void vkeGameRendererDynamic::setMaterialData(VkeMaterial::List *inData){
	m_materials = inData;

	if (m_materials != NULL){

		uint32_t cnt = m_materials->count();
		uint32_t sz = sizeof(VkeMaterialUniform) * cnt;

		VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;

		bufferCreate(&m_material_buffer_staging, sz, (VkBufferUsageFlagBits)usageFlags);
		bufferAlloc(&m_material_buffer_staging, &m_material_staging, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);

		VkeMaterialUniform *uniforms = NULL;

		VKA_CHECK_ERROR(vkMapMemory(getDefaultDevice(), m_material_staging, 0, sz, 0, (void **)&uniforms), "Could not map buffer memory.\n");

		for (uint32_t i = 0; i < cnt; ++i){
			VkeMaterial *mat = m_materials->getMaterial(i);
			mat->initVKBufferData(m_material_buffer_staging);
			mat->updateVKBufferData(uniforms);
		}

		vkUnmapMemory(getDefaultDevice(), m_material_staging);
	}

}
Example #2
0
static int getVolume(int dir, double *left, double *right)
{
  UInt32	sz;
  AudioDeviceID	id;
  Float32	chan1, chan2;

  if (!getDefaultDevice(&id, dir))
    return 0;

  sz= sizeof(chan1);
  if (checkError(AudioDeviceGetProperty(id, 1, // left
					dir, kAudioDevicePropertyVolumeScalar,
					&sz, &chan1),
		 "GetProperty", "VolumeScalar"))
    return 0;
  sz= sizeof(chan2);
  if (checkError(AudioDeviceGetProperty(id, 2, // right
					dir, kAudioDevicePropertyVolumeScalar,
					&sz, &chan2),
		 "GetProperty", "VolumeScalar"))
    chan2= chan1;
  
  *left=  chan1;
  *right= chan2;

  return 1;
}
Example #3
0
bool SoundRecorder::setDevice(const std::string& name)
{
    // Store the device name
    if (name.empty())
        m_deviceName = getDefaultDevice();
    else
        m_deviceName = name;

    if (m_isCapturing)
    {
        // Stop the capturing thread
        m_isCapturing = false;
        m_thread.wait();

        // Open the requested capture device for capturing 16 bits mono samples
//        captureDevice = alcCaptureOpenDevice(name.c_str(), m_sampleRate, AL_FORMAT_MONO16, m_sampleRate);
//        if (!captureDevice)
//        {
//            // Notify derived class
//            onStop();
//
//            err() << "Failed to open the audio capture device with the name: " << m_deviceName << std::endl;
//            return false;
//        }

        // Start the capture
//        alcCaptureStart(captureDevice);

        // Start the capture in a new thread, to avoid blocking the main thread
        m_isCapturing = true;
        m_thread.launch();
    }

    return true;
}
NetworkAudioRecorder::NetworkAudioRecorder()
{
    mode = None;
    samplerate = 44100;
    target_identifier = 0;
    LOG(INFO) << "Using \"" << getDefaultDevice() << "\" at " << samplerate << "Hz for voice communication";
}
Example #5
0
static int setVolume(int dir, double dleft, double dright)
{
  Float32 left=  (Float32)dleft;
  Float32 right= (Float32)dright;
  UInt32	 sz;
  AudioDeviceID	 id;

  if (!getDefaultDevice(&id, dir))
    return 0;

  sz= sizeof(left);
  if (checkError(AudioDeviceSetProperty(id, 0, 1, // left
					dir, kAudioDevicePropertyVolumeScalar,
					sz, &left),
		 "SetProperty", "VolumeScalar"))
    return 0;

  sz= sizeof(right);
  if (checkError(AudioDeviceSetProperty(id, 0, 2, // right
					dir, kAudioDevicePropertyVolumeScalar,
					sz, &right),
		 "SetProperty", "VolumeScalar"))
    return 0;

  return 1;
}
const std::vector<DeviceRef>& DeviceManagerXAudio::getDevices()
{
	if( mDevices.empty() )
		getDefaultDevice();

	return mDevices;
}
Example #7
0
const std::vector<DeviceRef>& DeviceManagerOpenSl::getDevices()
{
	if( mDevices.empty() ) {
		getDefaultDevice();
	}

	return mDevices;
}
Example #8
0
SoundRecorder::SoundRecorder() :
m_thread            (&SoundRecorder::record, this),
m_sampleRate        (0),
m_processingInterval(milliseconds(100)),
m_isCapturing       (false),
m_deviceName        (getDefaultDevice())
{

}
Example #9
0
SoundRecorder::SoundRecorder() :
m_thread            (&SoundRecorder::record, this),
m_sampleRate        (0),
m_processingInterval(milliseconds(100)),
m_isCapturing       (false)
{
    // Set the device name to the default device
    m_deviceName = getDefaultDevice();
}
Example #10
0
int
main(int argc, const char *argv[])
{
    driver_return_code_t ret;
    driver_id_t driver_id = DRIVER_DEVICE;
    char *psz_drive = NULL;
    CdioDevice device;

    if (argc > 1)
        psz_drive = strdup(argv[1]);

    if (!psz_drive) {
        psz_drive = getDefaultDevice(driver_id);
        if (!psz_drive) {
            printf("Can't find a CD-ROM to perform eject operation\n");
            exit(1);
        }
    }
    try {
        ejectMedia(psz_drive);
        printf("CD in CD-ROM drive %s ejected.\n", psz_drive);
    }
    catch ( DriverOpUninit e ) {
        printf("Can't Eject CD from CD-ROM drive: driver is not initialized.\n",
               psz_drive);
    }
    catch ( DriverOpException e ) {
        printf("Ejecting CD from CD-ROM drive %s operation error:\n\t%s.\n",
               psz_drive, e.get_msg());
    }

    try {
        closeTray(psz_drive);
        printf("Closed CD-ROM %s tray.\n", psz_drive);
    }
    catch ( DriverOpException e ) {
        printf("Closing CD-ROM %s tray operation error error:\n\t%s.\n",
               psz_drive, e.get_msg());
    }
    free(psz_drive);

    return 0;
}
Example #11
0
// allocate and a Stream and associate it with a suitable device.
//
static Stream *Stream_new(int dir)
{
  AudioDeviceID id= 0;
  Stream       *s=  0;

  if (!getDefaultDevice(&id, dir))
    return 0;	// no device available

  if (!(s= (Stream *)calloc(1, sizeof(Stream))))
    {
      eprintf("out of memory");
      return 0;
    }
  s->id=	id;
  s->direction= dir;
  debugf("stream %p[%d] created for device %ld\n", s, dir, id);

  return s;
}
Example #12
0
bool SoundRecorder::setDevice(const std::string& name)
{
    // Store the device name
    if (name.empty())
        m_deviceName = getDefaultDevice();
    else
        m_deviceName = name;

    if (m_isCapturing)
    {
        // Stop the capturing thread
        m_isCapturing = false;
        m_thread.wait();

        // Determine the recording format
        ALCenum format = (m_channelCount == 1) ? AL_FORMAT_MONO16 : AL_FORMAT_STEREO16;

        // Open the requested capture device for capturing 16 bits samples
        captureDevice = alcCaptureOpenDevice(name.c_str(), m_sampleRate, format, m_sampleRate);
        if (!captureDevice)
        {
            // Notify derived class
            onStop();

            err() << "Failed to open the audio capture device with the name: " << m_deviceName << std::endl;
            return false;
        }

        // Start the capture
        alcCaptureStart(captureDevice);

        // Start the capture in a new thread, to avoid blocking the main thread
        m_isCapturing = true;
        m_thread.launch();
    }

    return true;
}
Example #13
0
int main(int argc, char *argv[])
{
	CoInitialize(nullptr);

	listDevices();

	IAudioClient *pAudioClient;
	IMMDevice *device;

	getDefaultDevice(&device);

    HRESULT hr = device->Activate(__uuidof(IAudioClient),
        CLSCTX_ALL, nullptr, (void**)&pAudioClient);
    if (FAILED(hr)) {
        printf("IMMDevice::Activate(IAudioClient) failed: hr = 0x%08x", hr);
        return hr;
    }

	REFERENCE_TIME hnsDefaultDevicePeriod;
    hr = pAudioClient->GetDevicePeriod(&hnsDefaultDevicePeriod, nullptr);
    if (FAILED(hr)) {
        printf("IAudioClient::GetDevicePeriod failed: hr = 0x%08x\n", hr);
        pAudioClient->Release();
        return hr;
    }

	// get the default device format
    WAVEFORMATEX *pwfx;
    hr = pAudioClient->GetMixFormat(&pwfx);
    if (FAILED(hr)) {
        printf("IAudioClient::GetMixFormat failed: hr = 0x%08x\n", hr);
        CoTaskMemFree(pwfx);
        pAudioClient->Release();
        return hr;
    }

    DVAR(pwfx->wFormatTag);
    DVAR(pwfx->wBitsPerSample);
    DVAR(pwfx->nBlockAlign);
    DVAR(pwfx->nAvgBytesPerSec);

    switch (pwfx->wFormatTag) {
        case WAVE_FORMAT_IEEE_FLOAT:
            pwfx->wFormatTag = WAVE_FORMAT_PCM;
            pwfx->wBitsPerSample = 16;
            pwfx->nBlockAlign = pwfx->nChannels * pwfx->wBitsPerSample / 8;
            pwfx->nAvgBytesPerSec = pwfx->nBlockAlign * pwfx->nSamplesPerSec;
            break;

        case WAVE_FORMAT_EXTENSIBLE:
            {
                // naked scope for case-local variable
                PWAVEFORMATEXTENSIBLE pEx = reinterpret_cast<PWAVEFORMATEXTENSIBLE>(pwfx);
                if (IsEqualGUID(KSDATAFORMAT_SUBTYPE_IEEE_FLOAT, pEx->SubFormat)) {
                    pEx->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
                    pEx->Samples.wValidBitsPerSample = 16;
                    pwfx->wBitsPerSample = 16;
                    pwfx->nBlockAlign = pwfx->nChannels * pwfx->wBitsPerSample / 8;
                    pwfx->nAvgBytesPerSec = pwfx->nBlockAlign * pwfx->nSamplesPerSec;
                } else {
                    printf("Don't know how to coerce mix format to int-16\n");
                    CoTaskMemFree(pwfx);
                    pAudioClient->Release();
                    return E_UNEXPECTED;
                }
            }
            break;

        default:
            printf("Don't know how to coerce WAVEFORMATEX with wFormatTag = 0x%08x to int-16\n", pwfx->wFormatTag);
            CoTaskMemFree(pwfx);
            pAudioClient->Release();
            return E_UNEXPECTED;
    }

    DVAR(pwfx->wFormatTag);
    DVAR(pwfx->wBitsPerSample);
    DVAR(pwfx->nBlockAlign);
    DVAR(pwfx->nAvgBytesPerSec);

	hr = pAudioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, AUDCLNT_STREAMFLAGS_LOOPBACK, 0, 0, pwfx, 0 );
    if (FAILED(hr)) {
        printf("IAudioClient::Initialize failed: hr = 0x%08x\n", hr);
        pAudioClient->Release();
        return hr;
    }

	IAudioCaptureClient *pAudioCaptureClient;
    hr = pAudioClient->GetService(__uuidof(IAudioCaptureClient), (void**)&pAudioCaptureClient);
    if (FAILED(hr)) {
        printf("IAudioClient::GetService(IAudioCaptureClient) failed: hr 0x%08x\n", hr);
        pAudioClient->Release();
        return hr;
    }


    hr = pAudioClient->Start();
    if (FAILED(hr)) {
        printf("IAudioClient::Start failed: hr = 0x%08x\n", hr);
        pAudioCaptureClient->Release();
        pAudioClient->Release();
        return hr;
    }


for (int i = 0; i < 10; ++i)
{

	UINT32 nNextPacketSize;
    hr = pAudioCaptureClient->GetNextPacketSize(&nNextPacketSize);
    if (FAILED(hr)) {
        printf("IAudioCaptureClient::GetNextPacketSize failed on pass %u after %u frames: hr = 0x%08x\n", 0, 0, hr);
        pAudioClient->Stop();
        pAudioCaptureClient->Release();
        pAudioClient->Release();
        return hr;
    }


    // get the captured data
    BYTE *pData;
    UINT32 nNumFramesToRead;
    DWORD dwFlags;

    hr = pAudioCaptureClient->GetBuffer(&pData, &nNumFramesToRead, &dwFlags, nullptr,
        nullptr);
    if (FAILED(hr)) {
        printf("IAudioCaptureClient::GetBuffer failed on pass %u after %u frames: hr = 0x%08x\n", 0, 0, hr);
        pAudioClient->Stop();
        pAudioCaptureClient->Release();
        pAudioClient->Release();
        return hr;
    }

    DVAR(nNumFramesToRead);


    // if (bFirstPacket && AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY == dwFlags) {
        // printf("Probably spurious glitch reported on first packet\n");
    if (0 != dwFlags && AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY != dwFlags) {
        printf("IAudioCaptureClient::GetBuffer set flags to 0x%08x on pass %u after %u frames\n", dwFlags, 0, 0);
        // pAudioClient->Stop();
        // pAudioCaptureClient->Release();
        // pAudioClient->Release();
        // return E_UNEXPECTED;
    }
    else
    	DVAR((int)*pData);

    if (0 == nNumFramesToRead) {
        printf("IAudioCaptureClient::GetBuffer said to read 0 frames on pass %u after %u frames\n", 0, 0);
        pAudioClient->Stop();
        pAudioCaptureClient->Release();
        pAudioClient->Release();
        return E_UNEXPECTED;
    }


    UINT32 nBlockAlign = pwfx->nBlockAlign;
    LONG lBytesToWrite = nNumFramesToRead * nBlockAlign;
    hr = pAudioCaptureClient->ReleaseBuffer(nNumFramesToRead);
}

	pAudioClient->Stop();
    pAudioCaptureClient->Release();
    pAudioClient->Release();


	CoUninitialize();

	return 0;
}
Example #14
0
DeviceRef DeviceManagerOpenSl::getDefaultInput()
{
	return getDefaultDevice();
}
void VkeCubeTexture::loadCubeDDS(const char *inFile){


	std::string searchPaths[] = {
		std::string(PROJECT_NAME),
		NVPWindow::sysExePath() + std::string(PROJECT_RELDIRECTORY),
		std::string(PROJECT_ABSDIRECTORY)
	};

	nv_dds::CDDSImage ddsImage;

	for (uint32_t i = 0; i < 3; ++i){
        std::string separator = "";
        uint32_t strSize = searchPaths[i].size();
        if(searchPaths[i].substr(strSize-1,strSize) != "/") separator = "/";
        std::string filePath = searchPaths[i] + separator + std::string("images/") + std::string(inFile);
        ddsImage.load(filePath, true);
		if (ddsImage.is_valid()) break;
	}

	if (!ddsImage.is_valid()){
		perror("Could not cube load texture image.\n");
		exit(1);
	}

	uint32_t imgW = ddsImage.get_width();
	uint32_t imgH = ddsImage.get_height();
	uint32_t comCount = ddsImage.get_components();
	uint32_t fmt = ddsImage.get_format();

	bool isCube = ddsImage.is_cubemap();
	bool isComp = ddsImage.is_compressed();

	VkFormat vkFmt = VK_FORMAT_R8G8B8A8_UNORM;

	switch (fmt){
	case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
		vkFmt = VK_FORMAT_BC1_RGB_SRGB_BLOCK;
		break;

	case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
		vkFmt = VK_FORMAT_BC2_UNORM_BLOCK;

		break;

	case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
		vkFmt = VK_FORMAT_BC3_UNORM_BLOCK;
		break;
	default:

		break;
	}


	m_width = imgW;
	m_height = imgH;
	m_format = vkFmt;

	VulkanDC::Device::Queue::Name queueName = "DEFAULT_GRAPHICS_QUEUE";
	VulkanDC::Device::Queue::CommandBufferID cmdID = INIT_COMMAND_ID;
	VulkanDC *dc = VulkanDC::Get();
	VulkanDC::Device *device = dc->getDefaultDevice();
	VulkanDC::Device::Queue *queue = device->getQueue(queueName);
	VkCommandBuffer cmd = VK_NULL_HANDLE;

	queue->beginCommandBuffer(cmdID, &cmd, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT);

	imageCreateAndBind(
		&m_data.image,
		&m_data.memory,
		m_format, VK_IMAGE_TYPE_2D,
		m_width, m_height, 1, 6,
		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
		(VkImageUsageFlagBits)(VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT),
		VK_IMAGE_TILING_OPTIMAL);

	VkBuffer cubeMapBuffer;
	VkDeviceMemory cubeMapMem;

	bufferCreate(&cubeMapBuffer, m_width*m_height * 3 * 6, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
	bufferAlloc(&cubeMapBuffer, &cubeMapMem, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);


	if (m_memory_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT){
		imageSetLayoutBarrier(cmdID, queueName, m_data.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_GENERAL);

		for (uint32_t i = 0; i < 6; ++i){

			void *data = NULL;
			VkSubresourceLayout layout;
			VkImageSubresource subres;
			subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			subres.mipLevel = m_mip_level;
			subres.arrayLayer = i;
			vkGetImageSubresourceLayout(getDefaultDevice(), m_data.image, &subres, &layout);


			VKA_CHECK_ERROR(vkMapMemory(getDefaultDevice(), cubeMapMem, layout.offset, layout.size, 0, &data), "Could not map memory for image.\n");

			const nv_dds::CTexture &mipmap = ddsImage.get_cubemap_face(i);

			memcpy(data, (void *)mipmap, layout.size);



			vkUnmapMemory(getDefaultDevice(), cubeMapMem);
		}

		VkBufferImageCopy biCpyRgn[6];


		for (uint32_t k = 0; k < 6; ++k){
			VkSubresourceLayout layout;
			VkImageSubresource subres;
			subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			subres.mipLevel = m_mip_level;
			subres.arrayLayer = k;
			vkGetImageSubresourceLayout(getDefaultDevice(), m_data.image, &subres, &layout);

			biCpyRgn[k].bufferOffset = layout.offset;
			biCpyRgn[k].bufferImageHeight = 0;
			biCpyRgn[k].bufferRowLength = 0;
			biCpyRgn[k].imageExtent.width = m_width;
			biCpyRgn[k].imageExtent.height = m_height;
			biCpyRgn[k].imageExtent.depth = 1;
			biCpyRgn[k].imageOffset.x = 0;
			biCpyRgn[k].imageOffset.y = 0;
			biCpyRgn[k].imageOffset.z = 0;
			biCpyRgn[k].imageSubresource.baseArrayLayer = k;
			biCpyRgn[k].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			biCpyRgn[k].imageSubresource.layerCount = 1;
			biCpyRgn[k].imageSubresource.mipLevel = 0;

		}

		VkFence copyFence;
		VkFenceCreateInfo fenceInfo;
		memset(&fenceInfo, 0, sizeof(fenceInfo));
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;


		vkCreateFence(device->getVKDevice(), &fenceInfo, NULL, &copyFence);

		vkCmdCopyBufferToImage(cmd, cubeMapBuffer, m_data.image, m_data.imageLayout, 6, biCpyRgn);
		queue->flushCommandBuffer(cmdID, &copyFence);

		vkWaitForFences(device->getVKDevice(), 1, &copyFence, VK_TRUE, 100000000000);

		vkDestroyBuffer(device->getVKDevice(), cubeMapBuffer, NULL);
		vkFreeMemory(device->getVKDevice(), cubeMapMem, NULL);

	}


	VkSamplerCreateInfo sampler;

	sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
	sampler.pNext = NULL;
	sampler.magFilter = VK_FILTER_NEAREST;
	sampler.minFilter = VK_FILTER_NEAREST;
	sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
	sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.mipLodBias = 0.0f;
	sampler.maxAnisotropy = 1;
	sampler.compareOp = VK_COMPARE_OP_NEVER;
	sampler.minLod = 0.0f;
	sampler.maxLod = 0.0f;

	sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;

	VkImageViewCreateInfo view;
	view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
	view.pNext = NULL;
	view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
	view.format = m_format;
	view.components.r = VK_COMPONENT_SWIZZLE_R;
	view.components.g = VK_COMPONENT_SWIZZLE_G;
	view.components.b = VK_COMPONENT_SWIZZLE_B;
	view.components.a = VK_COMPONENT_SWIZZLE_A;

	view.subresourceRange.baseArrayLayer = 0;
	view.subresourceRange.levelCount = 1;
	view.subresourceRange.baseMipLevel = 0;
	view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
	view.subresourceRange.layerCount = 1;

	VKA_CHECK_ERROR(vkCreateSampler(getDefaultDevice(), &sampler, NULL, &m_data.sampler), "Could not create sampler for image texture.\n");

	view.image = m_data.image;

	VKA_CHECK_ERROR(vkCreateImageView(getDefaultDevice(), &view, NULL, &m_data.view), "Could not create image view for texture.\n");





}
void VkeCubeTexture::loadTextureFiles(const char **inPath){

	bool imagesOK = true;
	VKA_INFO_MSG("Loading Cube Texture.\n");
	for (uint32_t i = 0; i < 6; ++i){
		if (!loadTexture(inPath[i], NULL, NULL, &m_width, &m_height)){
			VKA_ERROR_MSG("Error loading texture image.\n");
			printf("Texture : %d not available (%s).\n", i, inPath[i]);
			return;
		}
	}

	VulkanDC::Device::Queue::Name queueName = "DEFAULT_GRAPHICS_QUEUE";
	VulkanDC::Device::Queue::CommandBufferID cmdID = INIT_COMMAND_ID;
	VulkanDC *dc = VulkanDC::Get();
	VulkanDC::Device *device = dc->getDefaultDevice();
	VulkanDC::Device::Queue *queue = device->getQueue(queueName);
	VkCommandBuffer cmd = VK_NULL_HANDLE;

	queue->beginCommandBuffer(cmdID, &cmd, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT);

	imageCreateAndBind(
		&m_data.image,
		&m_data.memory,
		m_format, VK_IMAGE_TYPE_2D,
		m_width, m_height, 1, 6,
		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
		(VkImageUsageFlagBits)( VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT ),
		VK_IMAGE_TILING_OPTIMAL);

	VkBuffer cubeMapBuffer;
	VkDeviceMemory cubeMapMem;

	bufferCreate(&cubeMapBuffer, m_width*m_height * 4 * 6, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
	bufferAlloc(&cubeMapBuffer, &cubeMapMem, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);

	VkDeviceSize dSize = m_width * m_height * 4;
	uint32_t rowPitch = m_width * 4;

	if (m_memory_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT){
		imageSetLayoutBarrier(cmdID, queueName, m_data.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_GENERAL);

		for (uint32_t i = 0; i < 6; ++i){

			void *data = NULL;
			VkDeviceSize ofst = dSize*i;

			VKA_CHECK_ERROR(vkMapMemory(getDefaultDevice(),cubeMapMem, ofst, dSize, 0, &data), "Could not map memory for image.\n");

			if (!loadTexture(inPath[i], (uint8_t**)&data, rowPitch, &m_width, &m_height)){
				VKA_ERROR_MSG("Could not load final image.\n");
			}

			vkUnmapMemory(getDefaultDevice(), cubeMapMem);
		}

		VkBufferImageCopy biCpyRgn[6];
			

		for (uint32_t k = 0; k < 6; ++k){
			VkDeviceSize ofst = dSize*k;

			biCpyRgn[k].bufferOffset = ofst;
			biCpyRgn[k].bufferImageHeight = 0;
			biCpyRgn[k].bufferRowLength = 0;
			biCpyRgn[k].imageExtent.width = m_width;
			biCpyRgn[k].imageExtent.height = m_height;
			biCpyRgn[k].imageExtent.depth = 1;
			biCpyRgn[k].imageOffset.x = 0;
			biCpyRgn[k].imageOffset.y = 0;
			biCpyRgn[k].imageOffset.z = 0;
			biCpyRgn[k].imageSubresource.baseArrayLayer = k;
			biCpyRgn[k].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			biCpyRgn[k].imageSubresource.layerCount = 1;
			biCpyRgn[k].imageSubresource.mipLevel = 0;

		}

		VkFence copyFence;
		VkFenceCreateInfo fenceInfo;
		memset(&fenceInfo, 0, sizeof(fenceInfo));
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		

		vkCreateFence(device->getVKDevice(), &fenceInfo,NULL , &copyFence);

		vkCmdCopyBufferToImage(cmd, cubeMapBuffer, m_data.image, m_data.imageLayout, 6, biCpyRgn);
		queue->flushCommandBuffer(cmdID , &copyFence);

		vkWaitForFences(device->getVKDevice(), 1, &copyFence, VK_TRUE, 100000000000);
		
		vkDestroyBuffer(device->getVKDevice(), cubeMapBuffer, NULL);
		vkFreeMemory(device->getVKDevice(), cubeMapMem, NULL);

	}


	VkSamplerCreateInfo sampler;
	
	sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
	sampler.pNext = NULL;
	sampler.magFilter = VK_FILTER_NEAREST;
	sampler.minFilter = VK_FILTER_NEAREST;
	sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
    sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
	sampler.mipLodBias = 0.0f;
	sampler.maxAnisotropy = 1;
	sampler.compareOp = VK_COMPARE_OP_NEVER;
	sampler.minLod = 0.0f;
	sampler.maxLod = 0.0f;

	sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;

	VkImageViewCreateInfo view;
	view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
	view.pNext = NULL;
	view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; 
	view.format = m_format;
	view.components = {
		
		VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A
	};
	
	view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 0 };
    view.subresourceRange.baseArrayLayer = 0;
	view.subresourceRange.levelCount = 1;
	view.subresourceRange.baseMipLevel = 0;
    view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
	view.subresourceRange.layerCount = 1;

	VKA_CHECK_ERROR(vkCreateSampler(getDefaultDevice(), &sampler,NULL, &m_data.sampler), "Could not create sampler for image texture.\n");

	view.image = m_data.image;

	VKA_CHECK_ERROR(vkCreateImageView(getDefaultDevice(), &view,NULL, &m_data.view), "Could not create image view for texture.\n");


	VKA_INFO_MSG("Created CUBE Image Texture.\n");

}
void vkeGameRendererDynamic::update(){
	VulkanAppContext *ctxt = VulkanAppContext::GetInstance();
	VulkanDC *dc = VulkanDC::Get();
	VulkanDC::Device *device = dc->getDefaultDevice();
	VkCommandBuffer cmd = VK_NULL_HANDLE;
	VulkanDC::Device::Queue::CommandBufferID cmdID = INIT_COMMAND_ID + 300;

	static float sTime = 0.0f;

	static uint32_t *uniforms = NULL;

	uint32_t sz = (sizeof(VkeNodeUniform) * 100) + (64 * 64);

	static bool ismapped(false);

	nv_math::mat4f tempMatrix;
	const float r2d = 180 / (3.14159265359);
	static float xTheta(0.0f);


	//if (!ismapped){
	VKA_CHECK_ERROR(vkMapMemory(getDefaultDevice(), m_uniforms_staging, 0, sz, 0, (void **)&uniforms), "Could not map buffer memory.\n");
	//ismapped = true;
	//}


	for (uint32_t i = 0; i < 64; ++i){

		size_t pointerOffset = (sizeof(VkeNodeUniform) * 100) + (64 * i);
		nv_math::mat4f *matPtr = (nv_math::mat4f*)(((uint8_t*)uniforms) + pointerOffset);

		m_flight_paths[i]->update(matPtr, sTime);

	}

	m_node_data->update((VkeNodeUniform*)uniforms);

	m_camera->setViewport(0, 0, (float)m_width, (float)m_height);
	m_camera->update();

	VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
	memRange.memory = m_uniforms_staging;
	memRange.offset = 0;
	memRange.size = sz;

	vkFlushMappedMemoryRanges(device->getVKDevice(), 1, &memRange);




	vkUnmapMemory(device->getVKDevice(), m_uniforms_staging);

	if (!m_is_first_frame){

		VkSubmitInfo subInfo;

		memset(&subInfo, 0, sizeof(subInfo));
		subInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		subInfo.commandBufferCount = 1;
		subInfo.pCommandBuffers = &m_update_commands[m_current_buffer_index];

		vkQueueSubmit(dc->getDefaultQueue()->getVKQueue(), 1, &subInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(dc->getDefaultQueue()->getVKQueue());



#if defined(WIN32)
		subInfo.waitSemaphoreCount = 1;
		subInfo.pWaitSemaphores = &m_present_done;
		subInfo.signalSemaphoreCount = 0;
		subInfo.pSignalSemaphores = &m_render_done;
#endif

		subInfo.pCommandBuffers = &m_primary_commands[m_current_buffer_index];

		vkQueueSubmit(dc->getDefaultQueue()->getVKQueue(), 1, &subInfo, VK_NULL_HANDLE);
	}
	else{
		m_is_first_frame = false;
	}
	present();

	m_current_buffer_index++;
	m_current_buffer_index %= 2;

	sTime += 0.16;

	generateDrawCommands();




}