb, usb1->fs_size));
		printk(" dsize:       %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
		printk(" ncg:         %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
		printk(" bsize:       %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
		printk(" fsize:       %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
		printk(" frag:        %u\n", fs32_to_cpu(sb, usb1->fs_frag));
		printk(" fragshift:   %u\n",
		       fs32_to_cpu(sb, usb1->fs_fragshift));
		printk(" ~fmask:      %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
		printk(" fshift:      %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
		printk(" sbsize:      %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
		printk(" spc:         %u\n", fs32_to_cpu(sb, usb1->fs_spc));
		printk(" cpg:         %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
		printk(" ipg:         %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
		printk(" fpg:         %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
		printk(" csaddr:      %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
		printk(" cssize:      %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
		printk(" cgsize:      %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
		printk(" fstodb:      %u\n",
		       fs32_to_cpu(sb, usb1->fs_fsbtodb));
		printk(" nrpos:       %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
		printk(" ndir         %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
		printk(" nifree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
		printk(" nbfree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
		printk(" nffree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
	}
	printk("\n");
}