int fuse_lowlevel_notify_inval_entry(struct fuse_chan *ch, fuse_ino_t parent, const char *name, size_t namelen) { struct fuse_notify_inval_entry_out outarg; struct fuse_ll *f; struct iovec iov[3]; if (!ch) return -EINVAL; f = (struct fuse_ll *)fuse_session_data(fuse_chan_session(ch)); if (!f) return -ENODEV; outarg.parent = parent; outarg.namelen = namelen; outarg.padding = 0; iov[1].iov_base = &outarg; iov[1].iov_len = sizeof(outarg); iov[2].iov_base = (void *)name; iov[2].iov_len = namelen + 1; return send_notify_iov(f, ch, FUSE_NOTIFY_INVAL_ENTRY, iov, 3); }
/** * Rozofs_fuse channel send: * Since Rozofs operates in non-blocking mode it cannot rely on the default fuse_kern_chan_send() operation of fuse since if there is a congestion on the fuse device, the response or notification will be lost since the caller release the ressource allocated for sending the response once it returns from fuse_kern_chan_send(). To avoid that issue, rozofs MUST be tracked of the response that has not been sent and must save it in some internals buffers. @param ch: fuse channel (contains the reference of the file descriptor to use @param iov: list of the vectors to send @param count: number of vectors to send @retval 0 on success @retval < 0 on error */ int rozofs_fuse_kern_chan_send(struct fuse_chan *ch, const struct iovec iov[], size_t count) { if (iov) { ssize_t res = writev(fuse_chan_fd(ch), iov, count); int err = errno; if (res == -1) { struct fuse_session *se = fuse_chan_session(ch); assert(se != NULL); if(err == EAGAIN) { /* ** fuse device is congestion, so we store the reply and assert ** the congestion flag in the rozofs_fuse context */ return 0; } /* ENOENT means the operation was interrupted */ if (!fuse_session_exited(se) && err != ENOENT) perror("fuse: writing device"); return -err; } } return 0; }
/** * internal function that is called from processing a message that has been queued on the /dev/fuse socket. That function is inherited from fuse_kern_chan_receive @param chp : pointer to the channel @param buf: pointer to the buffer where data will be copied @param size : max size of the receive buffer @retval > 0 : number of byte read @retval = 0 : session has been exited @retval < 0 : error */ int rozofs_fuse_kern_chan_receive(struct fuse_chan **chp, char *buf, size_t size) { struct fuse_chan *ch = *chp; int err; ssize_t res; struct fuse_session *se = fuse_chan_session(ch); assert(se != NULL); restart: res = read(fuse_chan_fd(ch), buf, size); if (fuse_session_exited(se)) return 0; if (res == -1) { /* ENOENT means the operation was interrupted, it's safe to restart */ err = errno; if (err == ENOENT) { rozofs_fuse_req_enoent_count++; goto restart; } if (err == ENODEV) { severe("Exit from RozofsMount required!!!"); fuse_session_exit(se); rozofs_exit(); return 0; } /* Errors occurring during normal operation: EINTR (read interrupted), EAGAIN (nonblocking I/O), ENODEV (filesystem umounted) */ if (err != EINTR && err != EAGAIN) severe("fuse: reading device"); if ((err == EAGAIN)|| (err == EINTR)) rozofs_fuse_req_eagain_count++; return -err; } #if 0 if ((size_t) res < sizeof(struct fuse_in_header)) { fprintf(stderr, "short read on fuse device\n"); return -EIO; } #endif rozofs_fuse_req_count++; rozofs_fuse_req_byte_in+=res; return res; }
static int fuse_kern_chan_send(struct fuse_chan *ch, const struct iovec iov[], size_t count) { if (iov) { ssize_t res = writev(fuse_chan_fd(ch), iov, count); int err = errno; if (res == -1) { struct fuse_session *se = fuse_chan_session(ch); assert(se != NULL); /* ENOENT means the operation was interrupted */ if (!fuse_session_exited(se) && err != ENOENT) perror("fuse: writing device"); return -err; } } return 0; }
int zfsfuse_newfs(char *mntpoint, struct fuse_chan *ch) { fuse_fs_info_t info = { 0 }; info.fd = fuse_chan_fd(ch); info.bufsize = fuse_chan_bufsize(ch); info.ch = ch; info.se = fuse_chan_session(ch); info.mntlen = strlen(mntpoint); if(write(newfs_fd[1], &info, sizeof(info)) != sizeof(info)) { perror("Warning (while writing fsinfo to newfs_fd)"); return -1; } if(write(newfs_fd[1], mntpoint, info.mntlen) != info.mntlen) { perror("Warning (while writing mntpoint to newfs_fd)"); return -1; } return 0; }
static int fuse_kern_chan_receive(struct fuse_chan **chp, char *buf, size_t size) { struct fuse_chan *ch = *chp; int err; ssize_t res; struct fuse_session *se = fuse_chan_session(ch); assert(se != NULL); restart: res = read(fuse_chan_fd(ch), buf, size); err = errno; if (fuse_session_exited(se)) return 0; if (res == -1) { /* ENOENT means the operation was interrupted, it's safe to restart */ if (err == ENOENT) goto restart; if (err == ENODEV) { fuse_session_exit(se); return 0; } /* Errors occurring during normal operation: EINTR (read interrupted), EAGAIN (nonblocking I/O), ENODEV (filesystem umounted) */ if (err != EINTR && err != EAGAIN) perror("fuse: reading device"); return -err; } if ((size_t) res < sizeof(struct fuse_in_header)) { fprintf(stderr, "short read on fuse device\n"); return -EIO; } return res; }
int fuse_lowlevel_notify_inval_inode(struct fuse_chan *ch, fuse_ino_t ino, off_t off, off_t len) { struct fuse_notify_inval_inode_out outarg; struct fuse_ll *f; struct iovec iov[2]; if (!ch) return -EINVAL; f = (struct fuse_ll *)fuse_session_data(fuse_chan_session(ch)); if (!f) return -ENODEV; outarg.ino = ino; outarg.off = off; outarg.len = len; iov[1].iov_base = &outarg; iov[1].iov_len = sizeof(outarg); return send_notify_iov(f, ch, FUSE_NOTIFY_INVAL_INODE, iov, 2); }